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Abstract: In the modern technological era, Anti-cancer peptides (ACPs) have been considered a
promising cancer treatment. It’s critical to find new ACPs to ensure a better knowledge of their func-
tioning processes and vaccine development. Thus, timely and efficient ACPs using a computational
technique are highly needed because of the enormous peptide sequences generated in the post-
genomic era. Recently, numerous adaptive statistical algorithms have been developed for separating
ACPs and NACPs. Despite great advancements, existing approaches still have insufficient feature
descriptors and learning methods, limiting predictive performance. To address this, a trustworthy
framework is developed for the precise identification of ACPs. Particularly, the presented approach
incorporates four hypothetical feature encoding mechanisms namely: amino acid, dipeptide, tripep-
tide, and an improved version of pseudo amino acid composition are applied to indicate the motif
of the target class. Moreover, principal component analysis (PCA) is employed for feature pruning,
while selecting optimal, deep, and highly variated features. Due to the diverse nature of learning,
experiments are performed over numerous algorithms to select the optimum operating method.
After investigating the empirical outcomes, the support vector machine with hybrid feature space
shows better performance. The proposed framework achieved an accuracy of 97.09% and 98.25%
over the benchmark and independent datasets, respectively. The comparative analysis demonstrates
that our proposed model outperforms as compared to the existing methods and is beneficial in drug
development, and oncology.

Keywords: anticancer peptides; artificial intelligence; biomedicine; statistical approach; machine
learning

1. Introduction

Oncology is a medical specialization that focuses on the diagnosis and treatment of
persons having cancer. Cancer is the most debilitating illness and the leading cause of
mortality in both economically developed and undeveloped countries. This deadly illness
claims the lives of over eight million individuals each year [1]. According to forecasts, the
number of cancer cases is expected to increase to 16 million by 2020 [2,3]. Cancer treatment
using traditional procedures, such as chemotherapy, radiation therapy, hormone therapy,
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and targeted therapy, has been judged to be ineffective owing to the high expense and
detrimental effects on normal cells [4,5].

ACPs have been regarded as the most effective cancer treatment over the past several
decades due to their inability to interfere with normal body physiological activities. Differ-
ent potential treatment possibilities for cancer that target peptides as shown in Figure 1.
They have been utilized in pre-clinical studies for a variety of objectives, including diabetes,
cardiovascular illness, and several types of malignancies [6,7]. ACPs offer extraordinary
and distinct advantages, such as being more efficient and less dangerous than synthetic
medications [4]. A peptide’s sequence is comprised of less than 50 amino acid residues.
ACPs deal extraordinary and distinct advantages, such as being more efficient and less
dangerous than synthetic medications. ACPs are easily able to treat cancerous cells because
of their amphiphilic nature however the specific affected cells are removed by engaging
them with anionic cell membrane components of a cancer cell [8].

Figure 1. Various possible treatment options for cancer using peptides sequence.

Early-stage cancers have a greater chance of survival and are less likely to cause
morbidity [9]. In the healthcare system, the failure to diagnose cancer at an early stage
can pose a significant problem in treating patients. Cancer is not accurately detected due
to insufficient noninvasive and accurate markers [10]. Peptide-based biomarkers have
contributed to the earlier detection of cancer because of advancements made in genomics
and proteomics [11]. Once cancer has been diagnosed, treatment is the next step. In the
current medical system, conventional cancer treatments include chemotherapy, radiation
therapy, hormonal therapy, and surgery. Traditional treatments are limited by unfavorable
side effects and high expenses [12]. The possibility of cancer occurring again after successful
treatment, means we need a better and more effective treatment [13]. Currently, peptide-
based therapies have emerged as a novel treatment strategy for cancer [4]. These features
include high specificity, good efficacy, easy synthesis, low toxicity, chemical modification
ease [14,15], and less immunogenicity in comparison with recombinant antibodies. Recent
research has indicated that therapeutic peptides can be used both as a diagnostic tool and as
a potential treatment for many diseases [16,17]. The last decade has reported many natural
peptides, which possess diverse biological activities (antifungal, antiviral, antibacterial,
anticancer, tumor-homing) [18].

Several recent articles [19–22] have shown that applying the principles of Chou’s
5-step procedures while building a new sequence-analyzing tool or statistical predictor:
(a) The first phase in constructing a predictor is to identify or design a valid benchmark
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dataset; (b) The second phase related to organizing the data in a way where the internal
connection for target peptide is detected that may be correctly reflected; (c) The next phase
is to choose the optimum operating model; (d) The model is then assessed over test data
using various evaluation metrics in the fourth phase; (e) and eventually, a user-friendly
and publicly available web-server for the predictor is launched. We deeply investigated
the literature study and found two main problems:

• Prior peptide classification models were developed using a single feature descriptors
method without any modification that captured meaningless information against each
peptide sequence.

• To improve the accuracy of peptide classification, most of the studies followed a fusion
strategy to collect a diverse and massive number of features, resulting in homogeneous
patterns and high dimension descriptors that affect the model performance.

To overcome these problems, we built an effective and computationally intelligent
framework for ACPs prediction. To express peptide sequences, three unique protein sample
formulation approaches are used: amino acid composition (AAC), dipeptide composition
(DPC), tripeptide composition (TPC), and an improved version of IPseAAC. In addition,
PCA is used to find strong discriminatory features from extracted feature spaces. Finally,
three numerous classification learners, such as support vector machine (SVM), random
forest (RF), and naïve Bayes (NB), are ensembled as operational algorithms to test the
proposed model’s predicted outputs. Our four-fold contributions are the following bullets:

• Due to the lack of an effective vaccine, the increase in drug-resistant, and the fatal
nature of cancer, we present a novel intelligent framework for efficiently distinguishing
anticancer peptides from unstructured peptides sequences. The proposed paradigm is
beneficial to the development of vaccines against cancer peptides.

