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Abstract: γ-Butyrolactone, a five-membered lactone moiety, is one of the privileged structures of
diverse natural products and biologically active small molecules. Because of their broad spectrum
of biological and pharmacological activities, synthetic methods for γ-butyrolactones have received
significant attention from synthetic and medicinal chemists for decades. Recently, new developments
and improvements in traditional methods have been reported by considering synthetic efficiency,
feasibility, and green chemistry. In this review, the pharmacological activities of natural and synthetic
γ-butyrolactones are described, including their structures and bioassay methods. Mainly, we sum-
marize recent advances, occurring during the past decade, in the construction of γ-butyrolactone
classified based on the bond formation in γ-butyrolactone between (i) C5-O1 bond, (ii) C4-C5 and
C2-O1 bonds, (iii) C3-C4 and C2-O1 bonds, (iv) C3-C4 and C5-O1 bonds, (v) C2-C3 and C2-O1 bonds,
(vi) C3-C4 bond, and (vii) C2-O1 bond. In addition, the application to the total synthesis of natural
products bearing γ-butyrolactone scaffolds is described.

Keywords: γ-butyrolactone; pharmacological activities; lactone synthesis; lactonization; recent
advances

1. Introduction

γ-Butyrolactone, a five-membered heterocycle containing ester functionality, has been
broadly studied in the drug discovery field since it is one of the privileged structures of
biologically active small molecules. Several γ-butyrolactone-containing drugs have been
FDA-approved and used in clinic for diverse purposes such as diuretics, anticancer agents,
contraceptive drugs, treatment of heart disease, and anti-glaucoma agents. γ-Butyrolactone
moiety is also found in a variety of biologically active experimental drugs [1–4] and syn-
thetic intermediates [5–10]. Moreover, numerous natural products, showing diverse biolog-
ical activities, have γ-butyrolactone moiety.

The most universal synthetic method for γ-butyrolactone is intramolecular esteri-
fication, which can be readily utilized with substrates bearing γ-hydroxybutanoic acid
functionality. However, diverse synthetic methodologies have been developed based on the
discovery of biologically active synthetic or natural lactone drugs. Consequently, there have
been many efforts to develop efficient synthetic methods to construct γ-butyrolactone, and
several focused reviews have been published [11–14]. For example, Taylor and colleagues
summarized new synthetic approaches for α-methylene-γ-butyrolactones [12] and Marstral,
Feringa and colleagues reviewed the catalytic asymmetric synthesis of γ-butyrolactone [13].

In this review, we first prepare a brief introduction of biologically active γ-butyrolactones
including eight FDA-approved drugs (Table 1) and various natural and synthetic γ-
butyrolactones that have broad biological activities such as anticancer, anti-inflammatory,
antibiotic, antifungal, antioxidant activities as well as immunosuppressive, neuroprotective,
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and hypoglycemic activities (Table 2). Additionally, we summarize synthetic methodolo-
gies for the construction of γ-butyrolactone reported from 2010 to 2020, which are depicted
in seven main sections based on the sites of bond formation (Figure 1). Each section is
further divided into subsections according to the type of reaction and contains a descrip-
tion focused on the reaction mechanism. Additionally, applications of the reaction to the
synthesis of complex molecules are included to demonstrate the synthetic utility of the
reactions. The synthetic methodology has been continuously improving over the past
decade. Therefore, this review will provide an update of recent work in the development
of synthetic methods for the construction of γ-butyrolactones.
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2. Pharmacological Activities of γ-Butyrolactones
2.1. Approved Drugs

Several γ-butyrolactone-containing drugs have been FDA-approved and used in clin-
ics for diverse purposes (Table 1). Pilocarpine, isolated from Pilocarpus microphyllus, is used
to treat xerostomia and reduce eye pressure. (Entry 1) [15]. Pilocarpine is also widely ap-
plied to pharmacological research as a control cholinergic agonist. γ-Butyrolactone moiety
was employed in a steroid skeleton at the C-17 position to develop steroidal aldosterone
antagonists (Entry 2 and 3). Spironolactone and eplerenone are common medications for
cardiovascular diseases such as high blood pressure and heart failure [16,17]. Drospirenone,
structurally similar with spironolactone, is used to prevent pregnancy as a progesterone
agonist. (Entry 4) [18]. Podophyllotoxin, a natural DNA topoisomerase inhibitor from
Podophyllum peltatum, is treated to kill genital warts (Entry 5) [19]. Two semisynthetic
derivatives of podophyllotoxin, etoposide, and teniposide, were approved as anticancer
agents used for lymphoma, leukemia, and various solid tumors (Entry 6 and 7) [20,21].
Vorapaxar, a derivative of himbacine, is a first-in-class protease-activated receptor-1 (PAR-1)
antagonist (Entry 8) [22]. By inhibiting PAR-1, vorapaxar reduces thrombotic cardiovascu-
lar events and the risk of myocardial infarction. Now, several γ-butyrolactone-containing
drug candidates have been investigated in clinical studies for the treatment of heart disease,
rheumatoid arthritis, and infectious disease.

2.2. Biologically Active γ-Butyrolactones
2.2.1. Anti-Inflammation

Diverse butyrolactones have been studied to evaluate anti-inflammatory activities
(Entry 1–9 in Table 2). Some of these butyrolactones modulate the NF-κB signaling pathway
such as a santonine-derived butyrolactone that showed anti-inflammatory activity through
the inhibition of the ubiquitin-conjugating enzyme, UbcH5c (Entry 1 in Table 2) [23,24]. This
anti-inflammatory activity was maintained in vivo using Freund’s adjuvant arthritis rat
model. A novel phthalide-based butyrolactone (Entry 2) [25,26] and two natural products—
calcaratarin D (Entry 3) [27] and a sesquiterpene lactone (Entry 4) [28]—were also reported
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to inhibit activity of the NF-κB signaling pathway and showed anti-inflammatory activity.
Among them, the in vivo activity of the first butyrolactone (Entry 2) was evaluated against
the adjuvant arthritis rat. Moreover, a biyouyanagin derivative attached to adenine (En-
try 5) [29] and arctiidilactone (Entry 6) [30] showed anti-inflammatory activity through
the inhibition of LPS-induced cytokine production or LPS-induced NO production, respec-
tively. A COX-2 inhibitor (Entry 7), which is an indole-based γ-butyrolactone, was reported
to have shown anti-inflammatory activity with an IC50 value of <0.001 µM [31]. CD10847
(Entry 8) [32] and cinatrin C3 (Entry 9) [33] exhibited potent anti-inflammatory activities
via inhibition of caspase-1 or phospholipase A1, respectively.

2.2.2. Anticancer

The development of anticancer drugs is one of the long-term goals in the drug devel-
opment field. Diverse natural and synthetic butyrolactones have been evaluated for their
cytotoxic activities against various cancer cell lines. Protelichesterinic acid (Entry 10), a
metabolite isolated from Antarctic lichens, showed cytotoxicity against HCT-116 cells with
an IC50 value of 34.3 µM [34]. P. K. Roy and colleagues isolated one of the cembrane-type
butyrolactones (Entry 11) from the soft coral, Lobophytum, which displayed a strong cy-
totoxic activity against RAW 264.7 cells [35]. Sasaki and colleagues evaluated the AKT
inhibitory activities of lactoquinomycin (Entry 12) [36,37], kalafungin (Entry 13) [36,38],
and frenolicin B (Entry 14) [36,39], classified as pyranonaphthoquinone lactones, which
were originally reported as antibiotics. These butyrolactones exhibited strong AKT in-
hibitory activities with IC50 values of 0.149 µM~0.313 µM as well as cytotoxic activities
with IC50 values of 0.05 µM~0.07 µM in MDA468 cells. A cytotoxicity of synthetic buty-
rolactones has been reported as well. Lee and colleagues synthesized an adenine-linked
butyrolactone (Entry 15) which exhibited a cytotoxicity with an ED50 value of 0.3 µg/mL
in L1210 cells [40]. Another example of synthetic butyrolactone, reported by Huth and
colleagues, displayed strong HSP90 inhibitory activity (Ki = 1.9 µM) which could result in
the development of anti-cancer agent (Entry 16) [41].

2.2.3. Antibiotic

Many γ-butyrolactone-containing small molecules have been studied in the devel-
opment of antibiotics. Lactivicin (Entry 17) [42,43], produced by two strains of bacteria,
and one bicyclic butyrolacone (Entry 18) [44] showed strong inhibition of β-lactamase
with IC50 values of 2.4 µg/mL and 15 µg/mL, respectively. Moreover, various synthetic
γ-butyrolactones exhibited potent antibacterial activities. For example, a synthetic α-amino-
γ-lactone ketolide (Entry 19) showed excellent antibacterial activity against erythromycin-
susceptible Streptococus pyogenes [45]. Additionally, hydrazonothiazolyl derivative (En-
try 20) [46], β-cyclocitral derivative (Entry 21) [47], and α-methylene-γ-butyrolactone
(Entry 22) [48] displayed potent antibacterial activities and a synthetic β-aryl-δ-iodo-γ-
butyrolactone (Entry 23) exhibited bactericidal activity against Proteus mirabilis [49,50].

2.2.4. Antifungal

Researchers found that α-methylene-γ-butyrolactone ring is a natural pharmacophore
for antifungal natural products (Entry 24) [51]. Various synthetic α-methylene-γ-butyrolactone
analogues were synthesized and evaluated as potent antifungal agents. Feng’s groups and
Xing’s groups found that α-methylene-γ-butyrolactones bearing aromatic moiety at γ-position
exhibited antifungal activity against Colletotrichum lagenarium (Entry 25,26) [52,53]. Höfle and
colleagues isolated complex γ-butyrolactone natural product, leupyrrin A1 (Entry 27) from
Sorangium cellulosum and found its potent antifungal activity [54]. Menche and colleagues
reported the first total synthesis of leupyrrin A1 and SAR studies of leupyrrin analogues as
potent antifungal agents [55,56].
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2.2.5. Immunosuppressive

Two synthetic γ-butyrolactones and two natural products were reported to show im-
munosuppressive activities. Yang and colleagues found that benzene-fused γ-butyrolactones
(Entry 28) demonstrate highly efficacious immunosuppressive properties [57]. A sesquiter-
pene lactone, isolated from Artemisia argyi (Entry 29), also exhibited potent immunosup-
pressive activity, which was assessed via inhibitory effect on the proliferation of T lym-
phocytes [58]. A santonin derivative (Entry 30) reported by Chinthakindi and colleagues
is another example of the immunosuppressant evaluated by T- and B-cell proliferation
assay [59]. A natural γ-butyrolactone kinsenoside (Entry 31), originally isolated from Anoec-
tochillus roxburghii, was reported as a potentially effective drug for treating patients with
autoimmune hepatitis via targeting VEGFR2 to reduce the interaction between PI3K-AKT
and JAK2-STAT pathways, which was confirmed in the vaccinated mouse model [60,61].

