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THE Genetics Society of America’s George W. Beadle Award honors individuals who have made outstanding contributions
to the community of genetics researchers and who exemplify the qualities of its namesake as a respected academic,

administrator, and public servant. The 2015 recipient is John Postlethwait. He has made groundbreaking contributions in developing
the zebrafish as a molecular genetic model and in understanding the evolution of new gene functions in vertebrates. He built the first
zebrafish genetic map and showed that its genome, along with that of distantly related teleost fish, had been duplicated. Postlethwait
played an integral role in the zebrafish genome-sequencing project and elucidated the genomic organization of several fish species.
Postlethwait is also honored for his active involvement with the zebrafish community, advocacy for zebrafish as a model system, and
commitment to driving the field forward.

Genetics blossomed as a science spurred by wise selections
of compliant organisms. One hundred years ago, the first
paper in the first issue of GENETICS used genetic maps and
chromosome anomalies in Drosophila melanogaster to support
the chromosomal theory of inheritance (Bridges 1916). Fruit
flies, along with mice, mold, and maize (e.g., Beadle and
Ephrussi 1937; Beadle 1939; Beadle and Tatum 1941) have
been joined by newcomers like nematodes, zebrafish, and
Arabidopsis. Only recently, however, have biologists had ac-
cess to the vast array of Darwin’s “endless forms most beautiful
and most wonderful” (Darwin 1859, p. 483) for in-depth ge-
netic investigations of development, physiology, and evolution.
Rapid genome sequencing, transcriptomics of small popula-
tions of differentiating cells, powerful bioinformatics, and
broadly applicable genome-editing methods can now con-
vert nearly any species inhabiting Darwin’s “tangled bank”
(Darwin 1959, p. 482) into a “model organism.”

I am only surprised that more wrecks of ancient life have
not been preserved. . . (Darwin 1959, p. 136)

To Darwin, “wrecks of ancient life” were species that lost
features associated with ancestral forms, like cave crabs that
retain the eyestalk while missing the eye that crowns the
stalk of terrestrial crabs (Darwin 1859). We called these rare
species “evolutionary mutant models” because they offer

important genetic variants that can shed light on the mech-
anisms of development and physiology in the wild (Albertson
et al. 2009). Phenotypes exhibited by these “wrecks of ancient
life” would be disease states in related species, but in par-
ticular environments are instead functional. Understanding
the genetic basis for the wrecked phenotype provides insights
into disease mechanisms, and learning how wrecked species
cope with the altered phenotype can offer hints toward novel
therapies.

Only recently [...] have biologists had access to the vast
array of Darwin’s “endless forms most beautiful and
most wonderful” for in-depth genetic investigations
of development, physiology, and evolution.

—J.H.P.

Darwin’s prototypic living wrecks inhabit caves. Re-
searchers have made remarkable progress investigating the
Mexican blind tetra cavefish Astyanax mexicanus (Protas
and Jeffery 2012; Stemmer et al. 2015) and have used the
Astyanax genome sequence coupled with QTL analyses to
identify candidate genes for cave phenotypes (McGaugh
et al. 2014). In cave Astyanax, lens apoptosis induces eye
degeneration. We investigated gene expression in the blind
cyprinid cavefish Sinocyclocheilus anophthalmus and, in con-
trast to Astyanax, results suggested a lens-independent re-
duction in retinal cell proliferation and down-regulation of
transcriptional factors that control retinal development and
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maintenance (Meng et al. 2013a,b). These results show that
cavefish derived from different clades can use alternative
genetic mechanisms to converge on a phenotype that in
many ways mimics retinal degeneration in aging people.
The full developmental genetic program that distinguishes
retinal development in cave and surface fish is still being
explored.

