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Nowadays, short stature (SS) in childhood is a common condition encountered by
pediatricians, with an increase in not just a few families. Various studies related to the
variations in key metabolites and their biological mechanisms that lead to SS have
increased our understanding of the pathophysiology of the disease. However, little is
known about the role of metabolite variation in different types of childhood SS that
influence these biological processes and whether the understanding of the key
metabolites from different types of childhood SS would predict the disease
progression better. We performed a systematic investigation using the
metabonomics method and studied the correlation between the three groups,
namely, the control, idiopathic short stature (ISS), and short stature due to growth
hormone deficiency (GHD). We observed that three pathways (viz., purine metabolism,
sphingolipid signaling pathway, and sphingolipid metabolism) were significantly
enriched in childhood SS. Moreover, we reported that two short peptides (Thr Val
Leu Thr Ser and Trp Ile Lys) might play a significant role in childhood SS. Various
metabolites in different pathways including 9,10-DiHOME, 12-HETE, 12(13)-EpOME,
arachidonic acid methyl ester, glycerophospho-N-arachidonoyl ethanolamine,
curvulinic acid (2-acetyl-3,5-dihydroxyphenyl acetic acid), nonanoic acid, and N’-
(2,4-dimethylphenyl)-N-methylformamidine in human serum were compared
between 60 children diagnosed with SS and 30 normal-height children. More
investigations in this area may provide insights and enhance the personalized
treatment approaches in clinical practice for SS by elucidating pathophysiology
mechanisms of experimental verification.
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INTRODUCTION

In clinical practice, the therapy of childhood short stature (SS) is often confronted by pediatric
endocrinologists and is also an intractable problem (Rogol and Hayden, 2014; Smuel and
Yeshayahu, 2017; Ma et al., 2019). Almost half of the pediatric visitors come to consult about
short stature (Murray et al., 2018). Childhood short stature, which has various causes, can be
categorized under normal and pathological conditions (Ma et al., 2019). The normal condition
includes familial short stature and constitutional delay of growth. However, various pathological
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factors lead to SS, including Turner syndrome,
hypothyroidism, chronic diseases, growth hormone
deficiency, and idiopathic short stature (Allen and Cuttler,
2013). Short stature during childhood is easily overlooked and
embarrassing, which makes an individual vulnerable to
psychological disorders, such as low self-esteem, loneliness,
academic and job difficulties, and social immaturity (Kim and
Park, 2009). Regrettably, many children with SS remain
affected by short stature as they grow old (Ma et al., 2019).
For example, the probability of developing preterm birth or
stillbirth for pregnant women with SS was seen to be relatively
higher (Derraik et al., 2016; Ma et al., 2019). Childhood short
stature may be more susceptible to chronic diseases such as
obesity and insulin resistance. The inactivation of sirtuin 1
(SIRT1) is connected to the progression of insulin resistance
associated with SS. Diabetes in people with short stature may
be induced later in life with relevance to sirtuin 1 repression
(Martins, 2016; Martins, 2017). Therefore, it becomes
necessary and urgent to identify critical targets and
mechanisms for childhood short stature.

It has been observed that BMI and growth hormone (GH)
were negatively correlated with childhood short stature (Bosy-
Westphal et al., 2009; Zhao et al., 2021). SIRT1 is a
nicotinamide adenine dinucleotide (NAD)-dependent
histone deacetylase that is activated in response to calorie
restriction (CR) (Yamamoto and Takahashi, 2018). Further
investigation between sirtuins, metabolism, and age-associated
diseases has implicated the essential role of activation of SIRT1
(Satoh et al., 2011). SIRT1 regulated the adaptive response of
the GH–insulin-like growth factor 1 (IGF-1) axis under
particular conditions in the liver (Yamamoto et al., 2013).
Therefore, the role of SIRT1 activators may be of critical
importance in molecular metabolic processes and the
treatment of childhood short stature.