2.2.6. Neuroprotective

Recent studies found that natural and synthetic γ-butyrolactones can be useful
in the treatment of neurodegenerative disorders. Zhu and colleagues showed pheno-
lic γ-butyrolactones in Cinnamomum cassia (Entry 32) exhibit a neuroprotective effect
against tunicamycin-induced cell death in human dopaminergic neuroblastoma SH-SY5Y
cells [62]. Guo and colleagues conducted similar studies and found that japonipene C
(Entry 33) is responsible for the neuroprotective effect of the extract of Petasites japoni-
cas [63]. Bi and colleagues revealed that the γ-butyrolactone derivative 3-benzyl-5-((2-
nitrophenoxy)methyl)dihydrofuran-2(3H)-one (3BDO; Entry 34) protects against Aβ25-35-
induced cytotoxicity in the PC12 cell. 3BDO was proposed to exhibit the protective effect
by inhibiting ROS production and autophagy process [64]. In vivo assay was performed to
evaluate memory rescuing activity as well as the Aβ lowering activity of 3BDO in mouse
brain [65]. These findings show γ-butyrolactone can be utilized as potential therapeutic
scaffold for the treatment of Parkinson’s disease and Alzheimer’s disease.

2.2.7. Antioxidant

The antioxidant activity of γ-butyrolactones has been verified using 1,1-diphenyl-2-
picrylhydrazyl (DPPH) assay and superoxide scavenging assay. Lee and colleagues studied
the antioxidant activity of styraxlignolide E (Entry 35) in Styrax japonica [66]. Boustie
and colleagues found that norstictic acid (Entry 36) isolated from Usnea articulate shows
superoxide scavenging activity higher than the well-known antioxidant quercetin [67]. The
result suggested that this activity is involved in the antioxidant defense of lichens.

2.2.8. Hypoglycemic

The hyperglycemic activity of γ-butyrolactones has recently attracted attention as a pos-
sible therapeutic agent for type 2 diabetes. Lin and colleagues revealed that butyrolactone-1
(Entry 37) inhibits α-glucosidase in vitro and shows a potent TNF-α lowering effect [68].
The binding between butyrolactone-1 and α-glucosidase was theoretically proved in a
molecular docking study. In an in vivo study on mice, potent hyperglycemic activity was
maintained. Xiao and colleagues synthesized the analogues of butyrolactone-1 by mod-
ifying side chains (Entry 38) [69]. A biological evaluation showed that butyrolactone-1
derivatives display inhibitory activity of protein tyrosine phosphatase 1B (PTP1B) which is
a promising therapeutic target of type 2 diabetes.
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Table 1. Approved drugs containing γ-butyrolactone moiety.

Entry Name Structure Target Protein Disease Source Reference

1 Pilocarpine
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Table 1. Cont.

Entry Name Structure Target Protein Disease Source Reference

6 Etoposide
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Table 2. Representative biologically active γ-butyrolactones.

Entry Pharmacological
Activity Structure Name Bioassay Source Reference

1

Anti-inflammation

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW  7 of 50 

 

Table 2. Representative biologically active γ-butyrolactones. 

Entry Pharmacological  
Activity 

Structure Name Bioassay Source Reference 

1 

Anti-inflammation  

 

(3aS,9bR)-8-((2-Bromoben-
zyl)oxy)-6,9-dimethyl-3-meth-
ylene-3,3a,4,5-tetrahydronaph-

tho[1,2-b]furan-2(9bH)-one 

UbeH5c binding assay 
(Kd = 0.283 μM) 

Therapeutic effect on 
adjuvant arthritis rat 

model 

Synthetic [23,24] 

2 

 

3-((4-((4-Fluorobenzyl)oxy)phe-
nyl)(hydroxy)methyl)-5,7-di-

methoxyisobenzofuran-1 (3H)-
one 

Inhibition rate of NO 
production at 10 μM 

(95.23 ± 3.21%) 
Therapeutic effect on 
adjuvant arthritis rat 

model 

Synthetic [25,26] 

3 

 

Calcaratarin D 

Suppression of NF-κB 
activation by reducing 
p65 nuclear transloca-

tion 
Suppression of LPS-in-

duced activation of 
PI3K/Akt pathway 

Natural  
(Alpinia calcarata) [27] 

4 

 

(3aR,4R,9aS,9bR)-6,9-Dimethyl-
3-methylene-2,7-dioxo-

2,3,3a,4,5,7,9a,9b-octahydroazu-
leno[4,5-b]furan-4-yl methacry-

late 

NF-κB inhibition 
(IC100 = 10 μM) 

Natural  
(Viguiera gardneri) [28] 

(3aS,9bR)-8-((2-Bromobenzyl)oxy)-6,9-
dimethyl-3-methylene-3,3a,4,5-

tetrahydronaphtho[1,2-b]furan-2(9bH)-one

UbeH5c binding assay
(Kd = 0.283 µM)

Therapeutic effect on
adjuvant arthritis rat

model

Synthetic [23,24]

2

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW  7 of 50 

 

Table 2. Representative biologically active γ-butyrolactones. 

Entry Pharmacological  
Activity 

Structure Name Bioassay Source Reference 

1 

Anti-inflammation  

 

(3aS,9bR)-8-((2-Bromoben-
zyl)oxy)-6,9-dimethyl-3-meth-
ylene-3,3a,4,5-tetrahydronaph-

tho[1,2-b]furan-2(9bH)-one 

UbeH5c binding assay 
(Kd = 0.283 μM) 

Therapeutic effect on 
adjuvant arthritis rat 

model 

Synthetic [23,24] 

2 

 

3-((4-((4-Fluorobenzyl)oxy)phe-
nyl)(hydroxy)methyl)-5,7-di-

methoxyisobenzofuran-1 (3H)-
one 

Inhibition rate of NO 
production at 10 μM 

(95.23 ± 3.21%) 
Therapeutic effect on 
adjuvant arthritis rat 

model 

Synthetic [25,26] 

3 

 

Calcaratarin D 

Suppression of NF-κB 
activation by reducing 
p65 nuclear transloca-

tion 
Suppression of LPS-in-

duced activation of 
PI3K/Akt pathway 

Natural  
(Alpinia calcarata) [27] 

4 

 

(3aR,4R,9aS,9bR)-6,9-Dimethyl-
3-methylene-2,7-dioxo-

2,3,3a,4,5,7,9a,9b-octahydroazu-
leno[4,5-b]furan-4-yl methacry-

late 

NF-κB inhibition 
(IC100 = 10 μM) 

Natural  
(Viguiera gardneri) [28] 

3-((4-((4-
Fluorobenzyl)oxy)phenyl)(hydroxy)methyl)-

5,7-dimethoxyisobenzofuran-1
(3H)-one

Inhibition rate of NO
production at 10 µM

(95.23 ± 3.21%)
Therapeutic effect on
adjuvant arthritis rat

model

Synthetic [25,26]

3

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW  7 of 50 

 

Table 2. Representative biologically active γ-butyrolactones. 

Entry Pharmacological  
Activity 

Structure Name Bioassay Source Reference 

1 

Anti-inflammation  

 

(3aS,9bR)-8-((2-Bromoben-
zyl)oxy)-6,9-dimethyl-3-meth-
ylene-3,3a,4,5-tetrahydronaph-

tho[1,2-b]furan-2(9bH)-one 

UbeH5c binding assay 
(Kd = 0.283 μM) 

Therapeutic effect on 
adjuvant arthritis rat 

model 

Synthetic [23,24] 

2 

 

3-((4-((4-Fluorobenzyl)oxy)phe-
nyl)(hydroxy)methyl)-5,7-di-

methoxyisobenzofuran-1 (3H)-
one 

Inhibition rate of NO 
production at 10 μM 

(95.23 ± 3.21%) 
Therapeutic effect on 
adjuvant arthritis rat 

model 

Synthetic [25,26] 

3 

 

Calcaratarin D 

Suppression of NF-κB 
activation by reducing 
p65 nuclear transloca-

tion 
Suppression of LPS-in-

duced activation of 
PI3K/Akt pathway 

Natural  
(Alpinia calcarata) [27] 

4 

 

(3aR,4R,9aS,9bR)-6,9-Dimethyl-
3-methylene-2,7-dioxo-

2,3,3a,4,5,7,9a,9b-octahydroazu-
leno[4,5-b]furan-4-yl methacry-

late 

NF-κB inhibition 
(IC100 = 10 μM) 

Natural  
(Viguiera gardneri) [28] 

Calcaratarin D

Suppression of NF-κB
activation by reducing p65

nuclear translocation
Suppression of

LPS-induced activation of
PI3K/Akt pathway

Natural
(Alpinia calcarata) [27]

4
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duced NO production 
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8 

 

CD10847 
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(IC50 = 17 nM) 
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6
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1a,5,9-Trimethyl-13-methylene-

12-oxo-
1a,2,3,4,7,10,10a,12,13,13a,14,14a-
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MDA468 cells 

(IC50 = 0.06 μM) 
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(Streptomyces roseoful-
vus strain AM-3867) 

[36,39] 

Protolichesterinic acid Cytotoxicity in HeLa cells Natural
(Lichen metabolites) [34]

11
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5-((6-Amino-9H-purin-9-yl)me-
thyl)-5-methyl-3-methylenedihy-
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(E)-N-((2-Amino-6-methylpyrim-
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drofuran-3(2H)-ylidene)me-
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(Ki = 1.9 μM) 

