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Abstract
Introduction  Regulations are increasing the scope of activities that fall under the remit of drug safety. Currently, individual 
case safety report (ICSR) collection and collation is done manually, requiring pharmacovigilance professionals to perform 
many transactional activities before data are available for assessment and aggregated analyses. For a biopharmaceutical 
company to meet its responsibilities to patients and regulatory bodies regarding the safe use and distribution of its products, 
improved business processes must be implemented to drive the industry forward in the best interest of patients globally. 
Augmented intelligent capabilities have already demonstrated success in capturing adverse events from diverse data sources. 
It has potential to provide a scalable solution for handling the ever-increasing ICSR volumes experienced within the industry 
by supporting pharmacovigilance professionals’ decision-making.
Objective  The aim of this study was to train and evaluate a consortium of cognitive services to identify key characteristics 
of spontaneous ICSRs satisfying an acceptable level of accuracy determined by considering business requirements and 
effective use in a real-world setting. The results of this study will serve as supporting evidence for or against implementing 
augmented intelligence in case processing to increase operational efficiency and data quality consistency.
Methods  A consortium of ten cognitive services to augment aspects of ICSR processing were identified and trained through 
deep-learning approaches. The input data for model training were 20,000 ICSRs received by Celgene drug safety over a 2-year 
period. The data were manually made machine-readable through the process of transcription, which converts images into text. 
The machine-readable documents were manually annotated for pharmacovigilance data elements to facilitate the training and 
testing of the cognitive services. Once trained by cognitive developers, the cognitive services’ output was reviewed by phar-
macovigilance subject-matter experts against the accepted ground-truth for correctness and completeness. To be considered 
adequately trained and functional, each cognitive service was required to reach a threshold of F1 or accuracy score ≥ 75%.
Results  All ten cognitive services under development have reached an evaluative score ≥ 75% for spontaneous ICSRs.
Conclusion  All cognitive services under development have achieved the minimum evaluative threshold to be considered 
adequately trained, demonstrating how machine-learning and natural language processing techniques together provide accu-
rate outputs that may augment pharmacovigilance professionals’ processing of spontaneous ICSRs quickly and accurately. 
The intention of augmented intelligence is not to replace the pharmacovigilance professional, but rather support them in their 
consistent decision-making so that they may better handle the overwhelming amount of data otherwise manually curated 
and monitored for ongoing drug surveillance requirements. Through this supported decision-making, pharmacovigilance 
professionals may have more time to apply their knowledge in assessing the case rather than spending it performing trans-
actional tasks to simply capture the pertinent data within a safety database. By capturing data consistently and efficiently, 
we begin to build a corpus of data upon which analyses may be conducted and insights gleaned. Cognitive services may 
be key to an organization’s transformation to more proactive decision-making needed to meet regulatory requirements and 
enhance patient safety.
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Key Points 

Augmented intelligence may be the key to lightening the 
overwhelming workload and cognitive burden placed on 
pharmacovigilance professionals today.

Transcription and annotation of source documents is 
a scalable process to create an annotated corpus from 
which cognitive modules may be trained.

Feedback-driven training of deep-learning algorithms 
with a pharmacovigilance subject-matter expert’s guid-
ance has proven successful in training a consortium 
of cognitive services for individual case safety report 
processing.

1  Introduction

The thalidomide tragedy of the 1950s and 1960s is often 
cited as the key mobilizing factor toward greater health 
legislation and heightened drug surveillance to ensure and 
improve patient safety. Before its recognition as a highly 
teratogenic drug, thalidomide was hailed as a ‘wonder 
drug’ and was widely prescribed as a sedative to pregnant 
women suffering from headaches, nausea, and insomnia; 
in the drug’s first year of production, sales reached 90,000 
units per month in 20 countries. Although thalidomide was 
never approved for sale in the USA because of the recom-
mendation of Frances Kelsey, a researcher at the US Food 
and Drug Administration (FDA), it has been estimated that 
approximately 10,000 children globally were born with seri-
ous abnormalities, including phocomelia [1]. The sale of 
thalidomide was banned in most countries by 1961 [1, 2].