Recent studies have identified some possible protein
markers in childhood short stature: bone alkaline
phosphatase, collagen markers, apolipoprotein (Apo) A-II,
Apo C-I, Apo A-II, serum amyloid A4 (SAA4), and
transthyretin (TTR) (Crofton et al., 1996; Hellgren et al.,
2008; Decker et al., 2013). The most common cause of

TABLE 1 | Personal basic information.

Control ISS GHD P (ISS
vs. control)

P (GHD
vs. control)

P (ISS
vs. GHD)

Number 30 31 29
Gender 16 boys 18 boys 20 boys

14 girls 13 girls 9 girls
Age (years) 8.5 ± 1.3 9.2 ± 2.5 7.9 ± 3.1 0.225 0.098 0.12
Height (cm) 133.4 ± 7.7 119.7 ± 13.0 113 ± 15.1 <0.001 <0.001 0.069
Body weight (kg) 29.5 ± 4.5 30.9 ± 12.5 28.9 ± 17.2 0.572 0.852 0.609
BMI (kg/m2) 16.5 ± 0.9 21 ± 5.9 20.9 ± 6.7 <0.001 <0.001 0.978

Control, normal height; n = 30; ISS, idiopathic short stature, n = 31; GHD, short stature caused by growth hormone deficiency, n = 29; age (years), height (cm), body weight (kg), BMI (kg/
m2): mean ± SD, two-tailed t test.

GRAPHICAL ABSTRACT | SS, short stature; SDS, standard deviation scores; Control, normal height, n=30; ISS, idiopathic short stature n=31; GHD, short
stature caused by growth hormone deficiency, n=29.
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monogenic short stature is the deficiency of the short-stature
homeobox-containing (SHOX) gene (Marchini et al., 2016;
Ponomarenko et al., 2020). A study revealed newer
mechanistic insights that identified c.1675G > A mutation
in receptor tyrosine kinase-like orphan receptor 2 (ROR2) in
patients with short stature (Gui et al., 2021). To date, key
molecular mechanisms underlying stunted growth and
childhood short stature remain equivocal. Meanwhile, a
number of children are troubled with SS; it is believed that
the knowledge of crucial metabolites will help in rapid
diagnosis. Moreover, physiological and pathological
mechanisms are also growing significantly and are reliable.
Metabonomics is a powerful biological tool commonly used in
disease phenotypic studies, which plays a vital role in several
aspects such as biomarker discovery, the origin and
development of a disease, and the personalized treatment
(Nicholson et al., 2005; Huang et al., 2013; Wishart, 2016).

In our study, the serummetabolic profiling of 60 children with
SS and 30 normal-height children was investigated using
UHPLC-Q-TOF-MS. We explored 10 significant metabolites
that are found in human serum in the different types of
childhood SS groups (ISS and GHD) compared to the control
children group. They were short peptides (Thr Val Leu Thr Ser
and Trp Ile Lys and), 9,10-DiHOME, 12-HETE, 12(13)-EpOME,
arachidonic acid methyl ester, glycerophospho-N-arachidonoyl
ethanolamine, curvulinic acid (2-acetyl-3,5-dihydroxyphenyl
acetic acid), nonanoic acid, and N’-(2,4-dimethylphenyl)-N-
methylformamidine. These metabolites regulate various
pathways, including arachidonic acid metabolism, short
peptides metabolism, purine metabolism, sphingolipid
signaling pathway, and sphingolipid metabolism in children’s
body. Our results explore new therapeutic target metabolites
based on metabonomics analysis. The key metabolites
discovered will be beneficial in rapid clinical diagnosis and
individualized treatment of patients with different types of
childhood SS.