Synthetic [41] 
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Inhibition of β-Lac-
tamase in Proteus vul-

garis 
(IC50 = 2.4 μg/mL) 

Natural 
(Bacteria YK-258 and 

YK-422) 
[42,43] 
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(3aS,5S,6aS)-5-Hydroxyhexahy-
dro-2H-cyclopenta[b]furan-2-one 
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tamase in Klebsiella ox-

ytoca 
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5-((6-Amino-9H-purin-9-yl)methyl)-5-methyl-
3-methylenedihydrofuran-2(3H)-one

Cytotoxicity in L1210 cells
(ED50 = 0.3 µg/mL) Synthetic [40]

16
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ytoca 
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in Proteus vulgaris
(IC50 = 2.4 µg/mL)

Natural
(Bacteria YK-258 and

YK-422)
[42,43]

18
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Synthetic [44] (3aS,5S,6aS)-5-Hydroxyhexahydro-2H-
cyclopenta[b]furan-2-one

Inhibition of β-lactamase
in Klebsiella oxytoca

(IC50 = 15 mg/l)
Synthetic [44]
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(MIC = 0.06 μg/mL) 

Synthetic [45] 

20 

 

2-Ethoxycarbonyl-2-[2-(3-p-chlo-
rophenylthiazol-2- yl)hydra-

zono]propyl-4,4-dimethylbuta-
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(1aR,10aS,Z)-1a,5-Dimethyl-8-
methylene-2,3,6,7,7a,8,10a,10b-
octahydrooxireno[2’,3’:9,10]cy-
clodeca[1,2-b]furan-9(1aH)-one 

Antibacterial activity 
against MRSA 

USA300  
(MIC = 56.7 μM) 

Synthetic [48] 

23 

 

(4S,5S)-5-((S)-1-Iodoethyl)-4-(4-
isopropylphenyl)dihydrofuran-

2(3H)-one 

Antimicrobial activity 
against Proteus mirabi-

lis 
(MIC = 0.25 mg/mL) 

Synthetic [49,50] 
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c][1]oxacyclotetradecin-3-yl)-2-(quinoxalin-2-

ylthio)acetamide

Antibacterial activity
against

erythromycin-susceptible
Streptococus pyogenes
(MIC = 0.06 µg/mL)

Synthetic [45]

20
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Antibacterial activity
against Staphylococcus

aureus
Synthetic [46]
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Synthetic [47]
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octahydrooxireno[2’,3’:9,10]cy-
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2(3H)-one 

Antimicrobial activity 
against Proteus mirabi-

lis 
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2,3,6,7,7a,8,10a,10b-

octahydrooxireno[2’,3’:9,10]cyclodeca[1,2-
b]furan-9(1aH)-one

Antibacterial activity
against MRSA

USA300
(MIC = 56.7 µM)

Synthetic [48]

23
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(3aS,7aS)-3a,7,7,7a-Tetra-
methylhexahydrobenzofuran-

2(3H)-one 

Antibacterial activity 
against Staphylococcus 

aureus 
Synthetic [47] 

22 

 

(1aR,10aS,Z)-1a,5-Dimethyl-8-
methylene-2,3,6,7,7a,8,10a,10b-
octahydrooxireno[2’,3’:9,10]cy-
clodeca[1,2-b]furan-9(1aH)-one 

Antibacterial activity 
against MRSA 

USA300  
(MIC = 56.7 μM) 

Synthetic [48] 

23 

 

(4S,5S)-5-((S)-1-Iodoethyl)-4-(4-
isopropylphenyl)dihydrofuran-

2(3H)-one 

Antimicrobial activity 
against Proteus mirabi-

lis 
(MIC = 0.25 mg/mL) 
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against Proteus mirabilis

(MIC = 0.25 mg/mL)
Synthetic [49,50]
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Carabrone 
Fungicidal activity 

against C. lagenarium 
(IC50 = 7.10 μg/mL) 

Natural 
(Carpesium abrota-

noides) 
[51] 

25 F

O
O

 

4- (3-Fluorophenyl)-2-meth-
ylenebutyrolactone 

Fungicidal activity 
against C. lagenarium 

(IC50 = 57.9 μM) 
Synthetic [52] 

26 

 

4-[4-(3-Bromobenzoyloxy)phe-
nyl]-2-methylenebutyrolactone 

Fungicidal activity 
against C. lagenarium 

(IC50 = 8.76 μM) 
Synthetic [53] 

27 

 

Leupyrrins A1 
Fungicidal activity 
against M. hiemalis 
(MIC = 0.3 μg/mL) 

Natural 
(Sorangium cellu-

losum) 
[54] 

28 Immunosuppressive 

 

(E)-3-(3,4-Dimethoxyphenyl)-N-
(1-oxo-1,3-dihydroisobenzofu-

ran-5-yl)acrylamide 

Inhibition of T cells 

proliferation 
(IC50 = 0.029 μM) 

Synthetic [57] 

Carabrone
Fungicidal activity against

C. lagenarium
(IC50 = 7.10 µg/mL)

Natural
(Carpesium abrotanoides) [51]

25
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Inhibition of T cells 

proliferation 
(IC50 = 0.029 μM) 

Synthetic [57] 

4- (3-Fluorophenyl)-2-methylenebutyrolactone
Fungicidal activity against

C. lagenarium
(IC50 = 57.9 µM)

Synthetic [52]

26

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW  12 of 50 

 

Entry Pharmacological  
Activity Structure Name Bioassay Source Reference 

24 

Antifungal 

 

Carabrone 
Fungicidal activity 

against C. lagenarium 
(IC50 = 7.10 μg/mL) 

Natural 
(Carpesium abrota-

noides) 
[51] 

25 F

O
O

 

4- (3-Fluorophenyl)-2-meth-
ylenebutyrolactone 

Fungicidal activity 
against C. lagenarium 

(IC50 = 57.9 μM) 
Synthetic [52] 

26 

 

4-[4-(3-Bromobenzoyloxy)phe-
nyl]-2-methylenebutyrolactone 

Fungicidal activity 
against C. lagenarium 

(IC50 = 8.76 μM) 
Synthetic [53] 

27 

 

Leupyrrins A1 
Fungicidal activity 
against M. hiemalis 
(MIC = 0.3 μg/mL) 

Natural 
(Sorangium cellu-

losum) 
[54] 

28 Immunosuppressive 

 

(E)-3-(3,4-Dimethoxyphenyl)-N-
(1-oxo-1,3-dihydroisobenzofu-

ran-5-yl)acrylamide 

Inhibition of T cells 

proliferation 
(IC50 = 0.029 μM) 

Synthetic [57] 

4-[4-(3-Bromobenzoyloxy)phenyl]-2-
methylenebutyrolactone

Fungicidal activity against
C. lagenarium

(IC50 = 8.76 µM)
Synthetic [53]

27
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Inhibition of T cells 

proliferation 
(IC50 = 0.029 μM) 

Synthetic [57] 

Leupyrrins A1
Fungicidal activity against

M. hiemalis
(MIC = 0.3 µg/mL)

Natural
(Sorangium cellulosum) [54]

28 Immunosuppressive
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against M. hiemalis 
(MIC = 0.3 μg/mL) 

Natural 
(Sorangium cellu-

losum) 
[54] 

28 Immunosuppressive 

 

(E)-3-(3,4-Dimethoxyphenyl)-N-
(1-oxo-1,3-dihydroisobenzofu-

ran-5-yl)acrylamide 

Inhibition of T cells 

proliferation 
(IC50 = 0.029 μM) 

Synthetic [57] (E)-3-(3,4-Dimethoxyphenyl)-N-(1-oxo-1,3-
dihydroisobenzofuran-5-yl)acrylamide

Inhibition of T cells
proliferation

(IC50 = 0.029 µM)
Synthetic [57]
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(4S,5S)-5-((1S,2S)-2-Hydroxy-2-
methyl-5-oxocyclopent-3-en-1-

yl)-3-methylene-4-(3-oxobu-
tyl)dihydrofuran-2(3H)-one 

Inhibition of T lym-

phocyte proliferation 
(IC50 = 1.0 μM) 

Natural 
(Artemisia argyi) 

[58] 

30 

 

(3S,3aS,9bR)-8-((1-
(Benzo[d][1,3]dioxol-5-yl)-1H-

1,2,3-triazol-5-yl)methoxy)-3,6,9-
trimethyl-3a,4,5,9b-tetrahy-

dronaphtho[1,2-b]furan-2(3H)-
one 

(α-Santonin derivative) 

Suppression of LPS-in-
duced B-cell prolifera-

tion 
(50% at 10 μM) 

Synthetic [59] 

31 
 

Kinsenoside 

VGEFR2 binding 
Therapeutic effect on 
autoimmune hepatitis 
in DCs/Hepa1-6 AIH 

mouse model 

Natural 
(Anoectochilus rox-

burghii) 
[60,61] 

32 Neuroprotective 

 

(3R,4R)-4-(4-Hydroxy-3-methox-
yphenyl)-3-(4-methoxy-

phenyl)dihydrofuran-2(3H)-one 

Neuroprotective activ-
ity in SH-SY5Y cells  

Natural 
(Cinnamomum 

cassia) 
[62] 

(4S,5S)-5-((1S,2S)-2-Hydroxy-2-methyl-5-
oxocyclopent-3-en-1-yl)-3-methylene-4-(3-

oxobutyl)dihydrofuran-2(3H)-one

Inhibition of T lymphocyte
proliferation

(IC50 = 1.0 µM)

Natural
(Artemisia argyi) [58]

30
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(α-Santonin derivative)

Suppression of
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proliferation
(50% at 10 µM)

Synthetic [59]
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yphenyl)-3-(4-methoxy-

phenyl)dihydrofuran-2(3H)-one 
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(Cinnamomum 
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[62] (3R,4R)-4-(4-Hydroxy-3-methoxyphenyl)-3-(4-

methoxyphenyl)dihydrofuran-2(3H)-one
Neuroprotective activity in

SH-SY5Y cells
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(Cinnamomum
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[62]
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(Usnea articulate) 
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37 Hypoglycemic 

 

Butyrolactone I 

α-Glucosidase inhibi-
tion 

Multiple anti-type 2 
diabetic activities in 

db/db mice 

Natural 
(Aspergillus terreus) 

[68] 

Japonipene C Neuroprotective activity in
SH-SY5Y cells

Natural
(Petasites japonicas) [63]
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3. Synthesis of γ-Butyrolactones
3.1. Synthesis of γ-Butyrolactone via C5-O1 Bond Formation
3.1.1. Oxidative Lactonization of Pentenoic Acid

The oxidative lactonization of alkenoic acid is one of the most popular transfor-
mations for the synthesis of lactone. A typical approach is usually initiated with the
oxidation of olefin catalyzed by the highly toxic and expensive transition metal via the
Prévost−Woodward reaction and Upjohn reaction conditions, and the subsequent in-
tramolecular nucleophilic addition of carboxylic acid [70–72]. In contrast, recently reported
methods for oxidative lactonization claimed metal-free and less toxic conditions, which uti-
lized cheap and green organic catalysts and oxidants. These reactions have been developed
with a view toward green chemistry.