From that tragedy were borne two principles that guide 
the pharmaceutical and research industries today. The first 
is the regulation that all products undergo developmental 
toxicology tests in two species, one of which is not a rodent 
[2]. The second is the science of pharmacovigilance. Phar-
macovigilance is defined by the World Health Organization 
(WHO) as the science and activities relating to the ongo-
ing detection, assessment, and understanding of adverse 
events (AEs) or adverse drug reactions (ADRs) to assess 
a product’s risk profile. After the thalidomide disaster, the 
WHO established its Programme for International Drug 
Monitoring, in which 134 countries participate by supplying 
country-level data to assess and determine the risk–benefit 
profile of drugs [3]. Thalidomide is just one example of a 
product found unsafe in its original use; from 1964 to 2002, 
75 products have been withdrawn from the market because 
of safety concerns [4].

Individual case safety reports (ICSRs), which contain 
ADRs, are shared between stakeholder groups, namely 
pharmaceutical companies and regulatory authorities, to 
promote public health. Despite appropriate mitigation strate-
gies in place, ADRs account for 3–7% of all medical hospital 
admissions and rank among the top ten leading causes of 
mortality [4, 5]. Estimates put the cost of drug-related mor-
bidity and mortality at US$136 billion annually [6]. Regula-
tions set forth by both the US FDA and European Medicines 
Agency are increasing the scope of activities that fall under 
the remit of drug safety, including ADR collection, risk 
management, signal detection, medical assessment, and risk 
communication. The WHO and the Council for International 
Organizations of Medical Sciences (CIOMS) have increas-
ingly pushed for standardized use of electronic formats and 
secure submissions of regulatory documents [3].

The emergence of new methods and sources for collecting 
data, such as from social digital media and other electronic 
sources, has led to the expanding scope of responsibility 
faced by global drug safety and risk management divisions 
within industry [6]. In fact, the combined industry ICSR 
volume growth from 2003 to 2014 increased 33%, much 
of which is attributable to cases from new data sources and 
regulatory requirements changes [7]. Today pharmacovigi-
lance professionals typically perform many transactional 
activities to enter pertinent data before it can be assessed for 
aggregated analyses and evaluation. For a biopharmaceutical 
company to meet its responsibilities to patients and regula-
tory bodies regarding the safe use and distribution of its 
products, automation may serve as a potential scalable solu-
tion for ICSR intake and processing [8]. Machine-learning 
and natural language processing (NLP) have shown success 
in detecting AEs from safety databases [9], social media 
[8], and medical discharge summaries [10]. In this study, we 
investigate the creation of cognitive services using state of 
the art machine-learning and NLP techniques for use within 
the pharmacovigilance domain with variously structured 
spontaneous data sources.

2 � Objectives

The aim of this study was to train and evaluate a consortium 
of cognitive services to identify key characteristics of spon-
taneous ICSRs satisfying the business-defined threshold of 
F1 or accuracy ≥ 75%. As a precursory task to training the 
cognitive services, the creation of an annotated corpus in 
a scalable manner was required. The results of this study 
will serve as supporting evidence for or against the imple-
mentation of augmented intelligence in case processing to 
increase operational efficiency and data quality consistency 
when processing ICSRs.
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3 � Methods

3.1 � Background

Machine-learning is a subfield of computer science that 
learns patterns from data without providing explicit pro-
gramming instructions to create algorithms intended to per-
form a specific task. NLP is the subfield in computer sci-
ence that intends to teach computers to understand, interpret, 
and manipulate the human language. Most of the NLP tasks 
leverage the capabilities of machine-learning to achieve its 
objective. Deep-learning is the latest advancement in the 
machine-learning domain which focuses on learning data 
representation. It aims to develop algorithms that are more 
generalizable as opposed to being task-specific. A cogni-
tive service is a mixture of machine-learning and NLP algo-
rithms to solve a given problem that requires human cogni-
tion (e.g., discriminate between health conditions and AEs in 
a spontaneous report). Cognitive services are trained using 
input data that has been appropriately curated; data must 
be transcribed into a machine-readable format and contain 
relevant annotation labels, or tagged metadata, explaining 
each data entity’s relevance to the learning task. The entire 
set of annotated, machine-readable text forms the ‘annotated 
corpus’.

The processes of transcription and annotation are com-
pleted manually by staff with domain knowledge relevant 
to the task at hand. The training of the cognitive services 
using manually curated pharmacovigilance input data is car-
ried out by cognitive developers who have background in 
deep-learning and NLP. Once trained, the algorithms are 
tested on new data to produce outcomes. These outcomes, 
or predictions, are automatically generated via the software. 
To ensure that the algorithms are producing predictions at 
the acceptable level, a human subject-matter expert (SME) 
reviews them and provides feedback to the cognitive devel-
opers so that they may refine the models and calculate their 
final evaluative scores.

