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Tumor mutation burden (TMB) is a well-known efficacy predictor for checkpoint inhibitor
immunotherapies. Currently, TMB assessment relies on DNA sequencing data. Gene
expression profiling by RNA sequencing (RNAseq) is another type of analysis that can
inform clinical decision-making and including TMB estimation may strongly benefit this
approach, especially for the formalin-fixed, paraffin-embedded (FFPE) tissue samples.
Here, we for the first time compared TMB levels deduced from whole exome sequencing
(WES) and RNAseq profiles of the same FFPE biosamples in single-sample mode. We
took TCGA project data with mean sequencing depth 23 million gene-mapped reads
(MGMRs) and found 0.46 (Pearson)–0.59 (Spearman) correlation with standard mutation
calling pipelines. This was converted into low (<10) and high (>10) TMB per megabase
classifier with area under the curve (AUC) 0.757, and application of machine learning
increased AUC till 0.854. We then compared 73 experimental pairs of WES and RNAseq
profiles with lower (mean 11 MGMRs) and higher (mean 68 MGMRs) RNA sequencing
depths. For higher depth, we observed ~1 AUC for the high/low TMB classifier and 0.85
(Pearson)–0.95 (Spearman) correlation with standard mutation calling pipelines. For the
lower depth, the AUC was below the high-quality threshold of 0.7. Thus, we conclude that
using RNA sequencing of tumor materials from FFPE blocks with enough coverage can
afford for high-quality discrimination of tumors with high and low TMB levels in a single-
sample mode.

Keywords: TMB (tumor mutation burden), RNAseq, FFPE (formalin-fixed paraffin-embedded), machine
learning, oncology
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INTRODUCTION

Tumor mutation burden (TMB) per million base pairs is a well-
known efficacy predictor for checkpoint inhibi tor
immunotherapy (1). TMB can be calculated in several ways
(2). For example, in commercial FDA-approved FoundationOne
CDx test for unpaired single tumor samples, TMB is defined as
the number of somatic mutations per million base pairs
(megabase) of the protein-coding sequence analyzed—
including both substitutions and indels, but irrespective of the
functional consequences of the variants (3). Highly mutated
tumors are more likely to produce tumor neoantigens and
become more “visible” to the immune system; thus, TMB is a
good proxy for the tumor neoantigen load (4).

To date, TMB assessment is commercially available in the
form of clinical and research use-only diagnostic tests (5). In
June 2020, TMB was approved for the use of immune checkpoint
inhibitor pembrolizumab in the treatment of patients with
advanced or metastatic solid cancers, and FoundationOne CDx
assay was approved as a companion diagnostic test.

The two major approaches for evaluating TMB are based on
using whole exome sequencing (WES) and next-generation
sequencing (NGS) panels. WES-TMB was demonstrated first
to be associated with tumor responses on immune checkpoint
inhibitors and thus proposed as a predictive biomarker (6–9).
These early WES-TMB estimates were considering only non-
synonymous somatic mutations. Overall, TMB levels were
classified as “high” or “low.” However, the cutoff values varied
from ≥7.4 in esophageal and gastric cancer till ≥23.1 in non-
small cell lung cancer (NSCLC) for the number of mutations per
megabase DNA and from ≥158 mutations in advanced NSCLC
till ≥248 mutations in advanced small cell lung cancer for the
whole tumor exome non-synonymous mutation estimates (10).

To address many of the WES-TMB limitations, targeted
sequencing panels with exonic sequences of especially
frequently mutated genes were developed to estimate TMB (11,
12). Unlike in WES-TMB, NGS panels count both non-
synonymous and synonymous mutations as well as indels,
which can increase assay sensitivity (3). This approach showed
that sufficiently large NGS panels can accurately recapitulate
WES-TMB, and demonstrated good agreement between panels-
derived and WES-derived TMB values (13, 14).

There are two NGS panels commercially available to date that
have been approved by regulatory bodies: FoundationOne CDx
assay approved by the FDA as a companion diagnosis for the
assessment of TMB and the MSK-IMPACT panel.

Overall, many variable factors can influence TMB estimation
and output, including tumor type (15), biosample type (FFPE
materials artificially have more mutations than fresh frozen
tissue), and sequencing parameters (NGS panel content, size,
and sequencing depth; bioinformatic pipeline; and reporting
cutoff) (16).