MATERIALS AND METHODS

Sample Collection of Children With Short
Stature
All patients were recruited from the Fifth Affiliated Hospital of
Harbin Medical University. The Ethics Committee approved
the study of the Fifth Affiliated Hospital of Harbin Medical
University (KY2018003). In addition, the study to determine

FIGURE 1 | Metabolic profiling analysis in different types of childhood
short stature. (A) Score plot of the samples using the 3D-PCA model. (B)
Score plot of the samples using PLS-DA model. Control, normal height, n =
30; ISS, idiopathic short stature, n = 31; GHD, short stature of growth
hormone deficiency, n = 29. (C) OPLS-DA between control group and ISS
group. (D) Investigate the quality of the OPLS-DA model (control vs. ISS) by
RPT (response permutation testing). (E) OPLS-DA between GHD group and

(Continued )

FIGURE 1 | control group. (F) Investigate the quality of the OPLS-DA model
(GHD vs. control) by RPT (response permutation testing). Control, normal
height, n = 30; ISS, idiopathic short stature, n = 31; GHD, short stature of
growth hormone deficiency, n = 29. (G) OPLS-DA between ISS group and
GHD group. (H) Investigate the quality of the OPLS-DA model (ISS vs. GHD)
by RPT (response permutation testing). Control, normal height, n = 30; ISS,
idiopathic short stature, n = 31; GHD, short stature of growth hormone
deficiency, n = 29.
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the childhood short stature was diagnosed according to the
2015 edition of Chinese guidelines for childhood short stature
prevention and treatment. On the basis of the cause of SS, the
childhood short stature groups were strictly divided into two.
The two groups that are defined as ISS (31 SSs) and GHD (29
SSs) comprise the short stature children due to idiopathy or the
deficiency of growth hormone, respectively. The controls (30
children) were from physical examination screening.
Moreover, the serum for non-targeted metabonomics
analysis was collected from 60 SS children and 30 controls
from June 2018 to September 2019. Sample information is
summed up in Table 1.

Non-Targeted Metabonomics Analysis
of SSs
The chromatographic separation was performed by ultrahigh-
pressure liquid chromatography (UHPLC) (Agilent 1290,
United States). For purification, the chromatographic column
used was ACQUITY UPLC HSS T3 1.8 μm 2.1 × 100 mm
(Waters). The mobile phase included 0.1% formic acid in
water (part A) and 0.1% formic acid in acetonitrile (part B)
(Zhao et al., 2014). The gradient elution was 5% B kept for 1 min,
changed linearly to 10% B within 1 min, then changed linearly to
95% B within 12 min, held for 2 min, finally changed linearly to
5% Bwithin 1 min, and held for 3 min. The analytical column and
autosampler temperatures were 35 and 4°C, respectively. The
sample volume was 5 μL for each run. The column eluent was
directly analyzed from the MS system (Zhao et al., 2014).

In total, 200 µL of serum with four volumes of methanol/
acetonitrile (1:1, v/v) was extracted. All the samples were shaken
for 30 s and subjected to ultrasound for 10 min. Next, the mixture
was incubated at −20°C for 2 h to facilitate the precipitation of
protein. The serum supernatant was collected after 15 min of
centrifugation at 13,000 g and dried under vacuum and 4°C and
centrifuged before the MS test. The aliquots were reconstituted in
200 μL of acetonitrile/water (1:1) and were shaken for 30 s. Then
each sample supernatant after 15-min centrifugation at 13,000 g
was collected at a volume of 150 µL and analyzed by a UHPLC
system (Agilent 1290, United States) coupled with a Q-TOF
system (Agilent 6545, United States). The remaining sample
supernatants were mixed to make many quality control (QC)
samples. The QC samples were carried out after every 15 serum
samples.

Data were obtained with auto MS/MS mode from m/z 50-
1100. Collision energies for collision-induced dissociation were
20 and 40 V. MS parameters were set as follows: ion source dry
gas temperature was at 320°C, N2 gas flowwas 8 L/min, sheath gas
temperature was 350°C, sheath gas flow was 12 L/min, and ion
spray voltage was 4000 V (positive ion) and 3500 V (negative
ion), respectively.