3.2 � Scope

In pharmacovigilance, the intake of a case requires a phar-
macovigilance professional to first assess case validity. A 
valid ICSR must include at minimum four criteria: an identi-
fiable reporter, an individual identifiable patient, one suspect 
medicinal product, and one suspect adverse reaction. There-
fore, five cognitive services that are needed to ensure case 
validity were identified by the pharmacovigilance SMEs for 
investigation in this study: AE detection, product detection, 
reporter detection [recognizing the presence of a reporter 
and then classifying the reporter as a healthcare profes-
sional (HCP) or non-HCP], patient detection, and validity 

classification. To characterize the detected data elements, a 
set of additional services were identified: seriousness clas-
sification, reporter causality classification, and expectedness 
classification. Once AEs are detected, each is coded using 
the Medical Dictionary for Regulatory Activities (Med-
DRA); all drugs detected are coded according to the WHO 
Drug Dictionary (WHO-DD).

Entity detection cognitive services were assessed using 
the F1 measure, and classification cognitive services were 
assessed using accuracy. The business threshold for a service 
to be considered adequately trained is when its correspond-
ing evaluation measure exceeds 75%. This threshold was 
decided by considering: (1) business requirement; (2) data 
and resource availability; and (3) technical feasibility. Busi-
ness requirement stated that humans in the loop should be 
able to simply confirm the results generated by the cognitive 
services for the majority of outputs and they should not be 
required to reread the entire document to find the relevant 
datapoints. However, this requirement was constrained by 
the data and resource availability as manual annotation to 
train cognitive services is a laborious task, and it is neces-
sary to invest a significant amount of time from both the cog-
nitive service developer and the domain expert to understand 
the errors in the cognitive output and tune the models to 
rectify those errors. Limited availability of the data leads to 
the technical feasibility as cognitive services get better with 
greater volume and diversity of the data used to train them. 
Considering these factors and the derived insights and expe-
rience from the proof-of-concept projects conducted before 
this study, we decided that 75% is the minimum threshold for 
each cognitive service to be effective in a real-world setting.

3.3 � Annotated Corpus Sampling Data

The annotated corpus comprises 20,000 ICSRs sampled 
from the total dataset of 168,000 cases received by Cel-
gene’s drug safety department from January 2015 through 
December 2016. This dataset served as the input data for 
training the ten cognitive services under development. 
The sample was chosen by the cognitive developers 
considering the diversity and representativeness of the 
dataset from both the pharmacovigilance and machine-
learning perspective. The factors considered for sampling 
were: (1) report type (spontaneous, clinical/market study, 
medical literature); (2) source country; (3) number of 
unique preferred terms; (4) number of unique reported 
terms; (5) length of the reported term; (6) seriousness of 
the ICSR; (7) seriousness of the AE; (8) seriousness cat-
egory of the AE; (9) number of unique suspect products; 
and (10) expectedness value for investigator brochure, 
company core data sheet, summary of product character-
istics, and product insert.
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3.4 � Scalable Transcription and Annotation Process

The scalable process of creating transcribed and annotated 
documents for the annotated corpus was designed as fol-
lows (Fig. 1). All cases were stored and worked on within 
a restricted site; documents were organized into folders 

corresponding to unique ICSRs. An external vendor with 
staff specializing in pharmacovigilance case processing per-
formed the transcription of source documents and manu-
ally transcribed the case data into a blank Microsoft Word® 
(Microsoft Corp., Redmond, WA, USA) template to match 
the original source document in content and format. A subset 

Fig. 1   The scalable transcription and annotation workflow to produce an annotated corpus from which cognitive services can be trained in the 
pharmacovigilance domain. PV pharmacovigilance, SME subject-matter expert



395Training Augmented Intelligent Capabilities for Pharmacovigilance

of these transcribed cases was quality checked in-house by 
pharmacovigilance SMEs. Once cases passed quality check, 
they were moved into the restricted site designated for the 
annotation, or tagging, of the transcribed documents. To 
guide their annotations, team members were provided a 
metadata sheet containing data for the 20,000 cases that 
comprise the annotated corpus. The metadata sheet is an 
output of the current safety database and contains the data 
pertaining to the way in which each case was originally pro-
cessed and coded upon receipt. This document served as 
the ground truth against which the annotators applied the 
annotation labels. A section of the metadata sheet is shown 
in Fig. 2. The task of the human annotator is to find the data-
points present in the metadata within the corresponding case 
and annotate them in the transcribed document. 

