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Abstract
Objectives To develop and validate a radiomics model for predicting 2019 novel coronavirus (COVID-19) pneumonia.
Methods For this retrospective study, a radiomicsmodel was developed on the basis of a training set consisting of 136 patients with
COVID-19 pneumonia and 103 patients with other types of viral pneumonia. Radiomics features were extracted from the lung
parenchyma window. A radiomics signature was built on the basis of reproducible features, using the least absolute shrinkage and
selection operator method (LASSO). Multivariable logistic regression model was adopted to establish a radiomics nomogram.
Nomogram performance was determined by its discrimination, calibration, and clinical usefulness. The model was validated in 90
consecutive patients, of which 56 patients had COVID-19 pneumonia and 34 patients had other types of viral pneumonia.
Results The radiomics signature, consisting of 3 selected features, was significantly associatedwith COVID-19 pneumonia (p< 0.05) in
both training and validation sets. Themultivariable logistic regressionmodel included the radiomics signature and distribution;maximum
lesion, hilar, and mediastinal lymph node enlargement; and pleural effusion. The individualized prediction nomogram showed good
discrimination in the training sample (area under the receiver operating characteristic curve [AUC], 0.959; 95% confidence interval [CI],
0.933–0.985) and in the validation sample (AUC, 0.955; 95%CI, 0.899–0.995) and good calibration. The mixed model achieved better
predictive efficacy than the clinical model. Decision curve analysis demonstrated that the radiomics nomogram was clinically useful.
Conclusions The radiomics model derived has good performance for predicting COVID-19 pneumonia and may help in clinical
decision-making.
Key Points
• A radiomics model showed good performance for prediction 2019 novel coronavirus pneumonia and favorable discrimination
for other types of pneumonia on CT images.

• A central or peripheral distribution, a maximum lesion range > 10 cm, the involvement of all five lobes, hilar and mediastinal lymph
node enlargement, and no pleural effusion is associated with an increased risk of 2019 novel coronavirus pneumonia.

• A radiomics model was superior to a clinical model in predicting 2019 novel coronavirus pneumonia.
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Introduction

Since December 2019, a succession of cases of pneumonia,
now known as novel coronavirus–infected pneumonia, has
been observed in Wuhan, Hubei Province, China. On
January 7, 2020, the 2019 novel coronavirus (COVID-19)
was identified as the causative agent, based on virus typing
[1, 2]. The disease is now officially named COVID-19 by the
World Health Organization. Recent studies revealed that
COVID-19 is related to bat-SL-CoV ZC45 and bat-SL-CoV
ZXC21 [2], and can spread from human to human, mainly
through respiratory droplets, physical contact, and the oral-
fecal route [3]. As of February 29, 2020, 79,394 cases had
been confirmed, with 2838 deaths in China alone. At present,
the infection has spread across China and other countries
around the world [4–6].

Definitive diagnosis of COVID-19 pneumonia requires vi-
ral nucleic acid detection in throat swabs, sputum, lower respi-
ratory tract secretions, or blood; while the specificity of this test
is strong, its sensitivity is poor [7], and most patients show
multiple negative results. Furthermore, in most patients, lung
imaging findings are observed earlier than clinical symptoms,
which makes imaging examinations crucial for screening and
an accurate diagnosis [8]. Chest CT, especially high-resolution
CT (HRCT), is now a routine procedure in patients with
COVID-19 pneumonia at many institutions, because it enables
rapid scanning, acquisition of thin sections, and multiplanar
reconstruction. However, the reported CT findings of
COVID-19 pneumonia were extremely similar with common
types of viral pneumonia [8–14]. From our experience, some
patients with positive CT findings had negative initial results
by viral nucleic acid detection before the confirmation of
COVID-19 pneumonia. This led to treatment selection diffi-
culties, delayed treatment, and even misdiagnosis as common
types of viral pneumonia, especially in the non-epidemic area.

Machine learning and radiomics provides a non-invasive
method for the prediction of COVID-19 pneumonia and can
assist radiologists and physicians in performing a quick diag-
nosis especially when the health system is overloaded.
Currently, there are few studies on predicting COVID-19
pneumonia using machine learning or radiomics [15–17].
Hence, the primary objective of this study was to develop
and validate a radiomics model for predicting COVID-19
pneumonia in order to help clinicians in quick and accurate
diagnosis.