• The variety and numbers of peptides in databanks are rapidly increasing due to
the advancement of sequence technology. We deeply investigated the literature and
concluded that most of the researchers use numerous flavors of encoding techniques,
which exhibit poor performance when extracting contextual information from peptide
sequences, resulting in non-representative algorithms. In this paper, a novel approach
is presented that engages a diverse collection of features to obtain using statistical
methods. The proposed model extracts contextual features to accurately categorize
the nature of peptides.

• The PseAAC method demonstrates an incredible performance in various protein
sequence classification that comprises three physicochemical properties including
hydrophilicity, hydrophobicity, and charge of basic amino acids however, sometimes
it gives poor results when the sequence of peptides is short in length. To improve
the prediction strength, we added some new physicochemical properties including
flexibility, irreplaceability, solvent accessible surface area, polarity, polarizability, and
rigidity.

• We performed numerous possible combinations of features against an ensemble classi-
fier to evaluate the strength of individual components. The proposed model shows
convincing results and provides new state-of-the-art (SOTA) accuracy over testing
peptide sequences.

The rest of the article is arranged as follows: Section 2 provides a brief description of
the existing studies, while Section 3 covers materials and procedures. Similarly, in Section 4
comprehensive experimental results are briefly discussed. Finally, Section 5 concludes the
study with a future research plan.

2. Related Work

In this section, we demonstrate the use of well-known techniques for the classifica-
tion of ACPs based on traditional machine learning (ML) methods. As demonstrated in
Table 1, all works discriminate peptides into two categories: positives (ACPs) and negatives
(NACPs).



Sensors 2022, 22, 4005 4 of 19

Table 1. Existing approaches for the prediction of ACPs and NACPs using ML techniques.

References Features Evaluation Classifier

[23] PseACC, g-gap dipeptide Accuracy, Sensitivity,
Specificity, MCC SVM

[24] AAC, DPC, ATC, and PCP —— SVM, RFT

[25] g-gap dipeptide
Accuracy, Sensitivity,

Specificity, MCC,
F1-score

SVM

[26]
Composition-based,

physicochemical properties
and profiles

Accuracy, Sensitivity,
Specificity, MCC,

AUC, p-value
SVM, LR, KNN, RF

[27] AAC, Conjoint triad,
PAAC, GAAC

Accuracy, Sensitivity,
Specificity, MCC,

F1-score
SVM, RFT, LibD3C

[28]
K-space amino acid pair,

Composite physiochemical
properties, auto covariance,

Accuracy, Sensitivity,
Specificity, MCC SVM, RFT, FKNN

[29] AAC, DPC, Terminus
composition, binary profile —— Tree based

[30] Binary profile, DPC
Accuracy, Sensitivity,

Specificity, MCC,
AUC

SVM

[31] ReduceAAC, AAC,
average chemical shift

Sensitivity, Specificity,
MCC, QA

SVM

[32] PAAC, RAAC, g-gap
dipeptide

Accuracy, Sensitivity,
Specificity, MCC

SVM, KNN, PNN, RF,
GRNN

[33]

Pseudo position specific
scoring matrix, Composite

protein sequence,
Split-AAC

Accuracy, Sensitivity,
Specificity, MCC,

G-mean, F-measure,
Precision, Recall

SVM, KNN, PNN

[34] Protein relatedness
measure

Sensitivity, Specificity,
MCC, AUC, Overall

accuracy
SVM, AdaBoost

[35] PAAC, Local alignment
kernel

Accuracy, Sensitivity,
Specificity, MCC SVM

Manually experimentation strategy to identify new ACPs is time-consuming and
costly. As ACPs play a crucial role, therefore academics and pharmaceutical companies
have turned to automation as an alternative method for identifying ACPs. In this regard,
researchers have used a variety of automated intelligence algorithms to predict ACPs.
In an anticancer study [23], Chen et al. presented the “iACP” framework for peptide
identification. They used an improved G-Gap DPC in conjunction with peptide sequence
formulation. Similarly, Manavalan et al. developed a novel model for predicting ACPs [24].
The composite feature set, on the other hand, is made up of optimal information that
includes physicochemical properties, DPC, ionic, and so on. K-fold cross-validation is used
to train and test the proposed system. Furthermore, Tyagi et al. created silico algorithms to
discriminate ACPs from uncharacterized sequences [30]. Four separate datasets are used
to evaluate the peptides classification model. On the other hand, two statistical methods
including split AAC and binary profile are applied for peptides encoding. Although, Li
et al. introduced a mechanism for feature integration to discriminate of ACPs [31]. To
extract robust features, a compact form of AAC, properties of individual amino acids, and
traditional AAC are used. Using SVM, the predictor model increased its performance in
terms of accuracy. Akbar et al. created a new model named “iACP-GAEnsC” to identify
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ACPs [32]. They followed a hybrid encoding strategy to extract high representative features
from target peptides. An evolving genetic algorithm is used to assess the performance
consequences of the created technique. Kabir et al. created “TargetACP,” revolutionary
adaptive genetic algorithms and sequential facts [33]. Furthermore, the synthetic minority
oversampling technique is a practice that efficiently distributes samples between minority
and majority classes into equal sizes. The proposed system was tested using two differ-
ent benchmark datasets and yielded better performance results. Moreover, Kumar et al.
introduced a web server namely “ACPP” that precisely identifies the positive peptides
from negative samples [34]. Their system revealed many settings that allow the operator
to construct and identify ACPs properly. It can also give information about the lethal
function of each target peptide. Likewise, Hajisharifi et al. predicted ACPs using pseudo
amino acid composition (PseAAC) and a unique kernel with local alignment [35]. In a
subsequent study, Xu et al. used the g-gap DPC approach to peptide encoding [25]. To
reduce unnecessary and homogenous features they utilized maximum relevance-maximum
distance. To further boost the performance Boopathi et al. presented two variant feature
selection techniques that choose optimal yet informative descriptors from features space
generated via seven peptide encoding methods [26]. Most of the ML models show inade-
quate performance due to high dimensional descriptors. To address such an issue Li et al.
proposed a model based on various feature extraction techniques and obtain incredible
performance when forwarding a 19-dimensional vector [27]. Due to the diverse nature of
genomic sequences, accurate classification of target peptides has become a challenging job,
therefore Akbar et al. fused three peptide encoding methods, and later k-space amino acid
pairs were applied to extract more correlated features [28]. In an another study, Agrawal
et al. analyzed the performance of the ETree classifier with AAC and DPC, and based on
the best model they designed a webserver that is compatible with edge devices [29].