Criteria for a quality-check failure were as follows: omis-
sion or incorrect transcription or annotation of any major 
data element pertaining to case validity (patient, reporter, 
AE, or suspect product) or four or more minor errors. A 
minor error was defined as missing or incorrectly transcrib-
ing or annotating any data element that was not one of the 
four criteria for case validity (e.g., misspelling of a concomi-
tant product, missing medical history, omission of patient’s 
sex). Documents that failed quality check were reinserted 
into the vendor’s queue for correction with a comment high-
lighting the error(s) found. All annotated documents that 
passed quality check were shared with the cognitive service 
development team on a weekly basis.

3.5 � Standardization of Annotation

Annotation labels served as generic tags to represent the 
relevance of a data element to pharmacovigilance within the 
context of a given ICSR. Annotations were applied using the 
comment function within Microsoft Word® (Fig. 3). Some 
examples of annotation labels relating to the services within 
scope of this paper include ReporterTypeHCP, ReporterCau-
sality, and SuspectProduct. Microsoft Word® macros were 
developed to standardize and expedite the annotation pro-
cess; macros were installed by each annotator in Microsoft 
Word® and contained every annotation label in its proper 
format. Guidelines were provided to indicate proper label 
use, which contained all labels and their associated defini-
tions, including an example of the context in which each 
label should be used.

A benefit of standardizing the approach to annotation 
allowed for quality control measures to be implemented. In 
addition to the manual quality check process for a statisti-
cally significant portion of annotated documents, 100% of 
the annotated documents went through an automated valida-
tor. This validation script ran on all completed documents 
and cross-checked the manual annotations with the metadata 
for completeness. For instance, the validation script checks 
the number of manual AE annotations against the number 
of AEs present in the metadata for the corresponding case 
to ensure completeness of the annotation task.

Fig. 2   A section of the metadata sheet, an output of the current safety database, which contains the data elements to be annotated within each 
version of the cases comprising the annotated corpus
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3.6 � Designing and Training Cognitive Services

The ten cognitive services were categorized into two main-
stream machine-learning and NLP tasks: (1) entity anno-
tation; and (2) text classification (Table 1). We designed 
and developed deep-learning-based solutions to perform 
these cognitive tasks. To perform entity annotation, we 
implemented a recurrent neural network with bidirectional 
long–short-term memory layer to encode the input text 
and conditional random field-based decoder to identify the 
words that indicate interested entities in the encoded input 
text [11]. To perform classification tasks, we implemented 
a convolutional neural network with one convolutional layer 
and a max pooling layer [12]. The max-pooled outputs were 
concatenated and the softmax function was applied to deter-
mine the classification result. Interested readers may refer to 
Ma and Hovy [11] and Kim [12] for more details on these 
deep-learning models. The training process consisted of tun-
ing the parameters of these networks to generate expected 

output for each service, and this was accomplished in an 
iterative manner with the feedback from the SMEs.

3.7 � Guideline Iterations

Annotation guidelines were iterated upon and refined based 
on feedback by the pharmacovigilance SMEs during model 
training and approval. This cycle is referred to as ‘MAT-
TER’, representing the process of modeling, annotating, 
training, testing, evaluating, and revising [13]. The first ver-
sion of the guidelines for the annotated corpus was devel-
oped while annotating 3000 cases in-house to understand the 
breadth of entity labels that would be required for all case 
types to train the cognitive services within scope. Through 
model development, model predictions were analyzed for 
false negatives and false positives to pinpoint labels that 
were not impactful. Those found to be impactful remained; 
others were revised or removed. For example, the label 
ReporterCausality was revised into more specific labels: 
ReporterCausalityRelated, ReporterCausalityNotRelated, 
ReporterCausalityUnknown, and ReporterCausalityPossi-
blyRelated. Consideration was given to the tradeoff between 
creating very specific labels that might be used only rarely 
and creating generic labels that do not provide impactful 
knowledge to the cognitive services under development.