Methods

Patients

This retrospective cross-sectional study was reviewed and ap-
proved by the Biomedical Research Ethics Committee of two

institutions, and the requirement for patient consent was
waived.

The patient enrollment process and excluded criterion for
this study are showed in Fig. 1. We retrospectively analyzed
329 patients at two different hospitals in China. A total of 185
consecutive patients with COVID-19 pneumonia, 97 men
(mean age, 53.9 years; age range, 26–88 years) and 88 women
(mean age, 58.3 years; age range, 22–83 years), were included
atWuhan Huoshenshan hospital between February 11 and 25,
2020. Seven consecutive patients with COVID-19 pneumo-
nia, 5 men (mean age, 47.8 years; age range, 28–75 years) and
2 women (mean age, 59 years; aged 47 and 71), were included
at Changhai hospital between January 25 and February 9,
2020. One hundred thirty-seven consecutive patients with oth-
er types of viral pneumonia, 72 men (mean age, 54.9 years;
age range, 19–92 years) and 65 women (mean age, 52.2 years;
age range, 20–95 years), were included at Changhai hospital
between April 2011 and January 2020. Viral nucleic acid de-
tection was used to confirm COVID-19 pneumonia and the
other types of viral pneumonia. All patients were divided into
training set and validation set. The prediction model was de-
veloped for a training set that consisted of 136 patients with
COVID-19 pneumonia who had positive initial result by viral
nucleic acid detection, and 103 patients with the other types of
viral pneumonia. Ninety consecutive patients constituted an
independent validation sample of 56 patients with COVID-19
pneumonia and 34 patients with other types of viral pneumo-
nia. Fifty-six patients with COVID-19 pneumonia included 49
patients who had initial negative result by viral nucleic acid
detection but positive result on CT fromWuhan Huoshenshan
hospital and 7 patients who came from Changhai hospital. All
clinical results were extracted from the patients’ electronic
medical records in the two-hospital information system. All
patients with COVID-19 pneumonia were divided into four
clinical types including mild, moderate, severe, and critical
types based on the clinical classification of COVID-19 pneu-
monia from the 7th edition of the National Commission of
China classification [18].

CT scanning

Pulmonary CT was performed using 64-, 256-, and 128-slice
multidetector row CT scanners (64: Somatom, Siemens
Healthcare; 256: Brilliance-16P, Philips Healthcare; 128:
uCT 760, United Imaging Healthcare). CT scans were
obtained with the following parameters: 120 kV, adaptive
tube current, a matrix of 512 × 512, and a beam collimation
of 64 × 0.6 mm2, 256 × 0.6 mm2, and 128 × 0.6 mm2.
Non-enhanced CT at a slice thickness of 1.0 mm, 1.0 mm,
and 0.625 mm was performed, respectively. Images were
captured at window settings that allowed viewing of the
lung parenchyma (window level and width, − 600 to − 700
HU and 1200–1500 HU, respectively) and the mediastinum
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(window level and width, 20–40 HU and 400 HU, respec-
tively). The scanning range covered the area from the
height level of the superior aperture of the thorax to the
diaphragm.

Imaging analysis

We used the original cross-sectional images for analysis. All
images were analyzed by two chest radiologists (reader 1 and
reader 2, both with 8 years of experience) whowere blinded to
the clinical details. When their results were not consistent, the
final results were determined by consensus.

All lesions were evaluated for the following parame-
ters: (a) location: right, left, or bilateral lungs; (b) distri-
bution: peripheral, central, or diffuse; (c) attenuation:
ground glass attenuation including ground glass opacity
(GGO) and crazy-paving pattern, consolidation, and
mixed patterns of ground glass attenuation and consolida-
tion [19, 20]; (d) maximum lesion range: ≤ 5 cm, 5–
10 cm, > 10 cm, only for the biggest one; (e) lobe in-
volvement: the five lung lobes were divided into catego-
ries of ≤ 2 lobes, 2–4 lobes, and = 5 lobes; (f) number of
lesions: 1, 2, 3, or more; (g) air bronchogram; (h) hilar
and mediastinal lymph nodes enlargement: short-axis di-
ameter of a lymph node > 10 mm [21]; and (i) pleural
effusion.