Due to the importance of medicine and the growing trend in the application of ML
techniques, we briefly presented a literature review that discusses how these techniques are
used for cancer prediction and prognosis. Researchers in these studies consider prognostic
and predictive factors independent of treatment, or they integrate these factors to guide
treatment for cancer patients. Furthermore, we present the different types of ML methods
that are used, the types of data they incorporate, as well as the pros and cons of each
technique. By utilizing ML and artificial intelligence, precision medicine-based treatments
can become more targeted. To make medical predictions, researchers should develop their
understanding of cause and reflect on relationships between factors such as how a cancer
patient responds to drug treatments.

3. Materials and Methods

In this section, all the components used in the proposed work are briefly described.
The overall mechanism is presented in Figure 2.

3.1. Dataset

For statistical predictors, selecting or creating a trustworthy dataset is crucial since
it has a significant impact on classification measures. Maintaining the significance of the
dataset in mind, two well-known datasets, namely the benchmark and the main datasets
are used in this study for the experimental purpose [30]. Although, these datasets are
divided into two categories: ACPs and NACPs, where the ACPs data is taken from the
anuran defense peptides database [36] and the antimicrobial database and peptides [37].
Conversely, NACPs biological sequences are obtained using an arbitrary selection of
peptides from the Swiss-Prot proteins databank [38]. The main dataset has a total of
2475 sequences, containing 225 ACPs and 2250 NACPs. [39]. The benchmark dataset, on
the other hand, was collected from [23] which contains 138 ACPs and 206 NCPs [30]. In
this study, the main and benchmark datasets are represented by (PSD1) and (PSD2). The
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set of ACPs is represented as S1+ and a set of NCPs is represented by S2-. The union and
intersection of the S+ and S− express benchmark dataset in Equations (1) and (2).

D1 = S+1 U S−2 (1)

The intersection of the S+ and S− of the data set should be empty.

D1 = S+1 ∩ S−2 (2)

The format of the AntiCP sample in the dataset is given below:

>ACP_1 GLWSKIKEVGKEAAKAAAKAAGKAALGAVSEAV

Figure 2. The proposed framework for the classification of ACPs and NCPs.

3.2. Preprocessing

To get the best outcome and accuracy, preprocessing removes duplication and noisy
data from the data using several tools like Jalview and cluster database at high identity
with tolerance (CD-HIT). In this work, a CD-HIT tool is used to reduce repeated peptides
and similarity bias. According to the general homology bias, peptides with more than 90%
identical sequences are discarded.

3.3. Peptide Encoding Methods

The most challenging task in the post-genomic era is to determine how to generate
a biological sequence with a discrete model that preserves important sequence-order
information or a crucial motif feature. As shown in a comprehensive study, ML techniques
(such as the ‘Optimization’ method [40], the ‘Covariance Discriminant’ algorithm [19],
the ‘K-Nearest Neighbor (KNN)’ [41] algorithm, and the SVM algorithm [42] can only
employ vectors. The loss of sequence-motif information is the key concern noted in
the discrete model. Chou proposed PseAAC to maintain sequence-motif information in
protein [20]. In the domain of computational proteomics, the PseAAC method has been
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widely used for feature extraction purposes [22]. Considering the PseAAC technique, four
strong open-access software packages were created: ‘PseAAC’ [43], ‘PseAAC-Builder’ [44],
‘propy’ [45], and ‘PseAAC-General’ [46]. The initial three are mainly used for creating
different characteristics of Chou’s unique PseAAC [47], whereas the final is for Chou’s
standard PseAAC [48]. Such a method not only extracts specific and fixed-length features
but can capture some higher-level features including ‘functional domain’ mode, ‘gene
ontology’ mode, and ‘PSSM’ mode. Considering the encouraging success of PseAAC in
the field of proteins, it was expanded to DNA and RNA using the PseKNC idea (Pseudo
K-tuple Nucleotide Composition) [49]. ‘Pse-in-One’ [50], a strong web server, and its
upgraded version, ’Pse-in-One2.0,’ [38] were recently released. The statistical details of the
datasets used in this research is mentioned in Table 2, where the total samples are split into
standard 70% and 30% for training and testing, respectively.

Table 2. The detailed statistics of ACP and NACPs of two peptide sequences datasets.

Datasets ACP NACPs Total Data Training Data Testing Data

PSD1 (Benchmark) [23] 138 206 344 241 103

PSD2 (Main dataset) [39] 225 2250 2475 1732 743

The input data is transformed into numerical descriptors in the feature extraction
process, which describe different information about the peptides [51]. To reliably identify
protein sequences, many algorithms have been presented in the early studies to capture
high discriminative features [52]. In this study, four diverse peptide encoding techniques,
namely: AAC, DCP, TPC, and IPseAAC are capable to gather salient, robust, and meaning-
ful information from input biological sequences.

3.3.1. Amino Acid Composition (AAC)

The peptide is made up of a 20-amino-acid sequence. There are two sorts of models
that may be used to describe a peptide sequence: sequential and discrete models. However,
we only focused on discrete models in our research where AAC is the most basic and often
used for biological sequence classification. The AAC of a peptide sequence is made up of 20
distinct integers that indicate the standardized frequency of occurrence of 20 basic amino
acids in peptides. When AAC is applied to peptides we can get a 20D vector as shown in
Equations (3) and (4). Let’s assume P is a peptide sequence containing N amino acids.

P =
[
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where, Pi ε R = [A, C, D . . . . Y] illustrates the appearance frequencies of 20 native amino
acids while T is the transpose function that arranges data row/column-wise. The lack of
sequence-length effects, which ignores exact hidden information in protein sequences, is
the fundamental shortcoming of AAC-based features. To overcome this problem Chou
introduced the idea of PseAAC.