Data Collection and Analysis
Data files from the Q-TOF-MS system were converted to the .abf
format using the Analysis Base File Converter software. Peak
detection, chromatogram deconvolution, and other data
processing used MSDIAL3.82 software and aligned with the

FIGURE 2 | Differential metabolites demonstrated by volcano plot and
heat map. (A–C) represent the metabolites that are downregulated, not
significant, or upregulated in different types of childhood short stature. The
abscissa is log2(FC), the left ordinate is −log10(p − value), and the right
ordinate is VIP (variable important in projection). (A) It presents volcano plot
ISS vs. control. (B) It presents volcano plot ISS vs. GHD. (C) It presents
volcano plot GHD vs. control. (D) It presents a heat map among ISS, GHD,
and control. Control, normal height, n = 30; ISS, idiopathic short stature, n =
31, GHD, short stature of growth hormone deficiency, n = 29.
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following parameters: alignment-MS1, tolerance −0.01Da, retention
time tolerance-0.2 min, identification accurate mass tolerance
(MS1)-0.005Da, (MS2)-0.05Da, and identification score cutoff
−60%. For the identification of key metabolites and metabolic
pathways following databases were used: HMDB (http://www.

hmdb.ca/), METLIN (http://metlin.scripps.edu/), Massbank
(http://www.massbank.jp), and KEGG (http://www.kegg.com/).

Multivariate statistical analysis was performed using SIMCA-
P software (version 14.1, Umetrics, Umea, Sweden). Unit
variance scaling followed partial least-squares discrimination

FIGURE 3 | Correlation studies of identified metabolites in childhood short stature. Positive and negative correlations are indicated in red and blue, respectively.
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analysis (PCA) and orthogonal partial least-squares discriminant
analysis (OPLS-DA), which were applied to distinguish three
groups (viz., controls, idiopathic short stature group, and growth
hormone deficiency group). A permutation test was used to check
the validity and the degree of overfitting for the model. The VIP
values of metabolites greater than 1 in non-targeted
metabolomics analysis, and all metabolites were performed
using the Wilcoxon Mann–Whitney test and identified various
metabolites. p < 0.05 was considered significant. Meanwhile, the
false discovery rate (FDR) was used for multiple comparisons (p <
0.10). The ratios of different metabolites between the average of
those in normal control samples and the two experimental groups
were calculated, and MeV version 4.5.1 software was used to
illustrate the relationship between the different metabolites. Raw
data are shown in Supplementary Table S1.

RESULTS

Metabonomics Analysis in Two Different
Types of Childhood Short Stature by
UHPLC-TOF-MS
To explore the critical metabolites in serum metabolism of
different types of childhood short stature, the metabolic
profiles of serum in different groups (ISS and GHD groups)
were analyzed by UHPLC-TOF-MS. Data were analyzed by
SIMCA-P software. 3D PCA (principal components analysis)
and PLS-DA (partial least-squares discrimination analysis) were
demonstrated (Figure 1A). Orthogonal PLS-DA (OPLS-DA)
was performed to explore further the risk metabolites in each
group (Figure 1B). A clear differentiation was shown between
the ISS and control groups, GHD and control groups, and ISS
and GHD groups (Figure S1). All OPLS-DA models were
reliable because none of the permutation tests had no
overfitting. Many critical metabolites and multiple metabolic
pathways had been explored in the serum of different types of
childhood short stature.

Visualization of Differential Metabolites
Using Volcano Plot and Heat Map
We investigated differential metabolites between the control
group and two types of short stature group (Figures 2A–C).
Compared with normal-height children, fourteen metabolites
were downregulated, and 53 were upregulated in ISS
(Figure 2A). Meanwhile, 50 metabolites were
downregulated, and 63 were upregulated in the short stature
of GHD (Figure 2C). Furthermore, we focused on 33
differential metabolites between the ISS and GHD groups
(Figure 2B), including 27 downregulated and five
upregulated metabolites. At the same time, the heat map
revealed differential expression of metabolites among the
control, ISS, and GHD groups. These findings revealed that
specific metabolites played significant roles in the progression
of different childhood SS.