Radiomics workflow

The radiomics workflow included (a) image segmentation, (b)
feature extraction, (c) feature reduction and selection, and (e)
predictive model building.

In this study, we used the artificial intelligence software
(uAI-Discover-NCP R001, United Imaging Healthcare,

China) to segment images and extract the radiomics fea-
tures from the lung parenchyma window. A total of 1409
2D and 3D features from primary lesion were extracted.
Feature selection comprised three steps: variance analysis,
spearman correlation analysis, and least absolute shrinkage
and selection operator method (LASSO) logistic regression
algorithm. This method has been shown to be effective in
prior radiomics studies [22]. A retrospective power analy-
sis was performed. The sequential method of Bonferroni
correction was applied to adjust the baseline significance
level (α = 0.05) for multiple testing bias [23, 24]. Finally,
radiomics scores (Rad-scores) were calculated for each pa-
tient via a linear combination of selected features that were
weighted by their respective coefficients. More informa-
tion about radiomics feature extraction methodology is re-
ported in Supplementary digital content 1.

We developed a clinical model using significantly as-
sociated CT characteristics including location, distribu-
tion, attenuation, maximum lesion range, lobe involve-
ment, number of lesions, air bronchogram, hilar and me-
diastinal lymph node enlargement, and pleural effusion.
Consequently, the mixed model, which combined the
Rad-score and significantly associated CT characteristics,
was developed and we hoped to improve the accuracy of
predicting COVID-19 pneumonia.

Statistical analysis

Normal distribution and variance homogeneity tests were
performed on all continuous variables; those with a nor-
mal distribution are expressed as the mean and standard
deviation while those with non-normal distributions are
expressed as medians and ranges. First, we examined
group differences in all variables. The Kruskal-Wallis H

n = 546

n = 1135

Archive data of patients who were suspected pneumonia 
between   between April 2011 and February 2020 from 
 Changhai hospital

n = 331

589 excluded:
(a) patients with bacterial pneumonia confirmed by laboratory findings (n = 589)

194 excluded:
(a) patients had normal lung parenchyma  in HRCT images (n = 20)        
(b) patients presented non-infectious lung parenchyma lesions in HRCT (n = 96)
(c) patients had not undergone HRCT (n=70)
(d) Time-interval of CT and viral nucleic acid dtection was longer than 7 days (n=8)

215 excluded:
(a) patients were not confirmed by viral nucleic acid detection (n = 215)

n=103

Training set
between April 2011 to December 2017

n=34

Validation set
between January 2018 to January 2020

n = 461

Archive data of patients who were suspected COVID-19
pneumonia between between February 11 and 25, 2020
from Wuhan Huoshenshan hospital

n = 285

n = 185

100 excluded:
(a) patients had normal lung parenchyma  in HRCT images (n = 8)        
(b) patients presented non-infectious lung parenchyma lesions in HRCT (n = 16)
(c) patients had not undergone HRCT (n=55)
(d) Time-interval of CT and viral nucleic acid dtection was longer than 7 days
(n=21)

176 excluded:
(a) patients were not confirmed by viral nucleic acid detection (n = 176)

n=136
Training set

n=56
Validation set

n = 7
COVID-19 pneumonia

n = 137
Other types of viral pneumonia

n=136

Initial positive result by viral nucleic 
acid detection

n=49

Initial negative result by viral nucleic 
acid detection

Fig. 1 The patient enrolment process for this study. COVID-19: 2019 novel coronavirus
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test (skewed distribution) and chi-square tests (categorical
variables) were used to determine statistical differences
between the two groups. Second, univariable regression
analysis was applied to estimate the effect size of the
relationships between all variables and the two groups of
viral pneumonia. The group with other types of viral
pneumonia was considered as a reference group. Third,
multivariable logistic regression analysis was conducted
to develop a model for predicting COVID-19 pneumonia
in the primary sample, and a nomogram was then con-
structed. The discrimination performance of established
models was quantified by the receiver operating charac-
teristic curve. Area under the curve (AUC) estimates in
the prediction models were compared using the Delong

non-parametric approach [25]. Calibration curves were
plotted via bootstrapping with 500 resamples to assess
the calibration of the radiomics model, accompanied by
the Hosmer-Lemeshow goodness-of-fit test. The perfor-
mance of the radiomics model was then tested in an inde-
pendent validation sample by using the formula derived
from the training set. Finally, to estimate the clinical use-
fulness of the nomogram, decision curve analysis (DCA)
was performed by calculating the net benefits for a range
of threshold probabilities.