3.3.2. Dipeptide Composition (DPC)

For the encoding of cancer peptide sequences, DPC is a discrete technique that mainly
considers neighbor amino acid features to train the ML algorithms. It represents the occur-
rence number of adjoining amino acids and finally generates a 400D vector against each
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peptide. It provides details about protein sequences on a massive level. The fundamen-
tal benefit of DPC over traditional AAC is that it focuses on all the features of peptides,
whereas AAC simply considers the single frequency of amino acids in peptides sequences.
The feature descriptor for DPC can be computed via Equation (6):

DPC(i) =
1

Total Feature
(DP(i)), (6)

where DPC(i) represents the overall frequency of each couple motif, DP(i) represents one
single occurrence from 400 patterns, and total numerical values signify the whole collection
of features.

3.3.3. Tripeptide Composition (TPC)

The ability to extract a collection of meaningful parameters is one of the most cru-
cial components of pattern recognition. In biology, tripeptides are vital peptide encoding
mechanisms that capture silent and discriminative features. A good and minimum bio-
logical recognition signal consists of three consecutive amino acids. This might serve as
a model for identifying peptides and tiny organic molecule mimics that can be used as
biological function modulators. The early study has shown that the tripeptide can be used
to anticipate probable oligopeptide structures and to create new peptides. As a result,
tripeptide compositions were used to represent membrane protein samples in this study.
We computed the probability of each tripeptide appearing in the peptide sequence using
Equations (7) and (8) and scanning one sequence using a sliding window of three residues
in one step.

fi =
ni

∑8000
i=1 ni

=
ni

(L− 2)
, (7)

where the total number of the ith tripeptide and length of the sequence are represented
by ni and L respectively. The peptides may be stated as follows using an 8000-D feature
vector:

F8000 = [f1, f2, f3, . . . f8000]T (8)

where transpose of feature vector and the frequency of each pattern in ith tripeptide is
demonstrated by T and f1, respectively.

3.3.4. Improved Pseudo Amino Acid Composition (IPseAAC)

Early peptides studies reveal that the amino acid sequences that make up proteins have
been linked to the structure and function of proteins in studies. To assist the rapid growth
of protein subcellular location prediction, researchers have presented a variety of feature
extraction approaches and created associated web servers and software. Chou’s PseAAC,
broadly employed in protein-protein interaction prediction and subcellular position predic-
tion, takes into consideration the order information of proteins and the physicochemical
characteristics of amino acids. The amino acid sequence of a protein is represented by
(20 + λ) a dimensional vector in PseAAC. The first 20 dimensions indicate the frequency of
occurrence in the sequence of the traditional 20 types of amino acids, whereas the other
dimension reflects sequence-related parameters that depict differing amounts of amino
acid sequence information.

The peptide sequence is encoded using an IPseAAC in this research. In the realm of
genomics, AAC has been used to identify a variety of proteins and peptides, however, the
identification process might be improved by adding some physiochemical features to AAC.
The following equations show the IPseAAC feature extraction process:

P = [a1, a2, . . . a20, a20+1, a20+2, . . . .a20+λ]
t ( λ = 1, 2, . . . . . . .21) (9)

In Equation (9), a1, a2, a3 . . . . . . . . . . a20 indicates the frequency of twenty amino acids
while the rest represents the correlation factors of amino acids including, hydrophobicity,
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hydrophilicity, charge properties, flexibility, irreplaceability, solvent accessible surface area,
polarity, polarizability, and rigidity of amino acid. These characteristics of amino acids play
a crucial role in peptide categorization. Physiochemical features are added via a variety of
approaches. Numerous parameters are used to predict the peptide sequence. In this work,
we experimented with several values of λ but found that λ = 1 yielded the best results.
Some basic formulas for computing the correlation among physicochemical properties are
given in Equation (10):

λ1 = 1
length−1 ∑

length−1
k=1 Ik, k + 1

λ2 = 1
length−2 ∑

length−2
k=1 Ik, k + 1

λ3 = 1
length−3 ∑

length−3
k=1 Ik, k + 1

λ4 = 1
length−4 ∑

length−4
k=1 Ik, k + 1

λ5 = 1
length−5 ∑

length−5
k=1 Ik, k + 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
λn = 1

length−n ∑
length−n
k=1 Ik, k + 1

(10)

where the length encounters the total amino acids in the peptide sequence with a diverse
factor of λ at variant ranks, respectively.

3.4. Optimal Feature Selection Technique

Nowadays, artificial intelligence-related research shows tremendous performance
in numerous domains such as protein analysis [53], surveillance data [54,55], and power
prediction [56–61]. The generated feature vector is extremely significant in ML and is
efficiently utilized to forecast biological datasets. However, high-dimensional feature
spaces might lead to erroneous and poor classification outcomes. Furthermore, training
and testing a proposed approach requires a large amount of computing time and memory.
Various feature selection strategies have been used to minimize the feature space to solve
these challenges. Feature selection is a method of reducing redundant and unnecessary
features to enhance prediction accuracy. The feature selection in this model is accomplished
using PCA. The number of associated characteristics is reduced via PCA to a limited
number of uncorrelated attributes. Principal components are the random variables that
have been calculated. The primary benefits of PCA are that it reduces the dimensionality of
a feature vector while minimizing correlation and meaningful feature loss. PCA’s global
euclidean structure makes it more susceptible to outliers.

Assume a feature vector ‘X’with dimensions of P*Q, where ‘P’ denotes the number
of extracted features, ‘Q’ denotes the number of peptide sequences, and ‘K’ is the feature
vector’s needed dimension. The value of ‘K’ must be less than the value of ‘Q’. PCA
employs the following procedures to reduce dimensionality using Equations (11) to (15):

(a) The average value of each attribute can be calculated as:

Xj=
1
P ∑P

i=1 Xi (11)

(b) The gap between the average values of X and Xi:

δi = Xi − X (12)

(c) The covariance matrix can be calculated as:

Cm =
(
Xi − X

)(
Xi − X

)T BBT (13)

where B = {δ1, δ2,........,δP}in(Q*P)
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(d) The eigenvalue of Cm is computed as:

∂1 > ∂2 >, . . . . . . , ∂N (14)

where the largest eigenvalues ‘∂1’should be less than the highest of second ‘∂2’ and
so on.