Metabolite–Metabolite Correlation Analysis
Among Identified Metabolites
We performed Pearson correlation coefficient analysis to
understand further the interrelationship among identified
metabolites in childhood short stature. Figure 3 shows the
correlation between the top 50 differential metabolites. For
instance, Thr Val Leu Thr Ser, one of the oligopeptides, shows
a significant positive correlation with 2-aminobiphenyl and a
negative correlation with uric acid.

KEGG Pathway Enrichment Analysis
Figure 4 reveals that three pathways (viz., purine
metabolism, sphingolipid signaling pathway, and
sphingolipid metabolism) were significantly enriched in
childhood SS. In Figure 4A, the abscissa indicates rich
factor originated in the number of differential metabolites
in the corresponding metabolic pathway/the number of total
metabolites identified in the pathway. The larger the value of
the rich factor, the greater the degree of pathway enrichment.

FIGURE 4 | Pathway enrichment analysis. (A) It shows the bubble chart among ISS, GHD, and control groups. The abscissa is a rich factor (the detailed description
was shown in Result 3.4), and the left ordinate is the pathway. (B) It presents the bar chart of the three groups. The abscissa is the pathway, and the ordinate is
−log10(p − value). The blue line indicates a p-value threshold of 0.05, and the red line indicates a p-value threshold of 0.01.
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Colors are expressed on a linear scale from green to red with
p values gradually decreasing. In addition, the greater the
bubble, the more metabolites in the pathway. Bar charts in
Figure 4B show purine metabolism was the most
significantly enriched in the three groups.

Short Peptides Analysis
Short peptides include basic molecular information and are the
precursor to life. Researchers have recently developed a greater
interest in the field due to its unique features and rosy prospects
in innovative bio-therapies [25]. There are 18 short peptides with

FIGURE 5 |Other metabolites analysis in column configuration. Group N, normal height, n = 30; group A, ISS, idiopathic short stature, n = 31; group B, GHD, short
stature of growth hormone deficiency, n = 29. All data are mean ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001; two-tailed Mann–Whitney U test.
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visible differences between normal-height children (control) and
idiopathic short stature (ISS) in Figure 5. They are Arg Ala Glu
Lys, Arg Lys Glu, Arg Phe Val, Gly Leu Arg Val Phe, lle Phe Val
Lys, Leu Ala Thr Lys, Lys Leu Gln, Lys Leu Thr Ala Ala, Lys Pro
His, Lys Pro Lys, Lys Ser Gln Lys, Phe Ala Asn Lys, Ser Lys Phe,
Thr Arg Leu, Thr Asn Phe Asp, Thr Glu Leu Lys, Trp Ile Lys, Val
Ile Asp Lys. Similarly, 16 short peptides have shown a visible
difference between normal-height children (control) and short
stature caused by the GHD. They are Arg Ala Glu Lys, Arg Lys
Leu, Arg Phe Val, Glu Gln Gly, Leu Ala Thr Lys, Lys Leu Gln, Lys
Pro His, Lys Pro Lys, Lys Ser Gln Lys, Phe Ala Asn Lys, Ser Lys
Phe, Thr Asn Phe Asp, Thr Glu Leu Lys, Thr Val Leu Thr Ser, Trp
Ile Lys, and Val Ile Asp Lys. Furthermore, there are merely five
short peptides visibly different in ISS and GHD short stature
children. They are Arg Lys Leu, Glu Gln Gly, lle Phe Val Lys, Thr
Val Leu Thr Ser, and Trp Ile Lys.

We found that the short peptides Thr Val Leu Thr Ser and Trp
Ile Lys might significantly affect childhood short stature.

3.6 Arachidonic Acid Pathway Analysis
In children with idiopathic short stature or a growth hormone
deficiency, 9,10-DiHOME, 12-HETE, and 12 (13)-EpOME
significantly increased, whereas arachidonic acid methyl ester was
remarkably decreased (Figure 6). Glycerophospho-N-arachidonoyl
ethanolamine showed markedly elevated levels in children with
idiopathic short stature compared to normal-height children or
children with growth hormone deficiency. Thus, these metabolites
refined our understanding of SS in the arachidonic acid pathway.