Version 1.0 of the annotation guidelines contained 75 
annotation labels that were organized into nine categories. 
Version 2.0 of the guidelines contained 108 labels structured 
into the same nine categories. After model training and feed-
back sessions, it was determined that the version 2.0 labels 
would need to provide more detail and specificity. The most 
current version of the guidelines, version 3.0, contains 121 
labels organized into 11 categories. This version was created to 
refine the previous labels and include new labels for annotating 
unstructured documents. The final 11 categories, which were 
created to group all annotation labels in that category by con-
cept, are: Administrative, Event, Literature, Medical History, 

Fig. 3   An example of annotation labels applied within a portion of a transcribed source document

Table 1   The ten cognitive services for spontaneous individual case 
safety report processing under development in this study with their 
corresponding service type

MedDRA Medical Dictionary for Regulatory Activities, WHO-DD 
World Health Organization Drug Dictionary

Cognitive service Service type

Adverse event detection Entity extraction
Drug detection Entity extraction
Reporter detection Entity extraction
Patient detection Entity extraction
Validity classifier Classifier
Seriousness classifier Classifier
Reporter causality classifier Classifier
Expectedness classifier Classifier
MedDRA coding Classifier
WHO-DD coding Classifier
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Patient, Product, Reporter, Reporter Causality/Seriousness, 
Tests, Study, and Questionnaire. Examples of annotation 
labels within the ‘product’ category include SuspectProduct, 
ConcomitantProduct, TreatmentProduct, PastProduct, Action-
Taken, AdminRoute, DoseForm, DoseUnit, Frequency, and 
Indication.

It should be noted that in the development of the classifica-
tion services, ICSR validity, WHO-DD, and MedDRA were 
not annotation dependent as these cognitive services do not 
require information about where in the original document the 
interested entities appear to make their decisions. The relevant 
labels for these services were present in the associated meta-
data file used for training. For instance, each AE in the meta-
data file is associated with its preferred and lowest-level term 
from its MedDRA hierarchy, and these data were directly used 
to train the MedDRA coding cognitive service without any 
extra manual annotation effort.

3.8 � Model Approval

To date, approximately 14,000 cases of the 20,000 cases that 
compose the annotated corpus have completed the full work-
flow of transcription and annotation. Eighty percent of the 
cases shared with the machine-learning team were routed to 
training and tuning the cognitive services, 10% were used for 
testing the models with SME feedback, and 10% were reserved 
for final testing and validation. The models were assessed 
using the F1 score, or accuracy. F1 is an accepted measure of 
how well a cognitive model performs on entity detection sce-
narios; it represents the tradeoff between a model’s precision 
and its recall, as defined in Eqs. 1–3 (Table 2).

Testing and approval of services required collaboration 
between pharmacovigilance SMEs and machine-learning 

(1)F1 = 2
Precision × Recall

Precision + Recall

(2)Precision =
True Positive

True Positive + False Positive

(3)Recall =
True Positive

True Positive + False Negative

system developers. The pharmacovigilance SMEs reviewed 
all false negative and false positive outcomes of each ser-
vice, providing feedback to be incorporated into the service 
for improvement. The aim of this feedback was to identify 
the common errors made by the cognitive services from the 
pharmacovigilance perspective. Once the model reached a 
score of at least 75%, the SMEs reviewed a sample of all true 
positives and, for binary models, true negatives to confirm 
that indeed they were true positives and true negatives. This 
process ensured occasional errors in manual annotations and 
labels were not counted positively or negatively to the final 
evaluation of the cognitive service. If the true positive and 
true negative review passed, the model was approved. If the 
model did not pass review, the teams worked to improve the 
model, typically through another round of false negative and 
false positive analysis.

4 � Results

To date, all ten cognitive services have reached their respective 
minimum evaluative score of 75%, and six of them reached 
90% and above; thus, all models have been approved for future 
use (Table 3). These results demonstrate success in the crea-
tion and implementation of a scalable workflow to curate data 
comprising the annotated corpus used for training cognitive 
services in the pharmacovigilance domain. This repeatable 
framework may be applied to different datasets, and for the 
creation of novel cognitive services beyond the scope of this 
study to meet varying business needs. For example, a company 
with a specific product portfolio may see benefit in creating 
a cognitive service that identifies events of interest so that 
cases may be prioritized more efficiently. With this type of 
scalable, customizable technology, it is possible for a biotech 
company to implement augmented intelligence throughout the 