In 2012, Gade and colleagues reported the triflic acid (TfOH)-catalyzed oxidative
lactonization using peroxyacid as an oxidant (Figure 2) [73]. The cascade epoxidation
of olefin 1 with peracetic acid and an intramolecular epoxide opening reaction pro-
vided γ-butyrolactone 2. TfOH was proposed as a catalyst in both the ring-opening
reaction via epoxide activation and acetylation of the subsequent hydroxyl group of γ-
butyrolactone [74]. This method was applied to intramolecular lactonization as well as
the intermolecular diacetylation of olefins. Considering the convenient process and the
broad substrate scope, this might be an alternative approach to osmium tetroxide-catalyzed
dihydroxylation of alkenes.
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Figure 2. TfOH-catalyzed oxidative lactonization with peroxyacid.

Kang and colleagues also developed the TfOH-catalyzed oxidative lactonization
of alkenoic acid 3 (Figure 3) [75]. Instead of peroxyacetic acid, sodium periodate was
used as an oxidant. This method showed a high tolerance for a broad range of α,β-
substituted pentenoic acid, providing the corresponding γ-butyrolactones 4 and bicyclic
lactone scaffolds.
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Furthermore, Kokotos and colleagues developed an oxidative lactonization catalyzed
by an organocatalyst, which relied on the use of hydrogen peroxide as the oxidant with
2,2,2-trifluoroacetophenone 5 as the organocatalyst (Figure 4) [76]. Mild reaction conditions
led to an environmentally and industrially friendly process.

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW  17 of 50 

 

Furthermore, Kokotos and colleagues developed an oxidative lactonization cata-

lyzed by an organocatalyst, which relied on the use of hydrogen peroxide as the oxidant 

with 2,2,2-trifluoroacetophenone 5 as the organocatalyst (Figure 4) [76]. Mild reaction con-

ditions led to an environmentally and industrially friendly process. 

 

Figure 4. Trifluoroacetophenone-catalyzed oxidative lactonization with hydrogen peroxide. 

The oxidative ring contraction strategy from 3,4-dihydropyran-2-ones 6 developed 

by Legault and colleagues using hypervalent iodine has been shown to provide 3,4-trans-

γ-butyrolactones 7 (Figure 5) [77]. The authors suggested that the hyperiodine reagent 

selectively reacts with trans-face to β-substituents of 6. This face selectivity generates io-

dinated intermediate 8 and the subsequent attack of a water molecule at the carbonyl po-

sition affords intermediate 9. γ-butyrolactone 7 was diastereoselectively obtained through 

intramolecular substitution by carboxylic acid. The development of an enantioselective 

protocol was evaluated using a specific chiral iodine reagent. 

 

Figure 5. Oxidative ring contraction of 3,4-dihydropyran-2-ones. 

As an analogous approach to oxidative lactonization, Dodd and colleagues reported 

aminolactonization with the use of in situ-generated nosyliminoiodane (Figure 6) [78]. 

The Cu-catalyzed generation of nitrene from arylsulfonyliminoiodane 10 was reported to 

yield aziridines from alkene groups [79,80]. For example, the aziridine intermediate 11, 

generated after the metal-catalyzed reaction of t-butyl ester 12 with iminoiodane 10, was 

successfully transformed into a high yield of amino γ-butyrolactone 13. The usefulness of 

this aminolactonization was exemplified by further annulation of butyrolactone in novel 

complex heterocyclic systems (Figure 6, bottom). 

Figure 4. Trifluoroacetophenone-catalyzed oxidative lactonization with hydrogen peroxide.

The oxidative ring contraction strategy from 3,4-dihydropyran-2-ones 6 developed
by Legault and colleagues using hypervalent iodine has been shown to provide 3,4-trans-
γ-butyrolactones 7 (Figure 5) [77]. The authors suggested that the hyperiodine reagent
selectively reacts with trans-face to β-substituents of 6. This face selectivity generates
iodinated intermediate 8 and the subsequent attack of a water molecule at the carbonyl po-
sition affords intermediate 9. γ-butyrolactone 7 was diastereoselectively obtained through
intramolecular substitution by carboxylic acid. The development of an enantioselective
protocol was evaluated using a specific chiral iodine reagent.
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Figure 5. Oxidative ring contraction of 3,4-dihydropyran-2-ones.

As an analogous approach to oxidative lactonization, Dodd and colleagues reported
aminolactonization with the use of in situ-generated nosyliminoiodane (Figure 6) [78].
The Cu-catalyzed generation of nitrene from arylsulfonyliminoiodane 10 was reported to
yield aziridines from alkene groups [79,80]. For example, the aziridine intermediate 11,
generated after the metal-catalyzed reaction of t-butyl ester 12 with iminoiodane 10, was
successfully transformed into a high yield of amino γ-butyrolactone 13. The usefulness of
this aminolactonization was exemplified by further annulation of butyrolactone in novel
complex heterocyclic systems (Figure 6, bottom).
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Figure 6. Aminolactonization of t-butyl pentenoate with iminoiodane (top) and the application of
the resulting γ-butyrolactone (bottom).

3.1.2. Halolactonization of Pentenoic Acid

The halolactonization of alkenyl carboxylic acids is widely used to construct function-
alized lactone skeletons, including γ-butyrolactone. Generally, electrophilic NXS (e.g., NBS
or NIS) and halogens are utilized to activate olefin moieties [81,82].

In 2011, Togo and colleagues developed a sustainable electrophilic bromine source
via umpolung of alkali metal bromide [83]. Bromide (Br-) from potassium bromide, one of
the most abundant and stable bromide sources, is oxidized into bromonium ion (Br+) 14
by oxidation with Oxone. Encouraged by the success of intramolecular bromo-amination
with in situ-generated bromonium ion, the use of this umpolung system in the bromo-
lactonization of 4-pentenoic acid 15 has been investigated, resulting in the production of
γ-butyrolactone moieties 16 (Figure 7) [84]. At this stage, the preference of the diequatorial
conformation of the transition state over the diaxial form results in the diastereoselective
production of cis-isomer 16. The utility of this approach was demonstrated by the total
synthesis of dubiusamin C 19 from bromo butyrolactone 18, which was obtained by the
bromolactonization of pentenoic acid 17.
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Kumar and colleagues reported selenium-catalyzed bromolactonization by applying
isoselenazolone 20 as a catalyst (Figure 8) [85]. Organoselenium compounds react with
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bromine to generate reactive bromoselenium intermediate 21, which has a greater reactivity
than NBS and molecular bromine (Br2) [86]. Several NMR studies confirmed that seleno-
intermediate 21 plays a key role in the transfer of Br+ to the olefins of 22. Intermediate 21 is
catalytically regenerated in the presence of bromine or NBS with an inorganic base. This
reaction allowed access to the construction of bromo butyrolactone 23 from a broad scope
of pentenoic acids 22.
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3.1.3. Acid-Promoted Cyclopropane Opening

The electrocyclic ring-opening reaction of cyclopropane has been demonstrated as a
powerful tool for the construction of fused cyclic systems with sequential intramolecular
trapping [87]. Several acid-catalyzed, domino cyclopropane opening/carboxylic acid
trapping reactions have been investigated to construct fused-butyrolactone systems.

In 2017, Reddy and colleagues reported a Brønsted acid-catalyzed cascade reaction for
the construction of a tricyclic structure 26 bearing a γ-butyrolactone core (Figure 9) [88].
This interesting reaction starts with p-toluenesulfonic acid (PTSA)-catalyzed aldol con-
densation of diketone 24 to afford bicyclic enone 25, which subsequently undergoes acid-
catalyzed cyclopropane opening/intramolecular trapping by an ester moiety.
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A similar domino reaction of silver (I)-mediated activation of dibromocyclopropane
27/intramolecular acid trapping was developed by Batey and colleagues to form a trans-
fused bicycle 28 possessing γ-butyrolactone (Figure 10) [89]. A unique trans-fused [5.3.0]-
system presented in pseudoguainolide natural products was selectively obtained. Compu-
tational studies demonstrated the preference of a trans-fused system over a cis-fused system.
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3.1.4. Au-Catalyzed Oxaallylation

Gold-catalyzed allylic functionalization has been the object of diverse cyclization
reactions and has been found to be efficient for the preparation of γ-butyrolactone [90–92].
Chen and colleagues examined the Au-catalyzed lactonization of allylic acetate 29 to
construct a butyrolactone system (Figure 11) [93]. The proposed mechanism involved the
generation of an allylic cation intermediate 30 from allylic acetate 29 in the presence of
the Au catalyst. The subsequent nucleophilic attack by the ester moiety resulted in the
formation of bicyclic γ-butyrolactone 31.
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Figure 11. Gold-catalyzed intramolecular allylic alkylation of allylic acetate.