Acids and Acid Amides Metabolites
Analysis
To better understand differential metabolites in pubertal children
with short stature, acids and acid amides were also analyzed to find
the key metabolites that could differentiate between the normal-
height group and SS (Figure 7). Our results demonstrated that the
key metabolites were curvulinic acid, docosahexaenoic acid ethyl
ester, nonanoic acid, stearamide, capsidiol, eicosanoyl-EA, N’-(2,4-
dimethylphenyl)-N-methylformamidine, N, N-diisopropyl-3-
nitrobenzamide, and palmitic amide. Moreover, the compounds
such as alpha-tocotrienol, benzoic acid, curvulinic acid, linoleic acid-
biotin, nonanoic acid, and N’-(2,4-dimethylphenyl)-N-
methylformamidine could discriminate ISS group from normal
height subjects or children with the GHD.

It was observed that some metabolites could distinguish
subtypes of childhood SS, which were (R)-(+)-2-pyrrolidone-5-
carboxylic acid, alpha-tocotrienol, benzoic acid, curvulinic acid,
linoleic acid-biotin, nonanoic acid, and N’-(2,4-dimethylphenyl)-
N-methylformamidine.

Analysis of Other Metabolites
While screening differential metabolites, we investigated some
interesting compounds like uric acid, lipids, fructose, and others
in (Figure 8). A series of metabolites (Yusupov et al., 2017) could
differentiate between the normal-height group and childhood SS,
that is, N, N-dicyclohexylurea, N-fructosyl isoleucine, N-fructosyl
phenylalanine, N-fructosyl tyrosine, methylergonovine,

FIGURE 6 | Arachidonic acid pathway analysis in column configuration. Group N, normal height, n = 30; group A, ISS, idiopathic short stature, n = 31; group B,
GHD, the short stature due to growth hormone deficiency, n = 29. All data are mean ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001; two-tailed Mann–Whitney U test.
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hypoxanthine, and sphinganine. Moreover, phosphatidylcholine
lyso 16:0 could discriminate ISS from normal-height subjects or
children with growth hormone deficiency. We also discovered some
metabolites could identify subtypes of childhood SS, which were
parabanic acid, FA 34:6 (16Z,19Z,22Z,25Z,28Z,31Z), and FA32:6
(14Z,17Z,20Z,23Z,26Z,29Z).

DISCUSSION

The most significant difference between the species is the size of
the individual (Klingseisen and Jackson, 2011). However, the
mechanisms behind childhood short stature’s pathogenic
processes remain poorly understood. Early diagnosis and
identification of key metabolites of childhood SS will lead to
the reasonable treatment and understanding of the mechanism
behind the progression of the disease. Our study investigates the
key metabolites between different types of childhood SS and
normal height children by UHPLC-MS-MS.

Our study revealed that purine metabolism, sphingolipid
signaling pathway, and sphingolipid metabolism were
significantly enriched in ISS, childhood SS with GHD, and
normal-height children (Figure 4). Several studies involving the
anti-aging gene SIRT1 have suggested that SIRT1 is involved in
regulating growth hormone and sphingolipid metabolism with
relevance in neurodegeneration. Therefore, it has been suggested
that SIRT1 plays a critical role in the hypothalamic–pituitary axis,
regulation of metabolism, aging, and longevity (Satoh et al., 2011;
Yamamoto and Takahashi, 2018).