Table 2   Table of confusion depicting the determination of true posi-
tive, false positive, true negative, and false negative for use in calcu-
lating the F1 and accuracy measures

Ground-truth Predicted

Positive Negative

Positive True positive False negative
Negative False positive True negative

Table 3   The ten cognitive services for spontaneous individual case 
safety report processing with their corresponding evaluative measure 
and score following model training and tuning

MedDRA Medical Dictionary for Regulatory Activities, WHO-DD 
World Health Organization Drug Dictionary

Cognitive service Evaluation measure Evaluation score

Adverse event detection F1 score 75.6
Drug detection F1 score 90
Reporter detection F1 score 94.99
Patient detection F1 score 79
Validity classifier Binary accuracy 98.40%
Seriousness classifier Binary accuracy 83%
Reporter causality classifier Accuracy 78.43%
Expectedness classifier Binary accuracy 92.50%
MedDRA coding Top-5 accuracy 92%
WHO-DD coding Top-5 accuracy 98%
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case-processing workflow to enable its employees to make 
more efficient and consistent decisions.

Through this undertaking, the researchers have learned the 
nuances of training cognitive services for specific tasks relat-
ing to ICSR intake and processing. The major takeaways are 
as follows:

1.	 When designing cognitive services, ensure the input data 
is readily available within the dataset.

2.	 When designing cognitive services, ensure the intended 
output is clearly defined and that it meets the business 
requirement. If possible, the cognitive service output 
should be normalized to values acceptable in ICSR pro-
cessing. For example, if the case mentions that a patient 
was admitted to the hospital, the seriousness detection 
service should produce a standard output of “Serious—
Hospitalization” so that the data are captured consist-
ently regardless of the reporter verbatim.

3.	 When designing cognitive services, ensure the perfor-
mance metrics are defined beforehand so that the ser-
vices satisfy the business requirements.

4.	 The transcription of source documents, although time 
consuming, is important in that it preserves the ICSR’s 
original formatting and most closely mimics cases that 
will be received in future scenarios, increasing the qual-
ity of training data fed into the machine-learning mod-
els.

5.	 The annotations must have very clear guidelines for their 
usage. For example, the annotation for AdverseEvent 
should not be used for disease states that are consid-
ered symptoms of the disease or medical history of the 
patient. This ensures high consistency and reliability 
between all users performing annotations.

6.	 The feedback provided by the pharmacovigilance SMEs 
during model approval and validation should be as gen-
eralized as possible. Incorporation of feedback that 
reflects very specific company conventions may hinder 
the performance of the cognitive services in future cases. 
This is known as overfit in machine-learning terminol-
ogy, meaning the model is over-tuned to perform well 
on the current dataset. Such specific scenarios should 
instead be addressed as a post-processing step on the 
output generated by the machine-learning model. One 
possibility is to develop rules to post-process the cogni-
tive services’ output to meet the business expectation.

5 � Discussion

5.1 � Research Trends in Technology

Early use of technology and informatics in pharmacovigi-
lance dates back to 2000; drivers for change included 

faster computer processing speeds, improved storage capa-
bilities, and increased use of automation [3, 14]. Then, 
most studies leveraged homogeneous data sources (e.g., 
discharge summaries, clinical notes, or literature arti-
cles) to target isolated elements of a case report, such as 
AE detection or drug–drug interactions (DDIs) through 
keyword or trigger-phrase searches [14]. This approach 
yielded relatively limited success because it relied heav-
ily on the presence or absence of defined keywords and 
phrases and did not dynamically incorporate growing 
vocabularies or changes in reporting norms [14]. Symbolic 
methods expanded on keyword searches to use semantic 
and syntactic patterns within one dataset to widen their 
results to include medical concepts and drugs. Symbolic 
methodologies proved more flexible and successful than 
simple keyword searches at capturing detailed informa-
tion [14].

Beginning in 2010, researchers recognized that their 
methods could be improved by training with multiple data 
sources and implementing NLP techniques [14, 15]. Mul-
tiple data sources that combine electronic health records 
with spontaneous reports have been shown to outperform 
single sources in detecting ADRs by 30% [6]. Given 
the amount of free text and medical information found 
in literature articles and clinical summaries, these data 
sources make good candidates for training NLP models 
[16]. Furthermore, current estimates show the extent of 
these untapped data sources for use in drug surveillance: 
only 1% of AEs from electronic sources are reported to 
federal databases [14].