Bandini and colleagues reported the direct activation of free allylic alcohol 32 by
applying a gold catalyst with N-heterocyclic carbene (Figure 12) [94]. An allylic cation
intermediate is generated upon coordination of the NHC-gold complexes to a free allylic
alcohol 32. The resulting poly-substituted γ-butyrolactone 33 was obtained via nucleophilic
attack by ester and subsequent dealkylation.
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More recently, Aponick and colleagues developed a gold-catalyzed oxa-allylation of a
free allyl alcohol 34 with an intramolecular free carboxylic acid to prepare γ-butyrolactone
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35 (Figure 13) [95]. In contrast to Brønsted acids generating a 7-membered lactone skele-
ton 36 via direct acid-catalyzed esterification, γ-butyrolactone 35 was obtained using a
transition-metal catalyst via an SN2′-type oxa-allylation mechanism.
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Figure 13. Gold-catalyzed dehydrative lactonization.

Allenylglycine 37 was also used as a precursor for the construction of γ-butyrolactone
38. Ohfune and colleagues applied the Au-catalyzed intramolecular lactonization into the
allene system 37, which is a useful substrate for gold catalysis (Figure 14) [96]. Interestingly,
γ-butyrolactone 38 was obtained regio- and diastereoselectively via 5-endo-dig cyclization
in the presence of bulky TBS at the allenic terminal carbon.
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3.1.5. Photoredox-Catalyzed Lactonization

Photoredox catalysis through single-electron transfer (SET) has attracted significant
attention in the community of organic chemistry. Not surprisingly, the application of
photoredox catalysis to the ring formation reaction, including γ-butyrolactone synthesis,
has been intensively explored. As shown in Table 3, several synthetic approaches have
been reported to provide 5,5-disubstituted γ-butyrolactone.

Table 3. Radical precursors in photoredox-catalyzed γ-butyrolactone synthesis.

Entry R R-RP PC Ref

1 Aryl ArN2
+BF4

- Ru(bpy)3(PF6)2 [97]
2 CF3 Umemoto’s reagent Ru(bpy)3(PF6)2 [98]
3 Alkyl NHP ester Ir(ppy)2(dtbbpy)PF6 [99]

C = photocatalyst, RP = radical precursors.

Photoredox-catalyzed γ-butyrolactone synthesis generally starts with radical generation
through the reduction of radical precursors 39 (e.g., diazonium salt, N-hydroxylphthalimide
ester, etc.) by the oxidative quenching of the excited state of the photocatalyst (PC *). The
in situ-generated radical 40 adds to the alkene of 41 to produce intermediate 42, which
is transformed to carbocation 43 through single-electron transfer (SET) with an oxidized
photocatalyst (PC+). Nucleophilic attack of the carboxylic acid results in the γ-butyrolactone
44 (Figure 15). Aryl diazonium salts (Entry 1) [97], Umemoto’s reagent (Entry 2) [98], N-
hydroxylphthalimide ester (Entry 3) [99], and α-bromo ester [100] were used in these reactions.
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3.2. Synthesis of γ-Butyrolactone via C4-C5 and C2-O1 Bonds Formation

Connecting the C4-C5 bond in [3 + 2] annulation-type γ-butyrolactone formation
is one of the most promising routes. Retrosynthetically, the disconnection of the C4-C5
and C2-O1 bonds gives a3 and a2 synthons; thus, this mismatched relationship should be
overcome through a certain umpolung reaction.

3.2.1. Transition-Metal Catalyzed C-C Bond Coupling

Krische et al. applied their transfer hydrogenative C-C bond coupling chemistry to
the γ-butyrolactone syntheses. In 2012, they reported that the iridium-catalyzed carbonyl
2-(alkoxycarbonyl)allylation between various primary alcohols 45 and acrylic ester 46
afforded γ-substituted α-exo-methylene-γ-butyrolactone 47 with high enantioselectivity
(Figure 16) [101]. As shown in the mechanism, this transformation involves an a3–d3

umpolung process regarding the β-position of the acrylate counterpart 46, which normally
acts as an electrophile during C-C bond-forming reactions [102].
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In the C-C bond constructing catalytic transfer hydrogenation, a secondary alcohol
was not a suitable partner of acrylates because of the low susceptibility to the nucleophilic
attack [103] of the π-allyl complex derived from the acrylates. Just a year after their first
report, Krische and colleagues also revealed that ruthenium(0)-catalyzed hydrohydrox-
yalkylation of acrylates with vicinal diols or their oxidized congeners could provide a
series of γ-butyrolactones, including spiro-γ-butyrolactones (Figure 17a), polysubstituted
2,3′-spirooxindole-γ-butyrolactones (Figure 17b), and α-exo-methylene-γ-butyrolactones
(Figure 17c) [104]. As illustrated in Figure 17d, 1,2-diol 48 and its highly oxidized congeners
49 and 50 were transformed into the same outcome 51, indicating that this transformation
proceeds in a redox level-independent manner.

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW  23 of 50 

 

In the C-C bond constructing catalytic transfer hydrogenation, a secondary alcohol 

was not a suitable partner of acrylates because of the low susceptibility to the nucleophilic 

attack [103] of the π-allyl complex derived from the acrylates. Just a year after their first 

report, Krische and colleagues also revealed that ruthenium(0)-catalyzed hydrohydroxy-

alkylation of acrylates with vicinal diols or their oxidized congeners could provide a series 

of γ-butyrolactones, including spiro-γ-butyrolactones (Figure 17a), polysubstituted 2,3′-

spirooxindole-γ-butyrolactones (Figure 17b), and α-exo-methylene-γ-butyrolactones (Fig-

ure 17c) [104]. As illustrated in Figure 17d, 1,2-diol 48 and its highly oxidized congeners 

49 and 50 were transformed into the same outcome 51, indicating that this transformation 

proceeds in a redox level-independent manner. 

 

Figure 17. Syntheses of γ-butyrolactones via ruthenium-catalyzed hydrohydroxyalkylation. (a) Syntheses of spiro-γ-bu-

tyrolactones from diols and methyl acrylate; (b) Syntheses of polysubstituted 2,3’-spirooxindole-γ-butyrolactones from N-

benzyl-3-hydroxyoxindole and acrylic esters; (c) Syntheses of α-exo-methylene-γ-butyrolactones from hydroxyl-substi-

tuted methacrylate and diols; (d) Redox level-independent formation of 51. 

The asymmetric synthesis of α-exo-methylene γ-butyrolactones was developed by 

Zhang and colleagues in 2015 (Figure 18) [105]. This methodology utilized an enantiose-

lective chromium-catalyzed carbonyl 2-(alkoxycarbonyl)allylation of a wide range of al-

dehydes. To achieve superior enantioselectivity, the C2 symmetric bisoxazoline ligand 

was essential. Rigidification of Guiry’s tridentate ligand [106] provided a new ligand 52, 

which resulted in excellent enantiomeric excess of up to 99%. Similar to the previous meth-

ods [101,104], the inherent positive character of the acrylate β-position was inverted via 

the cobalt-assisted generation of allyl-chromium species 53. To demonstrate the synthetic 

utility, the total synthesis of an antitumor and antimicrobial natural product, (+)-meth-

ylenolactocin 54, was successfully conducted with a 53% overall yield over three steps and 

92% ee. (Figure 18, bottom). 

Figure 17. Syntheses of γ-butyrolactones via ruthenium-catalyzed hydrohydroxyalkylation. (a)
Syntheses of spiro-γ-butyrolactones from diols and methyl acrylate; (b) Syntheses of polysubstituted
2,3’-spirooxindole-γ-butyrolactones from N-benzyl-3-hydroxyoxindole and acrylic esters; (c) Syn-
theses of α-exo-methylene-γ-butyrolactones from hydroxyl-substituted methacrylate and diols; (d)
Redox level-independent formation of 51.

The asymmetric synthesis of α-exo-methylene γ-butyrolactones was developed by
Zhang and colleagues in 2015 (Figure 18) [105]. This methodology utilized an enantios-
elective chromium-catalyzed carbonyl 2-(alkoxycarbonyl)allylation of a wide range of
aldehydes. To achieve superior enantioselectivity, the C2 symmetric bisoxazoline ligand
was essential. Rigidification of Guiry’s tridentate ligand [106] provided a new ligand
52, which resulted in excellent enantiomeric excess of up to 99%. Similar to the pre-
vious methods [101,104], the inherent positive character of the acrylate β-position was
inverted via the cobalt-assisted generation of allyl-chromium species 53. To demonstrate
the synthetic utility, the total synthesis of an antitumor and antimicrobial natural product,
(+)-methylenolactocin 54, was successfully conducted with a 53% overall yield over three
steps and 92% ee. (Figure 18, bottom).
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Figure 18. Asymmetric synthesis of α-exo-methylene γ-butyrolactone via chromium-catalyzed
2-(alkoxycarbonyl)allylation and lactonization and total synthesis of (+)-methylenolactocin.

Spirooxindoles [107] and α-exo-methylene-γ-butyrolactones [12,108], biologically rel-
evant structural motifs, have received attention from medicinal chemists. In this regard,
the fusion of two scaffolds would be a promising strategy for securing biologically active
scaffolds. In 2013, the first asymmetric synthesis of 2,3′-spirooxindole-α-exo-methylene
γ-butyrolactone 57 via the indium(III)-catalyzed allylation of isatins 55 and β-amido allyl-
stannanes 56 was reported (Figure 19) [107,109]. The amide NH proton of allylstannanes
was essential for enhancing enantioselectivity as well as complete conversion by engaging
in six-coordinated indium complex 58 with tridentate ligand 59, thereby inducing 56 to
approach from Re-face [109]. The resulting acyclic 2-oxindoles 60 was cyclized under acidic
conditions to afford the desired lactone 57 with complete stereochemistry retention.

3.2.2. NHC-Catalyzed C-C Bond Coupling

A chiral N-heterocyclic carbene (NHC) has played an important role in making a
homoenolate nucleophile from enals through the a3–d3 umpolung reaction [110]; thus, it
has been widely used in the optically active γ-butyrolactone synthesis via [3 + 2] annulation.
Over the last decade, this strategy has been employed to construct a 2,3′ spirooxindole-γ-
butyrolactone system.