Some studies have observed that purine metabolism plays a
vital role in energy metabolism (Esther et al., 2015). Since uric
acid is the final product and an essential index of purine
metabolism (Si et al., 2020), we found that increased uric acid
could discriminate idiopathic short stature among the ISS, GHD,
and control groups (Figure 8). Moreover, hypoxanthine could
distinguish childhood SS from normal height children, as
observed in Figure 8. Changed sphingolipid metabolism might
result in sensory neuron damage (Chen et al., 2015). In recent
years, some evidence has also suggested that sphingolipid
dysregulation plays a pivotal role in the pathogenesis of many
brain disorders (Bourgognon et al., 2018). Growth hormone
secreted from the pituitary gland is closely related to
childhood SS. The primary reasons for GH secretion level
changes with age were associated with the transformation in
the pituitary gene expression of GH and the GHRH receptor
together with a decrease in hypothalamic GHRH (Sonntag et al.,
1980; Corpas et al., 1993; Chapman et al., 1997; Degli Uberti et al.,
1997; Russell-Aulet et al., 1999; Rosen, 2000; Frutos et al., 2007;
Weigent, 2013). Our results showed that sphinganine could
distinguish between childhood SS and normal height children.
In addition, sphingolipid metabolites have also been shown to
regulate arachidonic acid (AA) metabolism (Zhang et al., 2021).
As shown in Figure 6, similarly, our results have revealed that the
AA pathway contributes to childhood SS development and
progression.

FIGURE 7 | Acids and acid amides metabolite(s) analysis in column
configuration. Group N, normal height, n = 30; group A, ISS, idiopathic short
stature, n = 31; group B, GHD, short stature of growth hormone deficiency,
n = 29. All data are mean ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001; two-
tailed Mann–Whitney U test.
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Short peptides play an important role in the immune system and
are responsible for transmitting most immunological information
(Parhiz et al., 2013). Some short peptides (2–20 amino acids) are
partially obtained by enzymatic hydrolysis of proteins and are

important bioactive peptides (Zhang et al., 2019). In recent years,
short peptides have been of considerable interest in the branch of
biology, chemistry, and medicine for their unique structural and
functional diversity (Apostolopoulos et al., 2021). Reports showed that

FIGURE 8 |Other metabolites analysis in column configuration. Group N, normal height, n = 30; group A, ISS, idiopathic short stature, n = 31; group B, GHD, short
stature of growth hormone deficiency, n = 29. All data are mean ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001; two-tailed Mann–Whitney U test.
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short peptides have relevance in many diseases, including
neurodegenerative diseases (Jang et al., 2016), Alzheimer’s (Perez-
Garmendia and Gevorkian, 2013; Soudy et al., 2019), and rheumatoid
arthritis (Turesson et al., 2007; Ruiz-Ortiz De Arrizabaleta et al., 2011)
and also has many therapeutic effects (New et al., 2014; Tatman et al.,
2016; Baig et al., 2018; Horsley et al., 2020). Our results demonstrated
that 18 short peptides could visibly differentiate between the control
and ISS groups, as well as 16 short peptides could clearly distinguish
the control from the GHD group, and six short peptides can
distinguish ISS from the GHD group (Figure 5). These findings
necessitate further investigation andmay serve as the starting point for
developing new therapeutics for childhood SS.

Our study also detected a number of acids, acid amides, lipids,
fructose, and other metabolites, indicating their involvement in the
process of childhood SS (Figures 6-8). The 16metabolites that could
differentiate between the normal height group and childhood SS
were curvulinic acid, docosahexaenoic acid ethyl ester, nonanoic
acid, stearamide, capsidiol, eicosanoyl-EA, N’-(2,4-dimethylphenyl)-
N-methylformamidine, N,N-diisopropyl-3-nitrobenzamide,
palmitic amide, N,N-dicyclohexylurea, N-fructosyl isoleucine,
N-fructosyl phenylalanine, N-fructosyl tyrosine,
methylergonovine, hypoxanthine, and sphinganine. Furthermore,
the seven compounds that could discriminate ISS from normal-
height subjects or childhood SS with GHD were alpha-tocotrienol,
benzoic acid, curvulinic acid, linoleic acid-biotin, nonanoic acid, N’-
(2,4-dimethylphenyl)-N-methylformamidine, and
phosphatidylcholine lyso 16:0.