(e) Evaluate the eigenvector as:

Cm : V1, V2, . . . . . . .., VN (15)

3.5. Classification Algorithms
3.5.1. Support Vector Machine (SVM)

SVM is based on statistical learning theory, and it was initially used for binary clas-
sification problems instead of multiclass classification. In the case of a binary, SVM turns
input into a high-dimensional feature vector to find the best hyperplane. To quantify
classification power, SVM employs a variety of kernel functions, including linear, polyno-
mial, RBF, and sigmoid. To investigate the benchmark datasets, the RBF kernel function
is utilized in this work, using two parameters: ‘C’ and ‘Y’ that can be calculated via grid
search and optimization procedures. Mathematically the RBF kernel function is defined in
Equation (16):

K(xi, xj = exp (−

1 
 

K(x୧, x୨ = exp (−Ɣหx୧ − x୨ห)ଶ (1

 

∣∣xi − xj
∣∣)2

(16)

3.5.2. K-Nearest Neighbor (KNN)

In the fields of ML and pattern recognition, KNN is an instance-based categorization
algorithm that has been successfully employed. KNN is a non-parametric technique that
does not use any previous knowledge about the training data to frame any complete model.
KNN classifies a data sample into the class that appears to be the most persistent among its
nearest neighbor samples. It measures the distance between instances of a feature space
using the Euclidian distance. The distance between two points can be calculated using the
Equation (17):

DEuclidean = D(X, Y) =
n

∑
i=1

√(
xi + xj

)2
(17)

where X and Y are two observations from the training and testing sets; xi and xj are two
input variables in the same set.

3.5.3. Random Forest (RF)

RF is a supervised learning algorithm capable of assessing both binary and multiclass
issues by default. RF constructs numerous decision trees using a statistical Bootstrap
approach based on a random selection of data samples from training data. As a result, a
“forest” with a great number of trees is produced. To discover the optimal split at each
node of the tree, various numbers of predictors are utilized. RF’s ability to remove biases
and minimize correlation among unpruned trees was aided by his random selection nature.
Finally, using the majority voting approach to combine the predictions of each unique
assumption, an optimal output is generated. There are 100 trees and 200 iterations in
this work.

3.5.4. Ensemble Classifier Mechanism

The training and testing procedure on extracted feature vectors is one of the most sig-
nificant parts of data mining, ML, and bioinformatics. Due to superior predictive accuracy,
an ensemble classifier has a more favorable reception than an individual classifier. For
several computational models, ensemble classification has been suggested. The ensemble
classifier reduces the discrepancy caused by irregularity in an individual training set, mak-
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ing it superior to an individual classifier. We presented a three-classifier combination in
this study: SVM, RF, and NB as given in Equation (18).

Eensemble = SVM⊕ RF ⊕ NB (18)

The ensemble classifier, which uses a voting mechanism to merge three independent
classifiers, is shown in Equation (18). The margin operation was marked by (⊕). For the
combination of three classifiers, the ensemble classifier Eensemble’s complete procedure is
as follows. Let’s look at a single classifier’s predicted performance for identifying ACP
and NACP.

(C1, C3, C3) E ( A1, A2) (19)

In Equation (19), individual classifiers are represented as (C1, C2, C3), and (A1, A2)
have specified ACP and NACP classes, respectively.

Finally, the ultimate result of the Ensemble utilizing the voting process is given in
Equation (20).

Eensemble = Maxi(w(1× 1), w(2× 2), w(3× 3) (20)

where Ensemble is the ensemble method using the voting process, Maxi is the highest accom-
plishment, and w1, w2, and w3 are the best weights of the several classifiers. Finally, as a
result classifier predicts the class has maximum votes.

3.6. Model Evaluation

In this section, the first system specification for the proposed system is discussed with
the dataset division for training and testing. Secondly, the proposed model is evaluated via
numerous evaluation metrics to compute the complementary power of the model.

3.6.1. System Configuration and Data Setting

All the experiments were conducted using MATLAB (2020a) installed in GeForce GTX
2060 GPU having 64GB RAM. Before exercising the model, preprocessing is performed
where entire peptide sequences of each dataset are passed via CD-HIT software to remove
the high similarity score, and later the refined data is divided into 70% (training) and
30% (testing).

3.6.2. Evaluation Metrics

Different factors are used to measure the success of an intelligent predictive algorithm
in ML. The classification method’s true and false projected outcomes are kept in a confu-
sion matrix. Typically, accuracy is used to assess the strength of hypothesis learners in
various assessment approaches, however, accuracy alone is insufficient to assess a predic-
tion model’s effectiveness. Moreover, a set of four metrics based on Chou’s symbols for
examining protein signal peptides were proposed, and these metrics were later adopted by
several publications. But the provided metrics are only applicable for single-label networks;
multi-label systems (where data may belong to many classes at the same time) are more
commonly seen in genetics, medicine, and biomedicine, which need completely other sets
of metrics. The following performance metrics are used in this model to correctly assess
ACPs and NACPs.

Accuracy = 1−
ACP+

_ + ACP+
_

ACP+
_ + ACP+

_
(21)

Sensitivity = 1−
ACP+

_

ACP+
_

(22)

Specificity = 1−
ACP_

+

ACP_
+

(23)
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MCC =
1− ACP+

_ +ACP+
_

ACP++ACP_√{
1 + ACP_

++ACP+
_

ACP+

}{
1 + ACP+

_ +ACP_
+

ACP_

} (24)

F1_Score = 2× (Precision× Recall)
(Precision + Recall)

(25)

In the above Equations, the ACP+ signifies anticancer peptides, whereas ACP- indi-
cates non-anticancer peptides. ACP+

− are anticancer peptides that have been mislabeled as
another class label, while ACP−+ are NACPs that have been misclassified as anticancer.