In 2011, Ye and colleagues discovered the first enantioselective NHC-catalyzed syn-
thesis of spirooxindole-γ-lactone with isatin and an enal as substrates (Figure 20a) [111].
A chiral NHC 61 derived from L-pyroglutamic acid displayed the best result, affording
the desired spirolactone up to 99% ee. A proximal hydroxy group in 61 was crucial to
obtain the lactone with an excellent yield and enantioselectivity because the hydrogen
bonding between the carbonyl group of isatin and the catalyst hydroxy group may guide
the direction of the isatin approach and enhance its reactivity.
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Figure 19. Asymmetric synthesis of 2,3′-spirooxindole-α-exo-methylene γ-butyrolactone via indium-
catalyzed amide allylation and lactonization.

A year later, a similar NHC-catalyzed transformation was carried out in the presence
of lithium chloride as an external activator. Scheidt and colleagues revealed that the
addition of two equivalents of LiCl to the reaction gave the beneficial effect of creating an
organized transition state with 62, which offered excellent enantioselectivity, similar to the
role of the internal hydroxy group of 61 in the previous method (Figure 20b) [112].

In 2015, it was independently disclosed by Chi (Figure 20c) [113] and Yao (Figure 20d) [114]
that aliphatic acids could participate in the NHC-catalyzed spiro-γ-lactone construction instead
of the aldehyde substrates. The key to this modification was the in situ pre-activation of car-
boxylic acid by various peptide coupling reagents, which enabled the formation of a common
NHC-coupled homoenolate intermediate.

Finally, Xu and colleagues reported that the saturated aryl ester 64 was also able to
engage in this type of NHC-catalyzed asymmetric annulation with catalytic amount of
1-hydroxybenzotriazole (HOBt) (Figure 20e) [115]. After the experimental studies, it was
revealed that HOBt had a dual role: activation of the ester for the next substitution by the
chiral NHC, and the stabilization of the effective transition state via hydrogen bonding.

A chiral NHC led to significant advances in dynamic kinetic resolution (DKR)-
mediated asymmetric transformation. In 2015, Johnson and colleagues developed the
first intermolecular DKR between α,β-unsaturated aldehydes and racemic β-halo-α-keto
esters 65, which installed three stereocenters during the single bond-forming process
(Figure 21) [116]. Using this strategy, they obtained 3,4,4-trisubstituted γ-butyrolactones 66
with three contiguous stereocenters in a single operation, with excellent enantioselectivity
(up to 98% ee).
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Figure 20. Asymmetric syntheses of 2,3′-spirooxindole-γ-butyrolactone via NHC-catalyzed homoenolate
annulation. (a,b) NHC-catalyzed 2,3′-spirooxindole-γ-butyrolactone formation from enals; (c,d) NHC-
catalyzed 2,3′-spirooxindole-γ-butyrolactone formation from carboxylic acids; (e) NHC-catalyzed 2,3′-
spirooxindole-γ-butyrolactone formation from aryl esters.

3.2.3. Photoredox-Catalyzed C-C Bond Coupling

Photoredox catalysis achieves the cutting-edge evolution in the C-H bond activation
chemistry; thus, it enables not only mild, economical, and environmentally friendly chemi-
cal reactions, but also the discovery of unprecedented reactivity of chemical bonds [117].
In 2015, MacMillan’s seminal work demonstrated that the α-C–H bond of alcohols could
by selectively activated in the presence of allylic, benzylic, α-C=O, and α-ether C-H bonds.
In addition, the corresponding α-hydroxyl radical participated in the formation of the
γ-lactones with methyl acrylate (Figure 22) [118]. The C–H bond-weakening, assisted
by hydrogen bond, gave rise to the unique selectivity, which was supported by tetra-n-
butylammonium phosphate as a catalytic H-bond acceptor. The versatility of this methodol-
ogy was demonstrated by testing several structurally complex substrates 68–75 containing
inherently activated C–H bonds (Figure 22, bottom).
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Recently, the greener variant of typical photoredox catalysis, the photo-organocatalytic
synthesis of this lactone has been accomplished by Kokotos and colleagues. (Figure 23) [119].
By utilizing a readily available and cheap photoinitiator, phenylglyoxalic acid 76 as an
alternative to transition metal catalysts, a variety of primary and secondary alcohol 77
and a maleic acid diester 78 merged into the corresponding γ-butyrolactones 79 in the
presence of visible light from sunlight or simple household lamps. Through extensive
mechanistic studies, it was proposed that photoinduced exciplex 80 formation facilitates
selective hydrogen atom abstraction from the secondary alcohol.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW  29 of 50 

 

 

Figure 23. Synthesis of γ-butyrolactones via photoorganocatalytic C-H activation. 

3.2.4. Miscellsious γ-Butyrolactone Formation 

Electroreduction of carbonyl compounds can convert electrophilic carbonyl com-

pounds into nucleophilic carbanion, which is further involved in the [3 + 2] coupling of γ-

butyrolactones. In this regard, electroreductive C-C coupling of α,β-unsaturated carbonyl 

compounds with ketones or aldehydes has been known to be useful for the synthesis of 

γ-butyrolactones. A previous electroreductive method [120] toward lactones in the pres-

ence of trimethylsilyl chloride (TMSCl) was improved by Kise and colleagues by means 

of a chiral auxiliary, leading to optically active 4,5,5-trisubstituted γ-butyrolactones 83 in 

high diastereoselectivity (Figure 24) [121]. The reaction is initiated with two-electron 
transfer to a more reducible diaryl ketone 82. The resulting carbanion 84 is diastereoselec-

tively coupled with the Michael acceptor 81. DFT calculations for the bond-forming tran-

sition states explained the reason for its Si-face preference. 

Figure 23. Synthesis of γ-butyrolactones via photoorganocatalytic C-H activation.

3.2.4. Miscellsious γ-Butyrolactone Formation

Electroreduction of carbonyl compounds can convert electrophilic carbonyl com-
pounds into nucleophilic carbanion, which is further involved in the [3 + 2] coupling of
γ-butyrolactones. In this regard, electroreductive C-C coupling of α,β-unsaturated carbonyl
compounds with ketones or aldehydes has been known to be useful for the synthesis of γ-
butyrolactones. A previous electroreductive method [120] toward lactones in the presence
of trimethylsilyl chloride (TMSCl) was improved by Kise and colleagues by means of a
chiral auxiliary, leading to optically active 4,5,5-trisubstituted γ-butyrolactones 83 in high
diastereoselectivity (Figure 24) [121]. The reaction is initiated with two-electron transfer
to a more reducible diaryl ketone 82. The resulting carbanion 84 is diastereoselectively
coupled with the Michael acceptor 81. DFT calculations for the bond-forming transition
states explained the reason for its Si-face preference.
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Figure 24. Asymmetric synthesis of 4,5,5-trisubstituted-γ-butyrolactones via electroreductive C-C
bond coupling.

The synthesis of 3,3′-spirooxindole-γ-butyrolactones, another isomeric form of the
spirooxindole-γ-lactone motif, has attracted less attention, but it is still valuable when it
comes to the longstanding need to secure a structurally diverse chemical library in the drug
discovery field. In 2017, Du and colleagues revealed that the peptide coupling reagent
(PCR)-assisted β-functionalization of indoline-2-one aliphatic acids 85 could produce the
desired spirofused γ-lactone 86 and 87 via [3 + 2] coupling with electrophilic carbonyl
substrates; isatins 88 or trifluoromethyl ketones 89 (Figure 25) [122]. After the intensive
screening of the reaction conditions, it was found that the optimal PCR was HATU for
isatin substrates and CDI for trifluoromethyl ketone substrates.
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Figure 25. Synthesis of 3,3′-spirooxindole-γ-butyrolactones via peptide coupling reagent-assisted
lactonization.

In 2017, a one-pot multicomponent reaction was exploited to construct enantiomeri-
cally pure 4,5-disubstituted γ-butyrolactones 93 by Bhat and colleagues. (Figure 26) [123].
Their strategy was the organocatalyzed Knoevenagel condensation/Michael addition/
decarboxylative lactonization cascade utilizing cheap and readily accessible starting mate-
rials such as Meldrum’s acid 90, aldehydes 91, hydroxyketones 92, and the chiral cinchona
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catalyst 94. Enamine (Z)-95, which has a chiral environment induced by 94, is subjected to
asymmetric 1,4-addition with the Knoevenagel condensation adduct 96 to afford 97 bearing
two contiguous stereogenic centers. This precisely designed three-component reaction
was able to avoid possible side reactions such as aldol condensation products between 91
and 92.
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Figure 26. Asymmetric synthesis of 4,5-disubstituted-γ-butyrolactones via organocatalyzed three-component coupling. 

3.3. Synthesis of γ-butyrolactones via C3-C4 and C2-O1 bond formation 
Connecting the C3-C4 bond in [3 + 2] annulation-type γ-butyrolactone formation has 

been less investigated than that of C4-C5 bond formation. Nevertheless, the development 
of this synthetic route is still significant, in that securing diverse synthetic tools has always 
been beneficial to organic chemists, particularly for complex natural product synthesis. 
Retrosynthetically, the disconnection of the C3-C4 and C2-O1 bonds gives d3 and d2 
synthons; thus, this mismatched relationship should be overcome through a certain um-
polung reaction. 

A borrowing hydrogen methodology, also known as hydrogen autotransfer, is a sub-
class of a wide range of transfer hydrogenation chemistry similar to the aforementioned 
transfer hydrogenative C–C bond coupling [124,125]. Beller and colleagues reported that 
ruthenium (Ru) pincer catalyst 100 promoted γ-butyrolactone synthesis from 1,2-diols 98 
and malonates 99 (Figure 27) [126]. Catalyst 100 temporarily abstracts hydrogen from 1,2-
diols to give the corresponding α-hydroxyketone 101, which can act as an electrophile. 
This step belongs to a polarity inversion process at the C3 position of the resulting γ-lac-
tones. Whereas the above-mentioned Ru-catalyzed spirolactonization consequentially de-
livers alcohol C–H functionalization type products (see Figure 17), this Ru-catalysis pro-
ceeds through a type of alcohol substitution, which offers monocyclic lactones. 

Figure 26. Asymmetric synthesis of 4,5-disubstituted-γ-butyrolactones via organocatalyzed three-
component coupling.