At the moment, DNA analysis is the only standard for TMB
assessment and it is largely unclear whether TMB derived from
RNA sequencing (RNAseq) corresponds to DNAseq data. In
2020, Jang and coauthors attempted to calculate TMB from
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single-cell RNA sequencing data (17). However, the authors did
not provide any technical rationale for their approach and did
not validate it by DNA mutation analysis, thus leaving the
adequacy of the results communicated uncertain. In February
2021, DiGuardo and colleagues demonstrated a correlation
between RNAseq- and DNAseq-derived TMB using formalin-
fixed, paraffin-embedded (FFPE) tumor tissue blocks (18).
However, this was more a proof-of-concept study done for
only eight individual samples and the methodological
limitations of this approach were not explored. Furthermore,
this was done for the matched pairs of tumors and adjacent
normal tissues, while matching healthy samples are not
frequently available in the routine clinical practice. For
example, the FoundationOne CDx test utilizes single tumor-
only biosamples to return TMB (2).

FFPE cancer tissue biosamples are known to yield highly
fragmented nucleic acid preparations that could be hardly
applicable to the tasks requiring high RNA integrity like
analysis of differential splicing (19). Nucleic acids extracted
from FFPE also often contain artifact alterations caused by
formalin fixation, thus having an increased rate of C>T
substitutions, when compared with nucleic acids from fresh
tissues. Thus, sequencing profiles derived from FFPE should be
processed differently and the results obtained from fresh tissues
may be poorly compatible. However, FFPE materials can be used
to properly estimate TMB by the DNA screens (20) and for the
clinical-grade estimation of the gene expression levels by
analyzing RNA reads (21, 22). From certain points of view,
this is the preferred type of biomaterial because of its high
availability and stability, as FFPE blocks can be stored at room
temperature for years prior to nucleic acid extraction for
sequencing purposes (23).

Thus, in this study, we investigated whether FFPE-isolated
RNA can be used for TMB estimates without the analysis of
adjacent or blood-derived norms. To this end, we used the paired
RNAseq–WES profiles for FFPE materials available from The
Cancer Genome Atlas (TCGA) project database, in both paired
and single-sample modes, and then validated the results using 73
experimental RNAseq–WES profiles obtained for FFPE
cancer specimens.

For TMB deduced using TCGA RNAseq data, where mean
sequencing depth was ~23 million gene-mapped reads
(MGMRs), we obtained 0.46 (Pearson)–0.59 (Spearman)
correlation with the standard mutation calling pipelines. This
was converted in the classifier of low (<10) and high (>10) TMB
per megabase with area under the curve (AUC) 0.757, and the
application of machine learning (ML) increased AUC till 0.854.
We then compared 73 experimental pairs of WES and RNAseq
profiles with lower (mean 11 MGMRs) and higher (mean 68
MGMRs) sequencing depths. We observed 0.85 (Pearson)–0.95
(Spearman) correlation of TMB with standard mutation calling
pipelines for higher RNA sequencing depth samples, and ~1
AUC for the high/low TMB classifier. However, for the lower
depth, the AUC was below the high-quality threshold of 0.7 even
in case of applying ML. Thus, we conclude that using RNA
sequencing of tumor materials from FFPE blocks with enough
September 2021 | Volume 11 | Article 732644
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coverage can afford for high-quality discrimination of high and
low TMB tumors in a single-sample mode.
MATERIALS AND METHODS