4. Experimental Results

In this section, a comprehensive ablation study is conducted over two famous datasets
with various possible collections of techniques. Finally, the empirical results obtained
through the proposed model are compared with the latest existing methods. A brief
explanation about the individual section is provided in the sub-sections.

4.1. Ablation Study over PSD1

To evaluate the individual component power of the feature extraction method we
checked and compared a total of 13 models’ performance for sequence classification. The
main purpose of comprehensive results is to find the discriminative, robust, and repre-
sentative features so that training is smoothly performed. In the AAC encoding scheme
total of 20 native amino acids frequencies are calculated but due to the dominance oc-
currence value problem, the performance is not convincing including 86.41, 88.24, 85.51,
0.71, and 81.08 in accuracy, sensitivity, specificity, Matthews correlation coefficient (MCC),
and F1-score, respectively. DPC is our second computational-based method that boosted
discriminative scores because it mainly maintains the correlation between two amino acids.
The results obtained via DPC are accuracy 88.35, sensitivity 91.18, specificity 96.86, MCC
0.75, and F1-score 83.78. Next, the complementary power of TPC is evaluated where three
consecutive amino acid patterns are scanned during the features extraction process, but
the classification rate is less than the other two methods because the peptide sequence
is too short therefore feature vectors mostly have zero values. Our last single feature
extraction method is IPseAAC in which we added additional physicochemical properties
that efficiently detected and discriminate the targeted peptide from complex biological
sequences. The best score via IPseAAC is 88.35, 83.33, 91.80, 0.75, and 85.37 in accuracy,
sensitivity, specificity, MCC, and F1-score, respectively. In this study, we also explored the
feature fusion strategy where two individual peptide encoding approaches features are
incorporated via a concatenation mechanism. An ensemble classifier is used throughout
this study because it has strong discriminative power rather than an individual ML algo-
rithm. Mostly in the literature studies, researchers investigated the single feature extraction
method which works better for a simple and short length of peptides but fails in the case of
huge or complex peptides. Therefore, a hybrid mechanism is explored having a diverse
collection of feature extraction methods generated incredible results as compared to others.
The main objective of integrating different method features is to examine its capability for
lengthy and complex sequences. Among various fusion methods, the best performance
is achieved when using DPC + IPseAAC including 93.20, 88.37, 96.67, 0.86, and 91.57 in
accuracy, sensitivity, specificity, MCC, and F1-score. During this research, we discovered
that feature fusion is the best approach to enhance the classification score but on the other
side sometimes redundant features degrade the model performance.

To address such an issue, we applied PCA that intelligently optimal features and
ignore those attributes which have a low contribution rate in classification. In the proposed
model four feature extraction methods features are fused and then employed PCA which
gives outstanding performance along with different λ values as shown in Table 3. The
confusion matrix for testing data is shown in Figure 3.
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Figure 3. Performance evaluation of the proposed model over testing data of benchmark. Addition
of physicochemical properties using the concept (a) (λ = 1); (b) (λ = 1); and (c) (λ = 1).

Table 3. Empirical results over numerous collections of feature extraction techniques using PCA and
ensemble classifier where bold value represents the best performance.

Method
PSD1

Accuracy Sensitivity Specificity MCC F1-Score

AAC 86.41 88.24 85.51 0.71 81.08

DPC 88.35 91.18 96.86 0.75 83.78

TPC 85.44 87.88 84.29 0.69 79.45

IPseAAC 88.35 83.33 91.80 0.75 85.37

AAC+DPC 92.23 92.11 92.31 0.83 89.74

AAC+TPC 90.29 84.09 94.92 0.80 88.10

AAC+IPseAAC 91.26 84.44 96.55 0.82 89.41

DPC+TPC 89.32 89.19 89.39 0.77 85.71

DPC+IPseAAC 93.20 88.37 96.67 0.86 91.57

TPC+IPseAAC 91.29 89.74 92.19 0.82 88.61

Proposed Model (λ = 1) 97.09 97.44 96.88 0.94 96.20

Proposed Model (λ = 2) 96.12 92.86 98.36 0.82 95.12

Proposed Model (λ = 3) 95.15 94.87 95.31 0.90 93.67

4.2. Ablation Study over PSD2

We also conducted the ablation study over the second dataset to verify that either
variant or a large number of sequences affect the model performance or not using the same
feature extraction strategy. Through AAC we obtained 88.96, 58.82, 93.76, 0.53, and 59.41
in accuracy, sensitivity, specificity, MCC, and F1-score, respectively. On DPC we achieved
good results. i.e., 91.25 accuracy, 68.42 sensitivity, 94.60 specificity, 0.61 MCC, and 66.67
F1-score, respectively. Like the first dataset, the performance of TPC here is also not too
much better due to low pattern frequency and null values in the feature vector. The basic
PseAAC contains three physicochemical properties while in this study we improved by
adding additional attributes of each amino acid. So, through the improved version of
IPseAAC we gained 90.98, 66.67, 94.72, 0.61, and 66.33 in accuracy, sensitivity, specificity,
MCC, and F1-score, respectively. Among a hybrid collection of features method, DPC+TPC
is also a tremendous classification score in terms of accuracy, sensitivity, specificity, MCC,
and F1- score, which is 95.29, 84.21, 96.91, 0.79, 82.05 individually. At the same time, the
combination of AAC+DPC our ensemble classifier attained 93.00, 75.53, 95.53, 0.69, and
73.20 in accuracy, sensitivity, specificity, MCC, and F1-score, respectively. Similarly, another
hybrid model ACC+TPC also shows better results as compared to the previous one. In
conjunction with ACC+IPseAAC, the classification rate is low because here homogenous
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features are rising on a large basis. Despite these, we proposed three different models
with a varied number of λ which directly affect the overall discriminative system during
the learning mechanism. The proposed model is investigated based on the (λ = 1, 2,
and 3) wherein Table 4 results are demonstrating that on λ = 1 our ensemble classifier
shows tremendous accuracy rather than others because it contains exhaustive numbers of
physicochemical features. The confusion matrix for testing data is shown in Figure 4.