3.3. Synthesis of γ-Butyrolactones via C3-C4 and C2-O1 Bond Formation

Connecting the C3-C4 bond in [3 + 2] annulation-type γ-butyrolactone formation
has been less investigated than that of C4-C5 bond formation. Nevertheless, the devel-
opment of this synthetic route is still significant, in that securing diverse synthetic tools
has always been beneficial to organic chemists, particularly for complex natural product
synthesis. Retrosynthetically, the disconnection of the C3-C4 and C2-O1 bonds gives d3

and d2 synthons; thus, this mismatched relationship should be overcome through a certain
umpolung reaction.

A borrowing hydrogen methodology, also known as hydrogen autotransfer, is a
subclass of a wide range of transfer hydrogenation chemistry similar to the aforementioned
transfer hydrogenative C–C bond coupling [124,125]. Beller and colleagues reported that
ruthenium (Ru) pincer catalyst 100 promoted γ-butyrolactone synthesis from 1,2-diols 98
and malonates 99 (Figure 27) [126]. Catalyst 100 temporarily abstracts hydrogen from 1,2-
diols to give the corresponding α-hydroxyketone 101, which can act as an electrophile. This
step belongs to a polarity inversion process at the C3 position of the resulting γ-lactones.
Whereas the above-mentioned Ru-catalyzed spirolactonization consequentially delivers
alcohol C–H functionalization type products (see Figure 17), this Ru-catalysis proceeds
through a type of alcohol substitution, which offers monocyclic lactones.
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lates. In 2017, ketene silyl acetal 102 was applied as the effective enolate equivalent to 
constructing the lactone via regioselective epoxide opening followed by lactonization 
(Figure 28) [127]. Additionally, an ionic liquid system composed of a mixture of 1,3-dime-
thylimidazolium fluoride ([Dmim]F) and 1-butylimidazolium tetrafluoroborate 
([Hbim]BF4) was utilized to achieve the desired transformation. The catalytic amount of 
[Dmim]F acted as a Si-O bond activator and [Hbim]BF4 served as the solvent providing 
acidic media. This ionic liquid mixture was able to be reused up to three times, which is 
valuable for the contribution toward green chemistry. 
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3.4. Synthesis of Butyrolactone via C3-C4 and C5-O1 Bonds Formation 
There are a few examples of this synthetic approach through the formation of C3-C4 

and C5-O1 bonds during 2010 to 2020. Mostly, the single-electron transfer pathway is in-
volved in the C3-C4 and C5-O1 bond formation approaches. First, photoredox catalysis 
was applied with alkenes and suitable counterparts such as α,β-unsaturated acid [128], 
oxime acid [129], or haloacetic acid [130]. Second, a metal oxidant-mediated transfor-
mation of glycals to γ-butyrolactones was reported [131]. Third, the copper-catalyzed-cy-
clopropanol ring-opening cross-coupling reaction was utilized to synthesize γ-butyrolac-
tones containing quaternary carbon centers [132]. 

Figure 27. Synthesis of γ-butyrolactones via ruthenium pincer-catalyzed hydrogen autotransfer.

An epoxide is a useful three-atom building block in the [3 + 2] annulation strategy be-
cause of its susceptibility to the attack of suitable carbon nucleophiles such as ester enolates.
In 2017, ketene silyl acetal 102 was applied as the effective enolate equivalent to constructing
the lactone via regioselective epoxide opening followed by lactonization (Figure 28) [127].
Additionally, an ionic liquid system composed of a mixture of 1,3-dimethylimidazolium
fluoride ([Dmim]F) and 1-butylimidazolium tetrafluoroborate ([Hbim]BF4) was utilized to
achieve the desired transformation. The catalytic amount of [Dmim]F acted as a Si-O bond
activator and [Hbim]BF4 served as the solvent providing acidic media. This ionic liquid
mixture was able to be reused up to three times, which is valuable for the contribution
toward green chemistry.
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3.4. Synthesis of Butyrolactone via C3-C4 and C5-O1 Bonds Formation

There are a few examples of this synthetic approach through the formation of C3-C4
and C5-O1 bonds during 2010 to 2020. Mostly, the single-electron transfer pathway is in-
volved in the C3-C4 and C5-O1 bond formation approaches. First, photoredox catalysis was
applied with alkenes and suitable counterparts such as α,β-unsaturated acid [128], oxime
acid [129], or haloacetic acid [130]. Second, a metal oxidant-mediated transformation of
glycals to γ-butyrolactones was reported [131]. Third, the copper-catalyzed-cyclopropanol
ring-opening cross-coupling reaction was utilized to synthesize γ-butyrolactones contain-
ing quaternary carbon centers [132].
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3.4.1. Polar Radical Crossover Cycloaddition (PRCC)

Polar radical crossover cycloaddition (PRCC) has been utilized in the construction
of various saturated heterocycles, including tetrahydrofurans [133], γ-lactams, and pyrro-
lidines [134]. The co-catalyst of Fukuzumi acridinium single-electron photooxidant and
a redox-active hydrogen atom donor is a key mediator of PRCC through photoredox
catalysis. Nicewicz and colleagues extended the PRCC approach to the synthesis of γ-
butyrolactones [128]. First, the oxidizable alkenes 103 and α,β-unsaturated acids 105 as
nucleophiles forged γ-butyrolactones 107 under photoredox catalysis. As depicted in
Figure 29, an electrophilic alkene cation radical 104 is formed by the excited acridinium-
mediated single-electron oxidation followed by the generation of the radical intermediate
106 through the addition of carboxylic acid 105 to the alkene cation radical. 5-exo-trig
radical cyclization and hydrogen atom transfer with thiophenol provided the desired
γ-butyrolactones. Alternatively, α-amino-γ-butyrolactones 110 have also been synthesized
by the PRCC method using oxidizable alkenes 108 and O-benzyloxime acids 109, which
correspond to α,β-unsaturated acids 105 (Figure 30) [129].
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3.4.2. Atom-Transfer Radical Addition (ATRA)

Another example of γ-butyrolactone synthesis mediated by photoredox catalysis is
atom-transfer radical addition (ATRA), which was reported by Kokotos and colleagues in
2018 [130]. ATRA has been utilized as a powerful method for one-step C-C and C-X bond
formation between olefins and haloalkanes. Kokotos and colleagues applied photoredox
catalysis in ATRA using Ru(bpy)3Cl2 as a photoredox catalyst, which was employed in the
conversion of alkenes 111 and α-iodoacetic acids 112 to γ-butyrolactones 113 under light
irradiation. In this reaction, the excited photocatalyst is reduced by ascorbate, followed
by reaction with α-iodoacetic acid 112 to generate the electrophilic radical 114, which
reacts with the alkene leading to radical 115. Then, propagation proceeded with iodoacetic
acid, resulting in the formation of 116. Finally, γ-butyrolactone 113 is formed by the
deprotonated carboxylic acid under basic reaction conditions (Figure 31).
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3.4.3. Mn(OAc)3-Mediated Radical Lactonization

Manganese (III) acetate has been utilized as a versatile single-electron transfer (SET)
reagent. Mukherjee and colleagues reported Mn(OAc)3-mediated radical lactonization to
synthesize carbohydrate-based γ-butyrolactones from glycals [131]. Under sonication, a
variety of 1,2-glycals and 2,3-glycals were converted to γ-butyrolactones in a regioselective
and stereoselective manner, which were governed by conformational preferences for glycal
substrates (Figure 32).
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3.4.4. Copper-Catalyzed Cyclopropanol Ring-Opening Cross-Coupling Reaction

Cyclopropanols 117 are versatile substrates in various ring-opening and ring-expansion
reactions because of the intrinsic stain of the three-membered ring. One of the represen-
tative reactions in this class is the cyclopropanol ring-opening cross-coupling reaction
mediated by diverse transition metal catalysts or single-electron transferring oxidants, re-
sulting in the formation of a variety of β-substituted ketones. Formation of α,β-unsaturated
enone byproducts, which are normally caused by β-hydride elimination of the metallo-
homoenolate 120, is one of the major issues in this reaction. Interestingly, Dai and colleagues
developed a method to accelerate α,β-unsaturated carbonyl byproduct 121 by adding potas-
sium iodide in the reaction mixture and reacting with 2-bromo-2,2-dialkyl acetate 118 to
obtain γ-butyrolactones 119 bearing quaternary carbon centers, which are catalyzed by
Cu(OTf)2 (Figure 33) [132].
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3.5. Synthesis of γ-Butyrolactones via C2-C3 and C2-O1 Bonds Formation

Carbon monoxide is used as a versatile C1 source in organic synthesis, thereby re-
acting with suitable unsaturated alcohols to afford various ring sizes of lactones [135].
There have been increasing reports of methodologies for producing γ-butyrolactones using
carbonylations and hydroformylations over the past decades. However, due to the innate
drawbacks of CO, including its high toxicity, gaseous nature, and strict regulations for trans-
portation, bypassing the direct use of CO gas is another significant topic in carbonylation
research [135].

3.5.1. Carbonylative Lactonization

Among various methodologies utilizing CO gas or other carbonyl sources, transition-
metal-catalyzed carbonylative lactonization is most commonly used for γ-lactone forma-
tion. Iron pentacarbonyl is a cheap, practical surrogate of the carbonyl donor, and it was
first applied to convert (amino)polyhydroxylated terminal olefins 122 into the bicyclic
lactones 123 by Gracza and colleagues (Figure 34) [136]. In this system, a CO molecule is
generated in situ by the assistance of copper(II) chloride and gentle heat, and subsequently
participates in the palladium(II) catalysis cycle. Very recently, the same group showed that
this protocol could be applicable to a continuous flow reaction in comparable yield with
the batch reaction [137].
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Figure 34. Synthesis of bicyclic γ-butyrolactones via palladium-catalyzed carbonylation using iron
pentacarbonyl.