Reference Public Dataset
The available set of matching tumor WES/FFPE RNAseq and
normal (blood or adjacent non-cancerous tissue) WES FASTQ
files corresponding to the same tumors, a total of 53 samples, was
downloaded from The Cancer Genome Atlas (TCGA)
international project repository (https://portal.gdc.cancer.gov/),
and only FFPE samples of primary tumors were selected
(Table S1).
Experimental Tissue Samples
All experimental data were obtained for pathologist-verified
FFPE tumor tissue blocks with tumor cell content greater than
50%. The sample annotation contained information about the
sex, age, and cancer type of the patient (Table S2). In all cases,
written informed consents to participate in this study were
acquired from the patients or from their legal representatives.
The consent procedure and the design of the study were
approved by the ethical committees of the Karelia Republic
Oncological Hospital, Petrozavodsk, Russia, and Vitamed
Oncological Clinical Center, Moscow, Russia.
RNAseq: Library Preparation
and Sequencing
RNA sequencing was performed according to the previous
protocol used to generate ANTE collection of healthy tissue
RNAseq profiles (23) and several cancer expression collections
(22, 24–28). To isolate RNA preps, 10-mM-thick paraffin slices
were trimmed from each FFPE tissue block with a microtome.
RNA was extracted from FFPE slices using Qiagen RNeasy FFPE
kit following the protocol of the manufacturer. RNA 6000 Nano
or Qubit RNA Assay kits were used to measure RNA
concentration. RNA integrity number (RIN) was measured
using Agilent 2100 Bioanalyzer. For depletion of ribosomal
RNA and library construction, KAPA RNA Hyper with rRNA
erase kit (HMR only) was used. Different adaptors were used for
multiplexing samples in a single sequencing run. Library
concentrations were measured using the Qubit dsDNA HS
Assay kit (Life Technologies) and Agilent TapeStation
(Agilent). RNA sequencing was performed at the Department
of Pathology and Laboratory Medicine, University of California
Los Angeles, using Illumina HiSeq 3000 equipment for single-
end sequencing, 50 bp read length, achieving a median of ~217
million raw reads or ~68 million mapped reads per sample.
Illumina SAV was used for data quality checks. De-multiplexing
was performed with Illumina Bcl2fastq2 Conversion
Software v2.17.

Sequencing data were deposited in NCBI Sequencing Read
Archive (SRA) under accession ID PRJNA733593.
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Whole Exome Sequencing: Library
Preparation and Sequencing
DNAWES was performed according to (29). DNA was extracted
from the FFPE tissue using the AnaPrep FFPE DNA extraction
kit and whole exome DNA was captured from total genomic
DNA using the SeqCap EZ System from NimbleGen according
to the instructions of the manufacturer. Briefly, genomic DNA
was sheared, size selected to roughly 200–250 base pairs, and the
ends were repaired and ligated to specific adapters and
multiplexing indexes. Fragments were then incubated with
SeqCap biotinylated DNA baits followed by the LM-PCR, and
the RNA–DNA hybrids were purified using streptavidin-coated
magnetic beads. The RNA baits were then digested to release the
targeted DNA fragments, followed by a brief amplification of 15
or less PCR cycles. Sequencing was performed on Illumina HiSeq
3000 for a pair read 150 run. Data quality check was done on
Illumina SAV. Demultiplexing was performed with Illumina
Bcl2fastq2 v 2.17 program.

Processing of RNA Sequencing Data
For RNAseq data, a GATK mutation calling pipeline was used
(Figure 1) (30). Reads were aligned to the human genome
assembly GRCh38 with STAR v2.6.1d software in two-pass
mode (31). The following parameters were set to non-default
values: sjdbOverhang 100, twopass1readsN 10000000, and
twopassMode Basic.

Exon coordinates were taken from Ensembl annotation
version 89. Samtools v1.3.1 package was used for BAM file
indexing (32). All reads were assigned to a single read group,
and read group information editing and duplicate marking were
performed with AddOrReplaceReadGroups and MarkDuplicates
software, respectively (http://broadinstitute.github.io/picard).
GATK v3.8.0 SplitNCigarReads module was used to split reads
that aligned to exon junctions. Base quality score recalibration
was performed with GATK v4.beta.1 BaseRecalibrator and
ApplyBQSR modules. For mutation calling, GATK4 Mutect2
software (33) was used in tumor-only mode with dbSNP version
146 variant database (34) and 1000G gold standard indel
database (35). No panel of norms was used for the
experimental settings.

Variants were called only in exonic regions of human
chromosomes 1–22, X, and Y (mapped according to
GENCODE (36), and the PCR indel model parameter was set
to “HOSTILE” . Variants were fi l tered with GATK4
FilterMutectCalls (all variants are kept in VCF, only the
“FILTER” field is edited). Predicted functional effects of
variants identified were annotated using ANNOVAR software
(37). For variant annotation, we used the version of ExAC
database, which does not contain TCGA samples (38). All tri-
or more allelic sites were excluded from further analyses: such
mutations were not annotated using ANNOVAR and were not
included in TMB calculation.