A two-tailed p value less than 0.05 was considered statis-
tically significant. All analyses were performed with R (R
version 3.3.3; R Foundation for Statistical Computing;
http://www.r-project.org).

Fig. 2 Radiomics feature selection by using a parametric method, the
least absolute shrinkage and selection operator (LASSO). a Selection of
the tuning parameter (λ) in the LASSOmodel via 10-fold cross-validation
based on minimum criteria. Binomial deviances from the LASSO regres-
sion cross-validation procedure were plotted as a function of log (λ). The
y-axis indicates binomial deviances. The lower x-axis indicates the log
(λ). Numbers along the upper x-axis represent the average number of
predictors. Red dots indicate average deviance values for eachmodel with
a given λ, and vertical bars through the red dots show the upper and lower
values of the deviances. The vertical black lines define the optimal values

of λ, where the model provides its best fit to the data. The optimal λ value
of 0.1059 with log (λ) = − 2.25 was selected. b LASSO coefficient pro-
files of the 133 texture features. The dotted vertical line was plotted at the
value selected using 10-fold cross-validation in a. The three resulting
features with non-zero coefficients are indicated in the plot. c Combo
chart of three radiomics features selected by LASSO regression and
radiomics score. Combo chart included box plot, density plot, and dot
plot. 25th and 75th percentiles connecting lines between groups. COVID-
19: 2019 novel coronavirus
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Results

Clinical and CT characteristics

One hundred ninety-two (58.36%) and 137 (41.64%) of
the patients in the study sample were diagnosed with
COVID-19 pneumonia and other viral types of pneumo-
nia, respectively. The 192 patients with COVID-19
pneumonia included 141 moderate cases (73.43%) and
51 severe cases (26.57%) based on the clinical classifi-
cation of COVID-19 pneumonia from the 7th edition of
the National Commission of China classification [18].
The 137 patients with other types of viral pneumonia
included 40 cases (29.20%) of Epstein-Barr virus infec-
tions, 29 cases (21.17%) of cytomegalovirus infections,
three cases (2.19%) of adenovirus infections, and 65
cases (47.44%) of influenza infections. Among the

clinical and imaging characteristics that we investigated,
we found important differences in smoking history,
presence of cough in the validation set, lymphocyte ra-
tios, C-reactive protein (CRP) levels, distribution in the
training and total set, maximum lesion range in the
training and total set, lobes involvement in the valida-
tion and total set, hilar and mediastinal lymph node
enlargement in the training and total set, and pleural
effusion in the training and total set between patients
with COVID-19 pneumonia and those with other types
of viral pneumonia (p < 0.05). The patient characteristics
are shown in Table 1.

Radiomics analysis

Out of 1409 total extracted features, 1276 were exclud-
ed which included low intragroup variance (n = 708) and

Fig. 3 Radiomics feature maps of the three selected features and
radiomics scores. a, b 60-year-old woman with 2019 novel coronavirus
(COVID-19) pneumonia. Three-dimensional volume-rendered recon-
struction and CT image of lung parenchyma automatically label by arti-
ficial intelligence software showing multi-focal crazy-paving pattern and
consolidation in the both inferior lobes. c, d 37-year-old woman with
influenza infection. Three-dimensional volume-rendered reconstruction
and CT image of lung parenchyma automatically label by artificial

intelligence software showing crazy-paving pattern and consolidation in
the right inferior lobe (e) The comparison between 2019-nCoV pneumo-
nia and influenza infection of the above two patients. Wavelet-
HHL.firstorder.RootMeanSquared, wavelet-HHL.glcm.Correlation, and
wavelet-LLL.firstorder.10. Percentile and radiomics score were − 0.980,
0.434, − 1.243, and 1.722, and 0.415, − 1.001, 2.107, and − 0.711,
respectively
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Table 2 The result of univariate analysis

Variables Training set Validation set Total

OR (95% CI) p value OR (95% CI) p value OR (95% CI) p value

Sex, n (%)

Male 1.0 (reference) 1.0 (reference) 1.0 (reference)