Table 4. Empirical results of numerous collections of feature extraction techniques over the main
dataset using PCA and ensemble classifier where bold value represents the best performance.

Method
PSD2

Accuracy Sensitivity Specificity MCC F1-Score

AAC 88.96 58.82 93.76 0.53 59.41

DPC 91.25 68.42 94.60 0.61 66.67

TPC 86.27 48.94 91.68 0.39 47.42

IPseAAC 90.98 66.67 94.72 0.61 66.33

AAC+DPC 93.00 75.53 95.53 0.69 73.20

AAC+TPC 94.05 79.79 96.12 0.73 77.32

AAC+ IPseAAC 92.87 72.82 96.09 0.69 73.89

DPC+TPC 95.29 84.21 96.91 0.79 82.05

DPC+ IPseAAC 92.73 71.30 96.38 0.69 74.04

TPC+ IPseAAC 91.79 80.00 92.92 0.60 63.03

Proposed Model (λ = 1) 98.25 96.77 98.46 0.92 93.26

Proposed Model (λ = 2) 96.90 91.40 97.69 0.86 88.08

Proposed Model (λ = 3) 94.89 80.39 97.19 0.78 81.19

Figure 4. Performance evaluation of the proposed model over testing data of independent. Addition
of physicochemical properties using the concept of (a) (λ = 1); (b) (λ = 1); and (c) (λ = 1).

4.3. Results Assessment with SOTA Methods over PSD1

In a comparative analysis, researchers used various feature extraction mechanisms
and ML classifiers. For instance, Hajisharifi et al. [62] proposed an online tool for the classi-
fication of ACPs and NCPs where radial basis and Naïve Bayes functions are investigated
in SVM. Their computational-based techniques show better performance on the limited
number of peptides because they did not sufficiently extract features. Later Hajisharifi
et al. [35] further enhanced prediction performance by using local alignment kernel and
Chou’s pseudo amino acid with SVM. In their feature extraction, they applied three physico-
chemical properties where experimental results demonstrate that the model largely diverts
to negative class rather than positive samples. Next, Chen et al. [23] introduced a novel bio-
logical sequence tool where g-gap dipeptide composition is optimized for discrimination of
ACPs. To boost the prediction accuracy several researchers, explore the composite peptide
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encoding technique. For instance, Li and Wang [31] developed a model by integrating three
feature extraction methods namely average chemical shifts, ACC, and reduced ACC with
SVM. Their model captures redundant features; therefore, they obtained a high score on
the jackknife test which is major flows. Despite these Akbar et al. [32], practice ensembled
classifiers with hybrid feature space without investigating their performance and optimal
peptide information. Similarly, Xu et al. [25] also proposed a hybrid model where g-gap
dipeptide composition and maximum relevance maximum distance. Next, Li et al. [27]
developed a lightweight model by considering low feature dimensional to address the
time-consuming process. As we know peptide sequences mostly contain less than 50 amino
acids, so classification is based on the ML method we need to generate more, and optimal
features for precise prediction. Therefore, we deeply investigate the performance of each
component of feature extraction and later evaluate the strength of the hybrid model with an
ensemble classifier algorithm with an additional optimal selection technique. In this study,
three different models’ performance is validated using the concept of diverse values of λ.
The empirical results demonstrate that the proposed model with (λ = 1) obtain incredible
classification accuracy as compared to other SOTA approaches as shown in Table 5.

Table 5. Performance comparison of the proposed model with SOTA methods using PSD1 dataset,
where the best result is highlighted in bold.

Model/Year Accuracy Sensitivity Specificity MCC F1-Score

SPAP [62] 2013 87.00 92.00 86.00 0.74 -

LAK [35] 2014 92.68 89.70 85.18 0.78 -

iACP [23] 2016 95.06 89.86 98.54 0.89 -

IAP [31] 2016 93.61 89.86 96.12 0.86 -

iACP-GAEnsC [32] 2017 96.45 95.36 97.57 0.91 -

SAP [25] 2018 91.86 86.23 95.63 0.83 89.47

LDFM [27] 2020 92.73 87.70 96.10 0.84 92.70

Proposed Model (λ = 1) 97.09 97.44 96.88 0.93 96.20

Proposed Model (λ = 2) 96.12 92.86 98.36 0.91 95.12

Proposed Model (λ = 3) 95.15 94.87 95.31 0.89 93.67

4.4. Results Assessment with SOTA Methods over PSD2

For a fair comparison, it is necessary to match the results with SOTA techniques that
used a similar dataset. Therefore, we deeply investigated the literature and found a total
of four articles that evaluate their model on the same dataset. The first attempt is Tyagi
et al. [30] proposed silico model based on binary profiles which obtain 92.65%, 74.67%,
94.44%, and 0.61 in accuracy, sensitivity, specificity, and MCC, respectively. Similarly, Ge
et al. [63] introduced a novel peptide information interpretation method known as chaos
game representation which gives high dimensional feature vector while preserving bijection
property. Such a technique works better in the case of identical sequence length which is the
main drawback. To enhance the classification rate Akbar et al. [39] proposed cACP model
based on Geary autocorrelation, conjoint traid, and Quasi-sequence alignment. Further,
they deeply investigate different classifier algorithms for the prediction of ACPs and NCPs.
As a result, they obtained 96.91%, 77.32%, 98.12%, 0.79 in accuracy, sensitivity, specificity,
and MCC. Finally, we compared our empirical results with the latest work proposed by
Ahmed et al. [64] that applies a convolutional neural network for the discrimination of
ACPs and NACPs, but they show low accuracy because the deep learning model requires
enough data for training. In this study, after comprehensive experiments, we proposed
three models with a diverse number of λ values where the results verify that the proposed
model with (λ = 1) achieved a high score as compared to the other existing approaches as
shown in Table 6.
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Table 6. Performance comparison of the proposed model with SOTA methods using PSD1 dataset,
where the best result is highlighted in bold.