Processing of WES Data
For WES data analysis, a GATK somatic mutation calling
pipeline was used (Figure 1). Reads were aligned to the human
September 2021 | Volume 11 | Article 732644
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FIGURE 1 | Mutation calling pipeline for The Cancer Genome Atlas (TCGA) data analysis. File instances are shown in ovals, pipeline steps in rectangles. RNAseq
files are highlighted in red, tumor whole exome sequencing (WES) files in orange, and normal WES files in green. Data derived from both tumor and normal WES
data are shown in light blue.
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genome version 38 with BWA mem v0.7.17 software (39). The
following parameters were set to non-default values: −k 15, −r 2.
The rest of the pre-processing steps were identical to the RNAseq
pipeline described above, except for reads splitting and mapping
quality editing steps which were skipped.

For mutation calling, GATK4 Mutect2 (33) software was used
simultaneously for tumor and matched normal samples, supplied
with the same dbSNP and indel databases, regions, and PCR
model. Subsequent post-processing steps included filtering
GATK4 FilterMutectCalls and annotation with ANNOVAR.
All tri- or more allelic sites were excluded from further
analyses: such mutations were not annotated using
ANNOVAR and were not included in TMB calculation. For
parallel computational task management, GNU parallel software
was used (40).

Supervised Machine Learning
For filtering with supervised learning, we selected 31 variant
features such as reference allele depth, median base quality, or
the number of events in the haplotype. From them, 23 features
were taken directly from Mutect2 output VCF files and one was
obtained from ANNOVAR annotation of VCF with non-TCGA
ExAC database. The other seven features were engineered using
data from Mutect2 output VCF: four Boolean features of variant
being i) an insertion, ii) a deletion, iii) a C>T (G>A) transition,
and iv) C>A (G>T) transversion were constructed based on
values in REF and ALT fields and three integer features: v) total
depth and vi–vii) REF and ALT lengths were constructed based
on values in REF, ALT fields, and FORMAT AD field.

Model hyperparameters were selected during a series of
randomized grid searches. Parameters adjusted were as follows:
learning_rate, n_estimators, min_child_weight, gamma,
subsample, colsample_bytree, max_depth, reg_alpha, and
reg_lambda; among them, the first two were the most
impactful. Cross-validation was five-fold, and receiver
operating characteristic (ROC) AUC was used as the metric for
hyperparameter selection. The Python code used for ML and
visualization is available at https://gitlab.com/oncobox/
tmb_rnaseq.
RESULTS

To initially explore the possibility of estimating TMB from FFPE
RNAseq data, we used a set with matched WES/RNAseq tumor
profiles and, at the same time, with the normal control WES data
available from the TCGA project database. Totally, data could be
obtained for only 53 tumor cases (paired RNAseq and WES data
for tumor samples, and WES data for the matched controls)
because the absolute majority of the paired TCGA data were
generated for fresh-frozen tissue samples.

We then assessed how different RNAseq data filtering options,
including ML, can alter the correlation between TMB-RNAseq
and TMB-WES. To this end, we randomly assigned 53 available
Frontiers in Oncology | www.frontiersin.org 5
TCGA samples to the training (n = 27) and validation
(n = 26) subsets.

Modeling of WES-RNAseq-TMB
Correlation on TCGA Dataset With
Matched Normal WES Controls
In this application, WES tumor mutation calling was performed
while taking into account the available WES profiles for the
healthy control biosamples from the same patients. Our first step
was to determine the biggest possible correlation between
RNAseq and WES-TMB estimates for the above FFPE TCGA
dataset. To that end, we collected variants common to the WES
and RNAseq callsets, as identified by genomic coordinate,
reference, and alternative allele. We used variants common to
both WES and RNAseq only to estimate maximal possible
correlation between TMB derived from WES vs. TMB derived
from RNAseq (“isec”). For further rule- and ML-based filtering
of RNAseq variants presented below, all RNAseq variants were
used regardless of their presence in WES data. The WES variants
were filtered by the condition “FILTER==PASS,” while RNAseq
variants were left unfiltered. The Pearson correlation coefficient
between TMB-RNAseq and TMB-WES estimates calculated for
the n = 206 subset was 0.91, p = 2.1 × 10−10 (Figure 2, “isec”). No
discernable sequencing batch bias was detected during both
correlation analysis and primary component analysis: samples
from different TCGA sequencing centers were randomly
clustered on the PCA (Figure S1).

We then built the ROC curve and calculated the AUC metric
for it. ROC AUC is widely used to assess the performance of
biomarkers in oncology (41–43), and it depends on their
sensitivity and specificity (44). It varies between 0.5 and 1, and
the robustness criterion of biomarkers is typically AUC greater
than 0.7 (45).