Female 1.08 (0.65, 1.80) 0.768 0.75 (0.32, 1.76) 0.510 0.98 (0.63, 1.52) 0.932

Age, median (range), years 1.01 (0.99, 1.02) 0.254 1.01 (0.98, 1.04) 0.434 1.01 (1.00, 1.02) 0.170

Smoking history, n (%)

No 1.0 (reference) 1.0 (reference) 1.0 (reference)

Yes 0.42 (0.17, 0.99) 0.048 0.21 (0.06, 0.76) 0.017 0.33 (0.16, 0.68) 0.003

Fever, n (%)

No 1.0 (reference) 1.0 (reference) 1.0 (reference)

Yes 3.32 (1.67, 6.57) 0.0006 3.37 (0.91, 12.54) 0.070 3.33 (1.81, 6.10) 0.0001

Cough, n (%)

No 1.0 (reference) 1.0 (reference) 1.0 (reference)

Yes 1.05 (0.56, 1.96) 0.885 9.64 (2.47, 37.52) 0.001 1.70 (0.98, 2.93) 0.058

WBC, n (%)

Decreased 1.0 (reference) 1.0 (reference) 1.0 (reference)

Normal 0.13 (0.02, 1.02) 0.052 2.32 (0.37, 14.70) 0.371 0.46 (0.14, 1.47) 0.187

Increased 0.30 (0.03, 2.83) 0.294 NA 1.35 (0.33, 5.58) 0.681

Lymphocyte, n (%)

Decreased 1.0 (reference) 1.0 (reference) 1.0 (reference)

Normal 2.58 (1.49, 4.46) 0.0007 3.71 (1.49, 9.23) 0.005 2.85 (1.78, 4.55) < 0.0001

Increased 0.33 (0.09, 1.25) 0.103 NA 0.34 (0.09, 1.30) 0.115

CRP, n (%)

Normal 1.0 (reference) 1.0 (reference) 1.0 (reference)

Increased 0.38 (0.21, 0.68) 0.001 0.36 (0.14, 0.92) 0.033 0.37 (0.22, 0.61) 0.0001

Location, n (%)

Right lung 1.0 (reference) 1.0 (reference) 1.0 (reference)

Left lung 1.40 (0.11, 18.62) 0.799 0.00 (0.00, Inf) 0.992 0.90 (0.11, 7.31) 0.918

Bilateral lungs 0.91 (0.34, 2.49) 0.860 2.27 (0.63, 8.11) 0.209 1.28 (0.59, 2.80) 0.533

Distribution, n (%)

Central or peripheral 1.0 (reference) 1.0 (reference) 1.0 (reference)

Diffuse 0.21 (0.10, 0.42) < 0.0001 0.47 (0.17, 1.26) 0.133 0.27 (0.15, 0.47) < 0.0001

Attenuation, n (%)

Ground glass shape 1.0 (reference) 1.0 (reference) 1.0 (reference)

Consolidation 1.58 (0.92, 2.72) 0.099 0.65 (0.25, 1.66) 0.365 1.25 (0.79, 2.00) 0.341

Maximum lesion range, n (%)

≤ 5 cm 1.0 (reference) 1.0 (reference) 1.0 (reference)

5–10 cm 1.29 (0.70, 2.39) 0.421 0.56 (0.19, 1.63) 0.288 1.03 (0.61, 1.75) 0.902

> 10 cm 2.49 (1.18, 5.24) 0.016 2.50 (0.54, 11.62) 0.242 2.43 (1.25, 4.70) 0.009

Number of lesions, n (%)

1–2 1.0 (reference) 1.0 (reference) 1.0 (reference)

≥ 3 0.99 (0.22, 4.52) 0.990 1.69 (0.23, 12.57) 0.610 1.20 (0.36, 4.02) 0.768

Lobe involvement, n (%)

≤ 4 1.0 (reference) 1.0 (reference) 1.0 (reference)

5 1.54 (0.87, 2.71) 0.137 4.12 (1.63, 10.43) 0.003 2.03 (1.25, 3.29) 0.004

Air bronchogram, n (%)

No 1.0 (reference) 1.0 (reference) 1.0 (reference)

Yes 0.93 (0.55, 1.59) 0.799 0.70 (0.29, 1.68) 0.429 0.86 (0.55, 1.36) 0.528
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poor correlation with COVID-19 pneumonia (n = 568).
Eventually, 133 radiomics features were obtained.
Eventually, 133 radiomics features were obtained. They
were further reduced to 3 by using the LASSO regular-
ization method (Fig. 2a, b). Three feathers by LASSO
regression were still significantly associated with
COVID-19 pneumonia after Bonferroni correction.
Finally, the radiomics signature was constructed, and
the radiomics score was calculated by using the formula
(Formula 1). The Rad-scores of COVID-19 pneumonia
were higher than the other types of viral pneumonia
(p < 0.001) (Figs. 2c and 3).