Many investigative studies using publicly available NLP 
systems have demonstrated limitations of these services, 
including insufficient dictionaries and ontological infor-
mation that require additional tools, such as customer-
customized dictionaries, to create large corpora of medi-
cal terms to classify data elements adequately [14, 17]. 
Established NLP systems also perform poorly in linking 
temporal relationships between entities, making them sub-
par models for determining whether AEs are related to 
pre-existing medical history and for determining causality 
between drugs and AEs [14].

Because of the overall limitations of using NLP alone 
in pharmacovigilance, recent trends seek to leverage sta-
tistical analysis, machine-learning, and NLP together to 
create a superior approach [4, 14]. The advancements of 
deep-learning algorithms are driving the latest momen-
tum in cognitive service development. In this study, we 
used NLP in tandem with deep-learning approaches to 
build cognitive services that can support the pharma-
covigilance professional in ICSR intake and assessment 
without the creation and maintenance of dictionaries. 
Unlike previous studies, this approach used the heteroge-
neity of source documents received globally to build ten 
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cognitive services. The cognitive services, if implemented, 
will continue to improve over time on the basis of a con-
trolled feedback loop to ensure processing consistency 
and quality. This can be achieved by performing incre-
mental training of machine-learning models on samples of 
new datapoints selected by analyzing and identifying the 
error patterns of the outputs [18–20]. Incremental training 
approaches select the regions in the deep-learning net-
works to be adapted and train them to account for the new 
datapoints.

5.2 � Resource Limitations

The major limitations faced in building an annotated corpus 
for use in pharmacovigilance is the time, effort, and cost of 
producing high-quality data. Future approaches may seek to 
leverage transcription technologies, such as optical character 
recognition, for automated transcription of documents into a 
machine-readable format necessary for machine-learning. An 
automated approach would eliminate the time spent creating 
blank templates for the variety of structured and unstructured 
forms found in the annotated corpus. Additionally, consid-
ering the trend toward fully electronic medical records, the 
popularity of wearable medical devices that transmit data 
directly from a patient, and the widespread preference for 
email over postal mail, it is likely that the number of hand-
written ICSRs requiring transcription will decrease over time.

5.3 � Data Limitations and Constraints

Because of the use of patient reports for this project, data 
privacy has been another constraint on quickly completing 
the annotated corpus. ICSRs from across the globe adhere to 
different countries’ guidelines for protecting patient privacy. 
Many documents encountered in the transcription and anno-
tation workflows contained redacted information, making 
it impossible to train models using those data (e.g., patient 
initials, name, address, date of birth).

Varying and limited data also posed a limitation when 
building the annotated corpus. Periodically updated legisla-
tion, upgrades to the WHO-DD and MedDRA dictionaries, 
and alterations to company conventions pose challenges to 
the creation and maintenance of the annotated corpus over 
time. Data elements that have been particularly difficult to 
obtain include rare AEs, uncommon seriousness criteria 
(e.g., congenital anomaly), and the identification and assess-
ment of DDIs in these reports.

5.4 � Effort and Benefit of Cognitive Service 
Development

Although effortful, the creation of an annotated corpus is a 
one-time task that will enable a company to build and leverage 

cognitive services to meet their regulatory obligations in an 
environment of ever-increasing ICSRs. Between 2004 and 
2015, the US FDA has seen a 477.2% increase in number of 
total reported drug-related AEs [21]. Rather than continually 
increasing resources and headcount, a recent trend, beginning 
around 2009, is for companies to outsource their less complex 
pharmacovigilance functions. As of 2016, about 50% of phar-
macovigilance activities across industry are externally out-
sourced [7]. Outsourcing is a finite solution, however, which 
has led many companies to look to the benefit of automation 
and other emerging technologies to handle big data.