We selected three clinically relevant thresholds of TMB per
megabase: of TMB ≥6, ≥10, and ≥20 (11, 46). Among these, the
cutoff value of 10 is currently especially frequently used in
clinical studies, although no formal consensus has been
reached yet (10). Seven out of 26 samples (27%) had TMB
≥10 Mut/Mb. This is higher than in previous studies
investigating pan-cancer patient cohorts with different solid
tumors (47–49). Considering WES-derived TMB as the gold
standard among the available TMB data, we obtained the AUC
scores for TMB-RNAseq of 0.925, 0.903, and 1 for the
abovementioned thresholds, respectively (Table 1). Note that
these estimates considered only the fraction of genome that was
sufficiently covered by both WES and RNAseq reads and left
apart other sequences that were covered by the RNAseq or WES
reads separately.

We then simulated a situation when there are no available
WES data for matched healthy controls. To this end, we assessed
the performance of algorithmic RNAseq data filtering, treating it
as a baseline. The selected variants used for TMB calculations
were i) marked as “germline_risk” or “panel_of_normals,
germline_risk” by Mutect2, ii) had ExAC frequency <0.000033
September 2021 | Volume 11 | Article 732644
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(3), and iii) had no associated dbSNP150 identifier. Mutect2
software filters were chosen here to accommodate for the lack of
paired normal samples for RNAseq data. Using this approach, we
observed a weak yet statistically significant correlation between
the TMB-RNAseq and TMB-WES estimates with Pearson
correlation 0.46, p = 0.019 (Figure 2B), suggesting the need for
a more advanced filtering method.

To improve the correlation and decrease the signal-to-noise
ratio, we developed a supervised ML binary classifier, based on
the XGBoost algorithm (50) (Figure 3). The n = 27 subset
(458,957 variants called) was used here as a training dataset,
and the n = 26 subset (375,148 variants called) as a test subset.
Prior to the analysis, unfiltered RNAseq VCF files were merged
within each subset. Each variant in the training subset was
labeled as either “signal” or “noise” based on whether a variant
with the same genomic coordinate was discovered in the
accompanying WES “gold standard” data. Confusion matrices
for the ML model predictions on the training and testing subsets
are shown in Table 2, and feature importance scores (gain),
assigned by the ML model, are shown in Figure S2. These scores
reflect the value of each feature in the construction of the boosted
decision trees within the model. The more an attribute is used to
FIGURE 2 | Correlations between RNAseq- and WES-derived tumor mutation burden (TMB) estimates (TCGA FFPE dataset, n = 26), with matched normal WES
references. Samples are colored according to cancer type. Cancer type abbreviations used: LUAD, lung adenocarcinoma; COAD, colon adenocarcinoma; BRCA,
breast invasive carcinoma; UCEC, uterine corpus endometrial carcinoma; BLCA, urothelial bladder carcinoma; PRAD, prostate adenocarcinoma.
TABLE 1 | ROC AUC scores for predicting TMB (≥6, ≥10, and ≥20 thresholds)
from FFPE RNAseq data, according to TMB-WES standards calculated with
matched normal WES profiles.

Filtering method TMB ≥ 6 TMB ≥ 10 TMB ≥ 20

TCGA (matched norm was used for WES mutation calling)
WES ∩ RNAseq variants 0.925 0.903 1
Default Mutect2 filtering 0.694 0.701 0.781
Default Mutect2 filtering + ExAC <0.000033 0.825 0.757 0.81
ML filtering using XGBoost method 0.825 0.854 0.905
TCGA (matched norm was not used for WES mutation calling)
WES ∩ RNAseq variants 0.953 0.921 1
Default Mutect2 filtering 0.573 0.64 0.726
Default Mutect2 filtering + ExAC <0.000033 0.693 0.763 0.857
ML filtering using XGBoost method 0.7 0.868 0.857
Experimental dataset (high coverage)
WES ∩ RNAseq variants 0.75 1 NA
Default Mutect2 filtering 0.812 0.857 NA
Default Mutect2 filtering + ExAC <0.000033 1 1 NA
Experimental dataset (low coverage)
WES ∩ RNAseq variants 0.719 0.748 NA
Default Mutect2 filtering 0.407 0.226 NA
Default Mutect2 filtering + ExAC <0.000033 0.622 0.674 NA
ML filtering using XGBoost method 0.53 0.613 NA
NA, Not applicable.
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make key decisions for the trees, the higher is its
relative importance.