Radiomics score ¼ 0:106−1:08807*wavelet

−HHL:firstorder:RootMeanSquared

þ 0:18524*wavelet−HHL:glcm:Correlation

−0:19401*wavelet−LLL:firstorder:10Percentile
ð1Þ

Univariable analysis of each parameter

The results of our univariable analysis are shown in
Table 2. Clinical characteristics, including smoking

history, fever in the training and total set, cough in
the validation set, lymphocyte (normal group), and
CRP were significantly associated with COVID-19
pneumonia. As for imaging characteristics in the total
set, distribution, maximum lesion range > 10 cm, in-
volvement of 5 lobes, presence of hilar and mediastinal
lymph node enlargement, and no pleural effusion were
significantly associated with COVID-19 pneumonia.

Apparent performance of clinical model

The multivariable logistic regression analysis included
distribution, maximum lesion, hilar and mediastinal
lymph node enlargement , and pleural effusion
(Table 3). The final clinical model yielded AUCs of
0.819 (95% confidence interval [CI], 0.765–0.873) and
0.626 (95% CI, 0.502–0.749) in the training and valida-
tion samples, respectively (Fig. 4). The sensitivity, spec-
ificity, and accuracy of the model for the training sam-
ple were 81.6%, 70.9%, and 0.770, respectively, where-
as those of the validation sample were 76.8%, 52.9%,
and 0.678, respectively.

Table 2 (continued)

Variables Training set Validation set Total

OR (95% CI) p value OR (95% CI) p value OR (95% CI) p value

Hilar and mediastinal lymph nodes enlargement, n (%)

No 1.0 (reference) 1.0 (reference) 1.0 (reference)

Yes 5.02 (2.60, 9.68) < 0.0001 1.16 (0.47, 2.87) 0.745 3.19 (1.89, 5.36) < 0.0001

Pleural effusion, n (%)

No 1.0 (reference) 1.0 (reference) 1.0 (reference)

Yes 0.39 (0.20, 0.75) 0.005 0.64 (0.21, 1.97) 0.439 0.44 (0.25, 0.78) 0.005

WBC, white blood cell; CRP, C-reactive protein; ground glass shape, included ground glass opacity and crazy-paving pattern; OR, odds ratio; CI,
confidence interval

Table 3 Risk factors for novel coronavirus pneumonia

Variable Clinical model Mixed model

OR (95% CI) p value OR (95% CI) p value

Diffuse distribution 0.10 (0.04, 0.24) 0.00001 0.04 (0.01, 0.22) 0.0002

Maximum lesion range 5–10 cm 2.58 (1.12, 5.90) 0.025 1.84 (0.49, 6.97) 0.368

Maximum lesion range > 10 cm 7.14 (2.58, 19.73) 0.0002 5.16 (1.05, 25.28) 0.043

Hilar and mediastinal lymph nodes enlargement 7.70 (3.57, 16.63) 0.0001 3.91 (1.22, 12.49) 0.022

Presence of pleural effusion 0.26 (0.11, 0.61) 0.002 0.39 (0.10, 1.49) 0.170

Radiomics score NA NA 9.06 (5.01, 16.37) 0.00001

OR, odds ratio; CI, confidence interval
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Development, performance, and validation of
prediction models

Logistic regression analysis identified the Rad-score and
4 characteristics of the clinical model (Table 3). A
mixed model was developed and presented as a nomo-
gram (Fig. 5a). The mixed model showed the highest
discrimination between COVID-19 pneumonia and other
types of viral pneumonia, with an AUC of 0.959 (95%
CI 0.933–0.985) in the training set. In the validation
sample, the radiomics model yielded the greatest AUC
(0.955; 95% CI 0.899–0.995) (Fig. 5b), which con-
firmed that the mixed model achieved better predictive
efficacy than the clinical model (p = 0.0001). The sensi-
tivity, specificity, and accuracy of the model for the
training sample were 92.65%, 93.20%, and 0.829, re-
spectively, whereas those of the validation sample were
92.86%, 97.06%, and 0.944, respectively.