In 1871, Darwin realized that larval tunicates (urochordates)
have morphologies similar to vertebrate embryos. He sug-
gested that in “an extremely remote period” (p. 125) animals
with these morphologies produced one lineage leading to
vertebrates and another lineage “retrograding in develop-
ment” (p. 125) to become today’s tunicates (Darwin 1871).
Tunicates are now recognized as forming the sister group to
vertebrates (Delsuc et al. 2006). The urochordate Oikopleura
dioica represents a curious case of a wrecked genome despite
retaining the ancestral chordate body plan even in the adult.
The Oikopleura genome has a reduced repertoire of develop-
mental regulatory genes, drastically reorganized introns, and
a highly altered gene order (Canestro and Postlethwait 2007;
Canestro et al. 2010; Denoeud et al. 2010). In spite of its
modified genome, we and others showed that the pattern
of developmental gene expression in Oikopleura embryos sug-
gests that supposed vertebrate innovations, such as placodes
and the thyroid, originated in chordate ancestors (Bassham
et al. 2008; Canestro et al. 2008). The recent development of
methods to knockdown gene expression in Oikopleura now
enables functional investigations of gene action in this mor-
phologically beautiful chordate with a wrecked genome
(Mikhaleva et al. 2015; Omotezako et al. 2015).

Dr. Postlethwait’s work began the molecular genetic
era of zebrafish research and has helped to demys-
tify the evolution of genes and genomes. He has also
strengthened the zebrafish community through his
generous data sharing, collaborative spirit, and help
for dozens of labs in mutation and gene mapping.

—Alex Schier, Harvard University

The voyage of the Beagle did not stray quite far enough
South to encounter an amazing shipwreck of an animal,
Antarctic icefish, which inhabit the icy (21.9�) waters of
the Southern Ocean. Icefish have acquired adaptations for
survival in the cold, including antifreeze proteins (Devries
1971), a constitutive “heat shock” response (Place and
Hofmann 2005), and modified membrane phospholipids
(Logue et al. 2000). Icefish ancestors were bottom dwellers,
possessing red blood and densely mineralized bones but lack-
ing a swim bladder, which is the organ of neutral buoyancy in
most fish (Eastman 1993). As the Southern Ocean cooled,
fish species occupying the water column became extinct,
providing unexploited habitats for ambush predators with
neutral buoyancy (Eastman 1993). In the absence of a swim
bladder, icefish ancestors accumulated mutations that cause

lipid accrual, decreased skeletal ossification, and reduced
bony scales (Friedrich and Hagen 1994; Near et al. 2009;
Eastman et al. 2014). These phenotypes would be maladap-
tive in a person or even in most fish. Icefish are also unique
among vertebrates in having lost functional hemoglobin
genes and red blood cells, which generated an anemic phe-
notype compensated by the diffusion of oxygen through
scale-less skin, decreased oxygen demand, increased heart
size, high cardiac pumping volume, decreased blood viscosity,
extensive vascularization, increased muscle cross-sectional
area, and amplified mitochondrial density and lipid content
in heart and oxidative skeletal muscle (Sidell and O’Brien
2006; Detrich and Amemiya 2010). For species with low bone
density, we found that embryos maintain the youthful chon-
drogenic program and postpone or abandon the mature oste-
ogenic program for most bones. This suggests that altered
timing of skeletogenic gene expression may have been a sig-
nificant adaptation in the radiation of Antarctic fish from the
ocean bottom into the water column (Albertson et al. 2010).
More work is required to identify the molecular genetics be-
hind these heterochronic shifts. Recently developed tools now
provide the means to study icefish and other wrecks of an-
cient life, just as mutations in model organisms like maize and
Drosophila (e.g., Postlethwait and Nelson 1964; Gelinas et al.
1969; Postlethwait and Schneiderman 1969, 1971; Postlethwait
and Girton 1974) provide insights into the genetic mechanisms
of development, organ function, and evolution.