The top 5 features that obtained the highest scores by the ML
model were as follows: i) ExAC_nontcga_ALL (allele frequency
as observed in the complete ExAC database, excluding only
participants from the TCGA project), ii) SA_MAP_AF_2 (the
maximum likelihood estimate of the allele fraction given no
artifacts on either strand), iii) INS (whether or not the variant is
FIGURE 3 | XGBoost binary classifier development workflow. TCGA FFPE samples with matched WES and RNAseq data were reanalyzed to produce callsets in
the VCF format. Thirty-two features were introduced to the model in total. RNAseq files along with matching WES files were randomly assigned to two subgroups
with variants merged respectively to obtain two sets of variants for each data source. RNAseq variants from the training subgroup were labeled by cross-referencing
with the WES callset. Variants matched in WES callset by genomic coordinate were labeled as “signal” and the rest as “noise.” After the model was trained to
distinguish between the two classes and validated, variants in the testing subset were reaggregated per sample. Filtering out variants predicted as “noise,” testing
per-sample callsets were used to calculate TMB estimates and compared against the respective WES-derived estimates to obtain correlation coefficients and ROC
AUC scores.
TABLE 2 | Confusion matrices for the XGBoost binary classifier predictions
(TCGA FFPE dataset, according to WES-TMB standards calculated with
matched normal WES profiles).

No WES variant WES variant

A. Training dataset 457,276 (TN) 1,050 (FN) Predicted noise
60 (FP) 571 (TP) Predicted signa

B. Testing dataset 373,731 (TN) 1,218 (FN) Predicted noise
101 (FP) 98 (TP) Predicted signa
September 2021 | Volume 11 | Article 732644
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an insertion), iv) TLOD (log-odds that the variant is present in
the tumor sample relative to the expected noise), and
v) SA_MAP_AF_1 (the maximum likelihood estimate of the
allele fraction given an artifact on the reverse strand).
SA_MAP_AF_1/2 parameters are used for TLOD calculation,
which, in turn, together with ExAC allele frequency, were used
for rule-based filtering. Thus, ML outperforms rule-based
filtering possibly due to more optimal thresholds (or their
combinations) for these parameters. Whether the variant is an
insertion or not was not included into the rule-based filtering;
however, according to the model used, this might be an
important parameter for selecting true variants. The latter may
be due to possible bias of insertions between true and false
variants. Other features considered by the ML model built are
shown in Table S3.

When applying data filtering with the ML model obtained, we
observed on the test subset a significantly better Pearson
correlation between TMB-RNAseq and TMB-WES of 0.67,
p = 1.7 × 10−4 (Figure 2C). Importantly, these results were
obtained despite significant sample-to-sample variability in
precision and universally low recall (Figure S3). The ROC
AUC values obtained were also relatively high: 0.825, 0.854,
and 0.905 for TMB thresholds of ≥6, ≥10, and ≥20 mutations per
megabase, respectively (Figure 4 and Table 1).

Modeling of WES-RNAseq-TMB
Correlation on TCGA Dataset Without
Matched Normal WES Controls
We then tested whether RNAseq-TMB data are congruent with
theWES-TMB data when no matched healthy tissue TBM profile
is available. To this end, we took the same n = 26 and n = 27
subsets of 53 TCGA profiles. The difference was that the matched
healthy WES profiles were not used when calculating the “gold
standard” WES-TMB values for tumor samples. The data
processing workflow was modified accordingly. First, the
following specific criteria were added to WES variant filtering:
i) annotated ExAC ALL frequency <0.000033 and ii) no
associated dbSNP150 identifier. These filtering rules were
chosen to help discern between germline and somatic variants
in the absence of paired WES norms.

We observed that algorithmic filtering of RNAseq data
resulted in a modest, yet significant correlation between
RNAseq-TMB and WES-TMB data: Pearson correlation 0.48,
p = 0.016 (Figure 5). The ROC AUC values obtained were 0.693,
0.763, and 0.857 for TMB thresholds of ≥6, ≥10, and ≥20,
respectively (Figure 6 and Table 1).

In turn, using XGBoost ML filtering allowed to increase this
correlation up to 0.72 (p = 5.9 × 10−5), while the theoretically
deduced maximum possible correlation was 0.94 (p = 2.6 × 10−12,
Figure 5). In the case of ML filtering, the ROC AUC values
increased up to 0.7 and 0.868 for TMB thresholds of ≥6 and ≥10,
respectively, while ROC AUC for the threshold of ≥20 did not
change (0.857). ML-based prediction for ≥10 TMB threshold was
very close to the possible maximum (AUC 0.87 vs. 0.92).