In 2014, Jiang and colleagues reported a unique one-pot-four-step cascade reaction
in ionic liquid media by employing a palladium-catalyzed carboxylative annulation to
construct highly functionalized γ-butyrolactones (Figure 35) [138]. This transformation is
initiated from the trans-chloropalladation of alkynoates 124, of which the regioselectivity is
governed by electronic factors. Intermediate 127 undergoes carbopalladation with butenol
125, followed by CO insertion and reductive elimination, yielding C3 functionalized γ-
lactones 126 bearing a tetrasubstituted olefin unit. The imidazolium type ionic liquids
played an important role during the reaction as a ligand of the palladium catalyst and as a
chloride source [139]. They further demonstrated the utility of vinyl chloride functionalities
in the products by employing them to Suzuki–Miyaura coupling and Negishi coupling.
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tion-metal-catalyzed carbonylative heteroatom addition, were successfully used as coun-
terparts of thiolated α-alkylidene-γ-butyrolactone synthesis in the presence of dicobalt oc-
tacarbonyl or palladium complexes such as Pd(PPh3)4 and Pd(OAc)2 (Figure 36) [140]. A 
variety of homopropagyl alcohols 128 and aryl disulfides produced the desired thiolated 
lactones 129 by both catalytic systems with high regio- and stereoselectivity (cis-isomer). 
Mechanistically, despite the difference in the order of metal-alkyne complexation, the 
presence of a hydroxy group plays a critical role in the regioselectivity of carbonyl inser-
tion in both cases. 
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Figure 35. Synthesis of C3-substituted γ-butyrolactones via palladium-catalyzed carbonylation
cascade in the ionic liquid.

Organic disulfides, which have been considered as inefficient substrates for transition-
metal-catalyzed carbonylative heteroatom addition, were successfully used as counterparts
of thiolated α-alkylidene-γ-butyrolactone synthesis in the presence of dicobalt octacarbonyl
or palladium complexes such as Pd(PPh3)4 and Pd(OAc)2 (Figure 36) [140]. A variety of
homopropagyl alcohols 128 and aryl disulfides produced the desired thiolated lactones 129
by both catalytic systems with high regio- and stereoselectivity (cis-isomer). Mechanistically,
despite the difference in the order of metal-alkyne complexation, the presence of a hydroxy
group plays a critical role in the regioselectivity of carbonyl insertion in both cases.
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C-C bonds in cyclopropanols can be easily activated by a transition-metal catalyzed
ring-opening process generating metal-homoenolate species, which possess the potential
of structural diversification by engaging in Csp3-Csp2 and Csp3-Csp3 cross-coupling with
various counterparts [141]. Dai and colleagues combined this palladium-catalyzed C-C
bond activation reaction with conventional carbonylation, and successfully constructed
synthetically challenging oxaspirolactone structure 130 (Figure 37) [142]. The usefulness of
this strategy was demonstrated by total syntheses of α-levantanolide and α-levantenolide
in two and four steps, respectively (Figure 37, bottom).
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3.5.2. Hydroformylation-Oxidation

The hydroformylation of olefins is one of the extensively investigated classes of car-
bonylation, especially for industrial applications [143]. This reaction is also applicable
to γ-butyrolactone syntheses by adding a formyl group to hydroxyalkenes and subse-
quent oxidation of the corresponding lactols. Although the carbonyl insertion step has
been known to normally take place in the anti-Markovnikov direction, Breit and col-
leagues successfully converted 1,1-disubstituted homoallylic alcohols 131 into the desired
γ-lactones 132 containing quaternary carbon at the α-position (Figure 38) [144]. The key
to this achievement was the use of a phosphinite as a removable catalyst-directing group.
Diphenylphosphinites 133 was formed via transesterification with a catalytic amount of
Ph2POMe and the resulting phosphinite group-guided approach of the rhodium hydride
complex afforded a favorable six-membered cyclic hydrometallation transition state 134.
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mentally friendly synthetic methods. Nevertheless, due to the chemically inert nature of 
CO2 gas, carboxylation (CO2 activation) has been less widespread than carbonylation (CO 
activation). The nickel-catalyzed methyl-carboxylation of homopropagylic alcohols 137 
met this demand, affording α-alkylidene-γ-butyrolactones 138 in a regio- and stereoselec-
tive manner (Figure 40) [147]. Ma and colleagues discovered that this catalytic system only 
required 1 mol % of Ni catalyst for CO2 activation and proceeded with broad functional 
group tolerance. The excellent regioselectivity may derive from the directing effect of the 

Figure 38. Synthesis of 3,3,5-trisubstituted-γ-butyrolactones via rhodium-catalyzed Markovnikov
hydroformylation and oxidation.

The enantioselective hydroformylation of 1,1-disubstituted olefins has proven to be
unproductive, presumably due to the steric repulsion of an olefin coordination with a metal
center [145]. Very recently, Zhang and colleagues addressed this challenge by modifying
conventional chiral ligands to more sterically demanding variants (Figure 39) [146]. Under
the optimized conditions, the hydroformylation of allylic alcohol 135 occurred following
the anti-Markovnikov rule in high ee values, producing the corresponding optically active
lactol. The lactol was able to be transformed into not only the desired optically active
lactone 136 via PCC oxidation, but also into the tetrahydrofuran derivative via reduction
or allylation.
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3.5.3. Carboxylation-Lactonization

Carbon dioxide is the most abundant C1 source on earth; thus, harnessing this
molecule would be appealing with respect to the development of economical and en-
vironmentally friendly synthetic methods. Nevertheless, due to the chemically inert nature
of CO2 gas, carboxylation (CO2 activation) has been less widespread than carbonylation
(CO activation). The nickel-catalyzed methyl-carboxylation of homopropagylic alcohols
137 met this demand, affording α-alkylidene-γ-butyrolactones 138 in a regio- and stereose-
lective manner (Figure 40) [147]. Ma and colleagues discovered that this catalytic system
only required 1 mol % of Ni catalyst for CO2 activation and proceeded with broad func-
tional group tolerance. The excellent regioselectivity may derive from the directing effect
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of the adjacent hydroxy group. The potential of this methodology was illustrated through
the first total synthesis of (±)-heteroplexisolide E 139 [148].
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3.6. Synthesis of γ-Butyrolactones via C3-C4 Bond Formation
C-H Insertion

Over the past several decades, Rh-catalyzed intramolecular C-H insertion has been
intensively investigated and established as a powerful tool for the construction of struc-
turally diverse cyclic compounds. Unsworth and colleagues reported a one-pot C-H
insertion/olefination sequence to afford α-alkylidene-γ-butyrolactones (Figure 41) [149].
Rh-catalyzed C-H insertion of diazo compound 140 gave α-phosphonated γ-lactone 141,
which was subsequently converted to α-alkylidene-γ-lactone 142 via Horner–Wadsworth–
Emmons-type olefination. A variety of γ-lactones were obtained in a one-pot procedure in
useful yields. The versatility of this protocol was demonstrated by the successful synthesis
of natural products, cedamycin A, B, and eudesmanolide [150,151].

3.7. Synthesis of γ-Butyrolactones via Oxidative C2-O1 Bond Formation

A simple γ-butyrolactone is itself a broadly used material [152] as a solvent, extraction
agent, and intermediate for polymers, pharmaceutics, herbicides, rubber production, etc.
The oxidative lactonization of 1,4-butanediol under an efficient catalytic system has been
a dominant industrial process because of its significant advantages [152]. This method
does not produce any waste except for reusable hydrogen gas. Additionally, 1,4-butanediol
can be obtained from renewable biomass such as glucose [153]. For these reasons, it is not
surprising that many researchers have intensively modified this route to be more efficient
and environmentally benign than conventional methods. The representative oxidative
lactonization conditions recently developed for the synthesis of γ-butyrolactones from
1,4-butanediol are summarized in Table 4.
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Entry Method Catalyst Ref

1 Vapor phase reaction Cu-SiO2 nonocomposite [154]
2 Vapor phase reaction SiO2 supported Cu, Ca, Sr or Br promoter [155]

3 1 Vapor phase reaction MgO supported Cu [156]
4 2 Vapor phase reaction CaAlO supported Cu [157]
5 3 Vapor phase reaction MgO supported Cu, Co3O4 promoter [158]
6 4 Vapor phase reaction MgO supported Cu [159]
7 Vapor phase reaction ZrO2 supported Cu, La2O3 promoter [160]

8 5 Vapor phase reaction CeO2-Al2O3 supported Cu [161]
9 6 Continuous flow reaction AlOx supported Cu nanoparticle [162]
10 Chemoenzymatic reaction Type II FMO-E and HLADH [163]
11 Chemoenzymatic reaction HLADH [164]
12 Heterogeneous solution phase reaction SnO2 supported Au [165]
13 Heterogeneous solution phase reaction Mn2O3 supported Au [166]
15 Homogeneous solution phase reaction Cu/nitroxyl [167]
16 Homogeneous solution phase reaction Fe complex 143 [168]
17 Homogeneous solution phase reaction Fe complex 144 [169]
18 Homogeneous solution phase reaction Fe complex 145 [170]
19 Homogeneous solution phase reaction Fe complex 146 [171]

1 Simultaneous hydrogenation of acetophenone; 2 Simultaneous hydrogenation of furfural alcohol; 3 Simultaneous hydrogenation of
nitrobenzene; 4 Simultaneous hydrogenation of ortho-chloronitrobenzene.5 Simultaneous hydrogenation of benzaldehyde; 6 Simultaneous
hydrogenolysis of furfural derivatives.
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fication of diverse biologically active small molecules containing γ-butyrolactone. More-
over, significant efforts to develop efficient and concise synthetic strategies toward γ-
butyrolactone moiety have been reported in recent years utilizing readily available starting
materials and newly developed reactions. The construction of diverse biologically ac-
tive natural products and synthetic pharmaceuticals bearing γ-butyrolactone are allowed
with these novel strategies. This review includes a brief overview of biologically active
γ-butyrolactones and a summary of the representative synthetic methodologies toward γ-
butyrolactones developed between 2010 and 2020, which are classified in the seven sections
based on the sites of bond formation (Table 5) and described their reaction mechanism and
further application in the synthesis of biologically active molecules. This update will help
to develop biologically active new γ-butyrolactones and to solve hurdles in the synthesis
of γ-butyrolactone-bearing natural products and pharmaceuticals as well as to develop
novel synthetic approaches toward γ-butyrolactones.
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