The calibration curve of the mixed nomogram demon-
strated good agreement between predicted and observed
COVID-19 pneumonia in the training set (Fig. 5c, d). The
Hosmer-Lemeshow test yielded a p value of 0.39, sug-
gesting no departure from the good fit. The favorable
calibration of the radiomics nomogram was further con-
firmed in the validation sample, where the Hosmer-
Lemeshow test yielded a p value of 0.89, suggesting a
perfect fit of the nomogram.

Clinical use

The decision curves in the validation set showed that if the
threshold probability is between 0.125 and 0.9, and more than

0.04 in clinical and mixed models, using the radiomics nomo-
gram to predict COVID-19 pneumonia addsmore benefit than
the treat-all-patients as COVID-19 pneumonia scheme or the
treat-all-patients as other types of viral pneumonia scheme
(Fig. 6).

Discussion

In our study, we developed and validated a radiomics-
based model that incorporates the radiomics signature
and distribution, maximum lesion, hilar and mediastinal
lymph node enlargement, and pleural effusion for non-
invasive, individualized prediction of COVID-19 pneu-
monia. The radiomics nomogram demonstrated favorable
discrimination in both the training set (AUC, 0.959) and
the validation set cohort (AUC, 0.955) and good cali-
bration, which confirms that the mixed model achieved
better predictive efficacy than clinical model. DCA in-
dicated the clinical usefulness of the mixed model.

Our study shows the following imaging characteris-
tics of COVID-19 pneumonia: bilateral lungs were the
most commonly affected location (91.15%), while the
most common type of distribution was diffuse
(63.54%). The most common attenuation was a mixed
pattern of GGO and consolidation (69.27%). The vast
majority of patients with COVID-19 pneumonia devel-
oped a large lesion range (5–10 cm, 47.40%; and >
10 cm, 29.69%), ≥ 3 lesions (96.88%), involving 5
lobes (76.56%). Shi et al [26] described the 81 patients
with COVID-19 pneumonia and found the imaging fea-
tures of COVID-19 pneumonia were bi la tera l ,
subpleural, they showed GGO with air bronchograms,
ill-defined margins, and a slight predominance in the
right lower lobe. Pan et al [8] assessed the imaging
findings of 63 patients with COVID-19 pneumonia and
found that 7 (11.1%) patients had 4 affected lobes, 28
(44.4%) patients had 5 affected lobes, and 54 (85.7%)
patients showed patchy/punctate GGO. In addition,
some earlier studies assessed CT findings of COVID-
19 pneumonia, including GGO, and reported crazy-
paving patterns, consolidation, the involvement of mul-
tiple lobes, and a diffuse distribution [11–14, 27–29].
The current results are thus consistent with the findings
of previous studies.

The present study also provides some new findings
compared with other types of viral pneumonia. Firstly,
we found that a diffuse distribution was associated with
a 73% decrease risk of COVID-19 pneumonia, com-
pared wi th cen t ra l or per iphera l d i s t r ibu t ion .
Furthermore, a maximum lesion range > 10 cm was as-
sociated with a 2.43-fold risk of COVID-19 pneumonia,
compared with a maximum lesion range ≤ 5 cm, and

Fig. 4 Receiver operating characteristic curves of clinical model in the
training and validation sets
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the involvement of 5 lobes was associated with a 2.03-
fold risk of COVID-19 pneumonia, compared with the
involvement of ≤ 4 lobes. These findings show that a
larger area and a greater number of lobes were involved
in patients with COVID-19 pneumonia than in those
with other types of viral pneumonia, but the distribution
was central or peripheral, especially peripheral, which
was different from the diffuse distribution of other vital
pneumonia. Secondly, the presence of pleural effusion
was associated with a 0.56 decrease risk of COVID-19
pneumonia, compared with no pleural effusion. Notably,
hilar and mediastinal lymph node enlargement was
found in a few patients and was observed in 13.54%
and 26.28% of patients with COVID-19 pneumonia
and other types of viral pneumonia, respectively.
However , h i l a r and medias t ina l lymph nodes

enlargement was associated with a 3.19-fold risk of
COVID-19 pneumonia.