Thus, we conclude that using RNAseq-based TMB
assessment in one-sample mode can be robust for all three
Frontiers in Oncology | www.frontiersin.org 8
TMB thresholds of ≥6, ≥10, and ≥20, as evidenced by the
TCGA quality-paired WES/RNAseq dataset.

Experimental Evaluation of RNAseq-TMB
in Comparison With WES-TMB
The easiest diagnostic solution would ideally comprise analysis
of just one tumor sample. We found on the previous step with
the TCGA model dataset that RNAseq-TMB estimates can
afford for robust discrimination between the high and low
TMB groups even without matched healthy controls. We
FIGURE 4 | ROC AUC scores for predicting WES-TMB per megabase with
RNAseq-TMB per megabase (TCGA FFPE dataset, n = 26).
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hypothesized that RNAseq-TMB estimates may depend on the
RNA sequencing coverage. To test this hypothesis, we did
experimental paired RNAseq and WES sequencing for 73
FFPE solid tumor tissue biosamples from different cancer
patients (Table S3). Among them, for 65 samples, we aimed
to obtain RNAseq profiles with ~2.5 times lower coverage than
in the model TCGA dataset, and for 8 samples, with ~2.5 times
higher coverage (Figure 7).
Frontiers in Oncology | www.frontiersin.org 10
TMB Evaluation for Experimental RNAseq
Data With “Low” Coverage
We then explored the situation when RNAseq read coverage was
~2.5 times lower than that in the model TCGA dataset. In the
XGBoost model, we used 34 samples as the training subset and
31 samples as the validation subset. Among the variants common
to the WES and RNAseq callsets, we observed a statistically
significant Pearson correlation of 0.4, p = 0.023. However, when
applying the same rule-based filtering as with the TCGA dataset,
Pearson correlation dropped to being non-significant: −0.048,
p = 0.79 (Figure 8). The application of the above ML model
could not significantly improve RNAseq-TMB performance and
resulted in a Pearson correlation as low as 0.16 (p = 0.38,
Figure 8). In all the cases, the ROC AUC scores calculated for
this dataset for the thresholds of TMB >6; 10 (no significant
fraction of experimental samples with TMB >20 was available,
and this threshold was not characterized) were below the AUC
quality threshold of 0.7 (Figure 9 and Table 1).

TMB Evaluation for Experimental RNAseq
Data With “High” Coverage
In the opposite case (when RNAseq reads coverage significantly
exceeded the TCGA dataset), among the variants common to the
WES and RNAseq callsets, we observed a statistically significant
Pearson correlation of 0.93, p = 7.1 * 10−4 (Figure 6). We also
detected a strong correlation between the experimental RNAseq-
TMB and WES-TMB estimates: Pearson correlation 0.86,
p = 0.0056 (Figure 10) with AUC ~1 for TMB per megabase
thresholds of >6; 10 (Figure 11 and Table 1); no significant
fraction of experimental samples with TMB >20 was available,
and this threshold was not characterized.
FIGURE 6 | ROC AUC scores for predicting WES-TMB per megabase with
RNAseq-TMB per megabase (TCGA FFPE dataset, n = 26, no matched norm
was used for mutation calling in WES).
FIGURE 7 | Distribution of mapped reads in RNAseq BAM files. All reads
were approximately 50 bases long. Green horizontal lines indicate the
median, red triangles indicate the mean.
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Taken together, these results suggest that for the RNAseq
datasets with relatively high coverage (~2.5 times higher than in
TCGA), the RNAseq-TMB classifier is so strong, that no further
ML-assisted improvement is needed to increase its performance.
DISCUSSION

Our findings suggest that RNA sequencing data for FFPE tumor
tissue samples can be used to robustly assess TMB levels even in
Frontiers in Oncology | www.frontiersin.org 12
the single-sample mode. As quantified by AUC metric for the
high/low TMB classification models, the performance of
RNAseq-TMB estimates clearly depends on the sequencing
depth. When average RNAseq depth was ~68 MGMRs, the
obtained RNAseq-TMB was very well correlated with the “gold
standard” WES-TMB, and the performance of the high–low
binary TMB classifier was very high (AUC close to 1;
Figure 11). In the case of mean sequencing depth of ~23
MGMRs as for the model TCGA dataset, using ML algorithms
may be needed to improve the classifier robustness, thus giving
the classifier AUC of ~0.8–0.9 (Figure 4). Finally, when the
RNAseq depth is low (as ~11 MGMRs as in the low-coverage
experimental dataset), the WES-TMB and RNAseq-TMB
correlations are poor, and no good-quality classifier can be
built even using the ML approach that used to be successful
for the 23-MGMR dataset (Figure 9).