Our study has also revealed that 10 metabolites could distinguish
subtypes of childhood SS, which were (R)-(+)-2-pyrrolidone-5-
carboxylic acid, alpha-tocotrienol, benzoic acid, curvulinic acid,
linoleic acid-biotin, nonanoic acid, parabanic acid, FA 34:6
(16Z,19Z,22Z,25Z,28Z,31Z) FA32:6 (14Z,17Z,20Z,23Z,26Z,29Z),
and N’-(2,4-dimethylphenyl)-N-methylformamidine. However, in

order to achieve a clear distinction and characterization,
optimization of potential biomarker analysis is the most
important to understand childhood SS. In our study, the three
potential biomarkers, curvulinic acid (2-acetyl-3,5-
dihydroxyphenyl acetic acid), nonanoic acid, and N’-(2,4-
dimethylphenyl)-N-methylformamidine had apparent changes
among the three groups. It has been observed that curvulinic
acid originated from the microbial metabolism of polyphenols is
widely distributed in organisms (Vázquez-Manjarrez et al., 2020).
Polyphenols have been shown to play an essential part in plant
development (participating in plant hormone signaling),
reproduction, and defense (protecting from pathogens) (Agati
et al., 2012; Agati et al., 2013; Zhao et al., 2017). Nonanoic acid
is a species of fatty acid and is a group of compounds that can
potentially be a consequence of increased cell membrane lysis
(Hillyer et al., 2016; Yusupov et al., 2017; Lawson et al., 2019).
Some studies have also demonstrated that nonanoic acid had a
particular influence on the Poria placenta growth (Kozicki et al.,
2019). Some genes can degrade an array of methylated compounds
(dimethylamine, methylamine, and N’-(2,4-dimethylphenyl)-N-
methylformamidine) to produce either formaldehyde or methyl
groups as the intermediates (Huang et al., 2019). Consequently,
our study revealed that these three potential biomarkers played vital
roles in the development of childhood SS.

There are some limitations of this study that need to be focused
and discussed. Even though there were relatively equal numbers of
gender and age in each childhood SS group, we were underpowered
to evaluate the associated diseases (except for injuries), dietary
supplements, and diet differences. Furthermore, the batch
samples used for screening key metabolites were relatively modest
(normal height, n = 30; ISS, n = 31; GHD, n = 29), although the
number of samples met the human metabonomics requirements.
Nevertheless, our observations need to be replicated in an
independent and enough quantity samples in the future.
Moreover, childhood SS could be primarily judged by body
height comparison table and instruments (test bone age). We
noted that our study was intended to illustrate complementary
methods that might improve clinical prediction and help
understand childhood SS progression.

CONCLUSION

In our study, the metabolite changes in ISS and short stature
caused by GHD were investigated utilizing UHPLC-Q-TOF-
MS-based metabonomics (Figure 9). Our data have revealed
that three pathways (viz., purine metabolism, sphingolipid
signaling pathway, and sphingolipid metabolism) were
significantly enriched in childhood SS. Moreover, two short
peptides (Thr Val Leu Thr Ser and Trp Ile Lys) may play a vital
role in childhood SS. In addition, altered metabolites were
involved in the metabolism of 9,10-DiHOME, 12-HETE,
and 12 (13)-EpOME, arachidonic acid methyl ester,
glycerophospho-N-arachidonoyl ethanolamine, curvulinic
acid (2-acetyl-3,5-dihydroxyphenyl acetic acid), nonanoic
acid, and N’-(2,4-dimethylphenyl)-N-methylformamidine.
Our findings contribute to the understanding of molecular

FIGURE 9 | Control, normal height, n = 30; ISS, idiopathic short stature,
n = 31; GHD, short stature of growth hormone deficiency, n = 29. Significance
was increased relative to the controls indicated in red, and significance was
decreased relative to the controls indicated in blue. All data are of the
two-tailed Mann–Whitney U test.
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metabolic processes in childhood short stature and may
provide potential clues for the underlying mechanisms that
will help treat childhood short stature.
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