There is much interest in the use of radiomics for
assessing radiological image data. Radiomics has been
widely used in the assessment of pulmonary nodules or
masses, especially lung cancer [30, 31]. However, there
are few studies on predicting COVID-19 pneumonia
using CT radiomics [15–17]. Li et al [15] developed a
deep learning model on chest CT exams, and the model
showed good discrimination in COVID-19 (AUC, 0.96)
and in community-acquired pneumonia (AUC, 0.95).
Wang et al [16] used a deep learning algorithm to
screen CT images for COVID-19 pneumonia. The inter-
nal 45 validation achieved a total accuracy of 89.5%
with specificity of 0.88 and sensitivity of 0.87. The
external testing dataset showed a total accuracy of
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Fig. 5 Mixed nomogram developed with receiver operating characteristic
and calibration curves. a A mixed nomogram was developed in the
training set, incorporating the radiomics signature and CT findings. b

Receiver operating characteristic curves in the training and validation
sets. Calibration curves of the radiomics nomogram in the training (c)
and validation sets (d)
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79.3% with specificity of 0.83 and sensitivity of 0.67.
Gozes et al [17] used deep learning CT image analysis
and achieved classification results for coronavirus vs
non-coronavirus cases per thoracic CT studies of 0.996
AUC (95% CI 0.989–1.00) on Chinese control and in-
fected patients. The above studies all used deep learning
CT image analysis. In our study, our nomogram per-
formed well in the training set (AUC, 0.959), where
out of 56 patients with COVID-19 pneumonia, 49 pa-
tients initially showed a negative result by viral nucleic
acid detection, and 7 patients were from another hospi-
tal. Our nomogram performed well in the validation set
as well (AUC, 0.955), and it also showed good calibra-
tion in both the training and validation samples.

To assess the models beyond the purely mathematical
perspective provided by performance measures such as
the AUC, DCA was used to estimate the predicted net
benefit of the model across all possible risk thresholds
and to thereby evaluate the effects of various risk
thresholds [32, 33]. DCA showed that if the threshold
probability was between 0.125 and 0.9, and more than
0.04 in the clinical model and mixed model, using the
radiomics nomogram in the current study to predict

COVID-19 pneumonia adds more benefit than the
treat-all-patients as COVID-19 pneumonia scheme or
the treat-all-patients as other types of viral pneumonia
scheme.

Our study had several limitations. First, it was retro-
spective in nature. Second, the group of patients with
other types of viral pneumonia only included patients
with several common viruses, which might have led to
a potential bias. Third, there were only a few patients
on whom external validation was performed. Finally,
there are some clinical questions of COVID-19 pneumo-
nia not to be resolved, such as classification of severity
and exploration of clinical relationship. In the future, we
will incorporate the clinical, radiological, and selected
radiomics features to develop a deep learning model,
and also should focus on multicenter validation with a
larger sample size to obtain high-level evidence for the
clinical application of the deep learning model.
Furthermore, AI rapid productization let radiologists
rapidly and conveniently provide the structured
reporting for patients.

To summarize, we developed a radiomics prediction model
to improve the accuracy that can be achieved using the clinical

Fig. 6 Decision curve analysis (DCA) for the Rad-score. DCA for the
clinical and mixed model. The y-axis represents the net benefit. The red
line represents the radiomics nomogram. The gray line represents the
hypothesis that all patients had 2019 novel coronavirus (2019-nCoV)
pneumonia. The black line represents the hypothesis that all patients
had other types of viral pneumonia. The x-axis represents the threshold
probability, which is where the expected benefit of 2019 COVID

pneumonia is equal to the expected benefit of other types of viral pneu-
monia. The decision curves in the validation set showed that if the thresh-
old probability is between 0.125 and 0.9, and more than 0.04 in clinical
model and mixed model, using the radiomics nomogram in the current
study to predict 2019 COVID pneumonia adds more benefit than the
treat-all-patients as 2019 COVID pneumonia scheme or the treat-all-
patients as other types of viral pneumonia scheme
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model and help doctors make more accurate clinical decisions
and avoid misdiagnosis.
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