Our data also suggest that no healthy tissue control is needed
for the FFPE-derived RNAseq data assessment to robustly
est imate TMB level when the sequencing depth is
sufficient (Figure 6).

Furthermore, WES-TMB data obtained for tumor biosamples
with healthy controls correlated well with the data for the same
biosamples without healthy controls (Figure S4). This is in line
with the broad clinical practice of using targeted NGS TMB
panels like FoundationOne CDx assay that does not require a
healthy norm to estimate TMB (2).

Gene expression profiling by RNAseq is the alternative type of
high-throughput genetic analysis that can inform clinical decision-
making (51, 52). It was recently published that RNAseq data can
serve as the alternative to immunohistochemical tests for several
major cancer markers like HER2, ESR1, PGR, and PD-L1 (22). It
can reliably estimate concentrations of cancer drug targets (53),
which is also true for the emerging non-protein molecular target
ganglioside GD2 (27). In addition, RNAseq data obtained for
FFPE biosamples may be used to identify clinically actionable or
new fusion oncogenes (26) and to generate gene signatures that
can establish statuses of important tumor biomarkers like
microsatellite instability (25, 54, 55) and oncogenic mutations
(56) or that can predict individual sensitivity of a tumor to targeted
(28, 57, 58) and non-targeted (59) therapies. Thus, adding a new
option of TMB level assessment may strongly benefit
this approach.

As RNAseq focuses exclusively on transcribed allele sequences,
TMB calculated from such data, or another possible alternative—
frequency of neoantigens, might theoretically even surpass the
predictive power of WES, WGS, or target panel DNAseq with
respect to the efficiency of checkpoint inhibitor immunotherapy.

Here, we provide the first experimental assessment of
TMB quality for FFPE-derived RNAseq data obtained with
different coverage in tumor sample-only mode. Although the
results obtained are quite encouraging, the practical
implementation of this technology and more detailed clinical
guidelines should be a matter of further investigations with
greater patient cohorts and (possibly) more specifically selected
cancer types. In addition, sufficient sequencing depth threshold
should be established in future studies comparing the correlation
FIGURE 9 | ROC AUC scores for predicting WES-TMB per megabase with
RNAseq-TMB per megabase (experimental low coverage transcriptomes, n = 31).
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FIGURE 10 | Correlations between RNAseq- and WES-derived TMB estimates in experimental high coverage RNAseq dataset, n = 8.
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between DNA- and RNAseq-derived TMB in groups of samples
with different mean coverage.
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Supplementary Figure 2 | XGBoost binary classifier feature importance scores
(gain). 31 variant features were selected to train the model. 23 features are variant
attributes, assigned by Mutect2. Exac_nontcga_ALL was obtained from ANNOVAR
output. 7 features were engineered: Boolean features of the variant being an
insertion (INS), a deletion (DEL), a transition (CT_GA) or a transversion (CA_GT)—
and integer features: total depth (TOTAL_DP), as well as REF and ALT lengths
(len_REF and len_ALT, respectively). See text and Table S1 for a more detailed
explanation.

Supplementary Figure 3 | Precision and recall metrics for the XGBoost binary
classifier predictions on the TCGA FFPE test subset, based on WES-TMB data
calculated with matched normal WES profiles.

Supplementary Figure 4 | TMB calculated for TCGA WXS samples called with
matched normal data (x-axis) vs TMB calculated for TCGA WXS samples called
without matched normal data (y-axis).

Supplementary Table 1 | TCGA FFPE biosamples used for training and
validation of XGBoost model for filtering RNAseq variants.

Supplementary Table 2 | Clinical characteristics and coverage information for
experimental samples.

Supplementary Table 3 | Features used in training the XGBoost classifier for
filtering RNAseq variant calls.
FIGURE 11 | ROC AUC scores for predicting WES-TMB per megabase with
RNAseq-TMB per megabase (experimental high coverage transcriptomes, n = 8).
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