The benefit of automation has been estimated in pre-
vious research, which has shown that an ICSR classifier, 
when used to classify valid ICSRs from a set of social digi-
tal media data, can outperform humans in processing time. 
The ICSR classifier demonstrated success in reviewing 
311,189 unannotated social media posts in less than 48 h; 
the estimate for humans to process this volume is 44,000 
work hours [8]. While it is difficult to estimate exactly how 
much time would be saved across a safety team with the 
support of the ten cognitive services in this study, it is rea-
sonable to state that their time spent searching for datapoints 
and making decisions will lessen, and, as such, a company 
will need to allocate fewer resources, both internally and 
externally, to meet the demand of manual data collection 
as is done today. Furthermore, the cognitive services will 
eliminate the required maintenance of finite dictionaries 
for automatic coding that are often used in industry today. 
Semantic and syntactic understanding will replace synonym 
lists and will account for the variety of ways in which ICSRs 
may be reported. These models will allow for a solution that 
is volume-, style-, and vocabulary-agnostic in its ability to 
understand, extract, and classify all data elements important 
to pharmacovigilance. Future work will seek to quantify the 
hypothesized additive beneficial effect of implementing ten 
cognitive services once they have been fully integrated into 
the case processing workflow.

5.5 � Future Work

Given the favorable results of this study in creating ten 
cognitive services for initial spontaneous ICSR intake, the 
pharmacovigilance SMEs have begun identifying additional 
cognitive services to support the processing of study and 
literature ICSRs. By designing cognitive services that may 
assist in more efficient data collection, pharmacovigilance 
professionals will have more time to apply their knowledge 
in assessing the case rather than spending it performing 
numerous transactional activities to simply capture the per-
tinent data within a safety database.

While the focus of this research is on the creation of 
foundational cognitive services that identify, extract, and 
classify data elements for optimized data collection, these 
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technical applications may prove valuable across the drug 
safety workflow. Future direction relating to machine-learn-
ing implementations should include cognitive services to 
support the submission, assessment, and safety evaluation 
of ICSRs. Because it is estimated that 21% of prescriptions 
are given for off-label indications, continued training of AE 
detection from ICSRs in tandem with the product insert is 
another objective [14]. Deeper understanding of DDIs, link-
ages between International Classification of Diseases codes 
and events, and linking temporal relationships across multi-
ple source documents are also under consideration for future 
work and enhancements.

The incorporation of social media into the annotated cor-
pus will support mining for AEs that are not directly reported 
to the manufacturer. Twitter is a commonly used platform 
for data exchange, boasting over 500 million posts per day 
[22]. With this amount of untapped data, we begin to solve 
the problem of underreported events, as it is estimated that 
no more than 5% of serious ADRs are actually reported 
[23]. Some challenges with utilizing social media have been 
reported previously, such as the identification of medical key-
words, mapping of drug–event relationships, classification of 
seriousness, data privacy considerations, determination of 
report validity, and overall quality of information provided 
[22, 23]. In the same vein, mobile technology such as health 
applications and wearable devices can transmit patient infor-
mation directly from the source. Not only would use of mobile 
technology increase sources of information, it would also cre-
ate a framework in which patients understand the significance 
of voluntarily reporting their health data [3]. Recent studies 
have demonstrated success in using machine-learning to mine 
social media for valid cases before SME review [8]. These 
emerging capabilities together would provide a comprehen-
sive safety system that could handle the imminent influx of 
fresh case types and previously untapped data sources.

The intention of augmented intelligence is not to replace 
the pharmacovigilance professional, but rather support them 
in their consistent decision-making, so that in time a more 
consistent and cleaner dataset is available for more robust 
and timelier signal detection to better inform the actions taken 
based on those signals. The use of automation is the begin-
ning of the transformation of drug safety, leading to better 
oversight of products, more proactive approaches to phar-
macovigilance, and better understanding of the risk–benefit 
profiles of medicinal products for enhanced patient safety.

6 � Conclusion

In this paper we demonstrate how we curated an annotated 
corpus in a scalable manner, while maintaining data qual-
ity, to train cognitive services such that they achieve a target 

accuracy level effective in a real-world setting. Ten cog-
nitive services were identified based on their importance 
in ICSR intake and processing, and include five services 
relating to validity assessment, seriousness classification, 
reporter causality classification, expectedness classification, 
and WHO-DD and MedDRA coding. All cognitive services 
under development have achieved the minimum evaluative 
threshold to be considered adequately trained, demonstrating 
how machine-learning and NLP techniques together provide 
accurate outputs that may augment pharmacovigilance pro-
fessionals’ processing of spontaneous ICSRs quickly and 
accurately if implemented into the case processing workflow. 
Through this support, pharmacovigilance professionals may 
be better equipped to handle the increasing volume of case 
reports. More consistent and clean data collation may result 
in improved signal detection over time, ushering in a new 
era of pharmacovigilance as a patient-centered, value-based 
function for patients globally [24].
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