Natura non facit saltum (Darwin 1859, p. 160)

Seven times in On the Origin of Species, Darwin invoked
the concept that “nature does not make leaps. Over 50 years
after Darwin’s treatise was published, and now 100 years
ago, an article published in the first year of the fledgling
journal GENETICS discussed a situation in which nature does
in fact make leaps—the origin of novel morphologies after
a jump in genomic content by genome duplication (Tupper
and Bartlett 1916). Genome duplication appears to have
shaped vertebrate evolution in two rounds before the diver-
gence of fish and mammalian lineages (Holland et al. 1994;
Dehal and Boore 2005). It was previously known that gene
families are often larger in teleosts than in mammals, but it
was unclear if this condition arose due to excess preserva-
tion of tandem duplicates or to an additional genome dupli-
cation event, as suggested by S. Ohno (Ohno 1970). To
resolve this question, we used genetic mapping to find the
genomic locations of duplicated gene pairs in zebrafish. We
found that gene pairs reside on duplicated zebrafish chro-
mosomes, and these duplicated chromosome segments are
shared with the pufferfish fugu, suggesting that distantly
related teleosts share an ancestral genome duplication event
(Postlethwait et al. 1994, 1998, 1999, 2002; Amores et al.
1998; Taylor et al. 2003; Jaillon et al. 2004). Gene expression
patterns in zebrafish and other teleosts showed that gene
duplicates from the teleost genome duplication (TGD) are
often expressed in subsets of tissues or developmental times
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shared by their mouse orthologs (e.g., Ekker et al. 1992;
Akimenko et al. 1994, 1995; Thisse et al. 1995; Risinger
et al. 1998; Oates et al. 1999). These findings led to the idea
that, after genome duplication, duplicated genes (called ohno-
logs when originating in a genome duplication) are redundant,
so some of their ancestral functions—like expression domains,
protein functional domains, or protein quantities—can recipro-
cally degenerate. But as long as the two ohnologs complement
for essential functions, both can be retained in the genome,
a process we called “subfunctionalization” (Force et al. 1999).
Alternative outcomes include the loss of one of the copies or
the origin of a new, positively selected function (which we
called “neofunctionalization”) (Ohno 1970; Force et al.
1999). Thus, although nature did make a leap—from diploid
to tetraploid in perhaps a single clutch of fish �300 million
years ago—gradual genetic changes afterward likely led to the
origin of teleost morphological innovations (such as dorsal–
ventral symmetrical tails that improve swimming and mobile
upper jaw bones that facilitate prey capture). Perhaps these
changes occurred because having twice as many mutation tar-
gets accelerated the genetic changes that led to teleost novel-
ties. However, we still do not know whether or how genome
duplication might increase the rate of speciation or increase the
likelihood of evolutionary innovations.

. . .seven genera of Ganoid fishes. . .these anomalous forms
may be called living fossils. . . (Darwin 1859, p. 106)

Understanding the genetic mechanisms by which doubled
genomes became modified in ancient teleosts requires the
study of a surviving lineage that diverged from the teleost
lineage before the TGD. Darwin’s paradigmatic examples of
what he called “living fossils” were fish that contain ganoid
scales, such as spotted gar. The spotted gar represents a sister
group of the teleosts, as we showed using genetic maps that
capitalize on massively parallel DNA sequencing (Amores et al.
2011), novel software to analyze these sequences (Catchen
et al. 2011a), and bioinformatic algorithms to perform compar-
ative genomics (Catchen et al. 2011b). Analysis of the spotted
gar genome showed that it links mammals to teleosts in ways
that illuminate evolutionary mechanisms (Braasch et al. 2015).
For example, conserved noncoding elements, many of which
act as genetic regulatory elements, are often not detectable
when directly comparing mammals to teleosts, but become
evident when mammals are first compared to gar and then
gar is compared to teleosts. Furthermore, these “cryptic” teleost
elements can drive function in mammalian development in
patterns similar to those of their mammalian orthologs (Gehrke
et al. 2015). The gar genome promises to better link the dupli-
cated genomes of teleost medical models to human biology.

. . .so much variety and so little real novelty. . . (Darwin
1859, p. 185)

We are living in a remarkable time for genetics. For the
first time, tools are available for mechanistic investigations of

“so much variety” in the form and function of nonlabora-
tory species, allowing us to seek the origins of “real
novelty.”
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