Model/Year Accuracy Sensitivity Specificity MCC F1-Score

NT5CT5 [30] 2013 92.65 74.67 94.44 0.61 -

GCGR [63] 2018 96.36 69.33 99.07 0.76 -

cACP [39] 2019 96.91 77.32 98.12 0.79 -

ACP-MHCNN [64] 2021 91.0 97.6 84.2 0.82 -

Proposed (λ = 1) 98.25 96.77 98.46 0.92 93.26

Proposed (λ = 2) 96.90 91.40 97.69 0.86 88.08

Proposed (λ = 3) 94.89 80.39 97.19 0.78 81.19

5. Conclusions and Future Research Direction

In this study, a trustworthy and intelligent framework for the proper categorization of
ACPs is proposed. Four diverse feature extraction methods including AAC, DPC, TPC, and
IPseAAC are integrated to obtain discriminative, representative, and robust information
from peptides. Moreover, PCA is also used to remove homogenous characters from the
resultant feature space. Finally, the proposed intelligent system is evaluated on two datasets
using an ensemble classifier. After examining the projected outcomes of the classification
learners, we discovered that our suggested model outperformed the current models in the
literature utilizing both datasets. In the future, we aim to introduce a convolutional neural
network and sequential learning models (long short-term memory (LSTM), gated recurrent
unit, and bidirectional-LSTM) to further boost the performance and explore a larger dataset
having multiple classes.
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AAC Amino acid composition SVM Support vector machine
ATC Atomic composition PCA Principal component analysis
DPC Dipeptide composition ACPs Anti-cancer peptides
MCC Matthews correlation coefficient NACPs Non Anti-cancer peptides
ML Machine learning TPC Tripeptide composition
RF Random Forest NB Naïve Bayes
PseAAC Pseudo amino acid composition KNN K-nearest neighbor
IPseAAC Improved pseudo amino LR Logistic regressions

acid composition
CD-HIT Cluster database at high GRU Gaited recurrent unit

identity with tolerance
LSTM Long short-term memory SOTA State-of-the-art



Sensors 2022, 22, 4005 17 of 19

References
1. Ferlay, J.; Shin, H.-R.; Bray, F.; Forman, D.; Mathers, C.; Parkin, D.M. Estimates of worldwide burden of cancer in 2008:

GLOBOCAN 2008. Int. J. Cancer 2010, 127, 2893–2917. [CrossRef]
2. Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA A Cancer J. Clin. 2019, 69, 7–34. [CrossRef]
3. Kanavos, P. The rising burden of cancer in the developing world. Ann. Oncol. 2006, 17, viii15–viii23. [CrossRef] [PubMed]
4. Thundimadathil, J. Cancer Treatment Using Peptides: Current Therapies and Future Prospects. J. Amino Acids 2012, 2012, 967347.

[CrossRef] [PubMed]
5. Harris, F.; Dennison, S.R.; Singh, J.; Phoenix, D.A. On the selectivity and efficacy of defense peptides with respect to cancer cells.

Med. Res. Rev. 2011, 33, 190–234. [CrossRef] [PubMed]
6. Fabregat, I.; Fernando, J.; Mainez, J.; Sancho, P. TGF-beta Signaling in Cancer Treatment. Curr. Pharm. Des. 2014, 20, 2934–2947.

[CrossRef]
7. Karbalaeemohammad, S.; Naderi-Manesh, H. Two novel anticancer peptides from Aurein1. 2. Int. J. Pept. Res. Ther. 2011, 17,

159–164. [CrossRef]
8. Khan, F.; Akbar, S.; Basit, A.; Khan, I.; Akhlaq, H. Identification of anticancer peptides using optimal feature space of Chou’s split

amino acid composition and support vector machine. In Proceedings of the 2017 4th International Conference on Biomedical and
Bioinformatics Engineering, Seoul, Korea, 12–14 November 2017.

9. Virnig, B.A.; Baxter, N.N.; Habermann, E.B.; Feldman, R.D.; Bradley, C.J. A Matter Of Race: Early-Versus Late-Stage Cancer
Diagnosis. Health Aff. 2009, 28, 160–168. [CrossRef]

10. Hazelton, W.D.; Luebeck, E.G. Biomarker-based early cancer detection: Is it achievable? Sci. Transl. Med. 2011, 3, 109fs9.
[CrossRef]

11. Omenn, G.S. Strategies for Genomic and Proteomic Profiling of Cancers. Stat. Biosci. 2014, 8, 1–7. [CrossRef]
12. Mahassni, S.H.; Al-Reemi, R.M. Apoptosis and necrosis of human breast cancer cells by an aqueous extract of garden cress

(Lepidium sativum) seeds. Saudi J. Biol. Sci. 2013, 20, 131–139. [CrossRef]
13. Gerber, B.; Freund, M.; Reimer, T. Recurrent breast cancer: Treatment strategies for maintaining and prolonging good quality of

life. Dtsch. Arztebl. Int. 2010, 107, 85.
14. Marqus, S.; Pirogova, E.; Piva, T.J. Evaluation of the use of therapeutic peptides for cancer treatment. J. Biomed. Sci. 2017, 24, 21.

[CrossRef]
15. McGregor, D.P. Discovering and improving novel peptide therapeutics. Curr. Opin. Pharmacol. 2008, 8, 616–619. [CrossRef]
16. Schulte, I.; Tammen, H.; Selle, H.; Schulz-Knappe, P. Peptides in body fluids and tissues as markers of disease. Expert Rev. Mol.

Diagn. 2005, 5, 145–157. [CrossRef]
17. Diamandis, E.P. Peptidomics for Cancer Diagnosis: Present and Future. J. Proteome Res. 2006, 5, 2079–2082. [CrossRef]
18. Schaduangrat, N.; Nantasenamat, C.; Prachayasittikul, V.; Shoombuatong, W. ACPred: A Computational Tool for the Prediction

and Analysis of Anticancer Peptides. Molecules 2019, 24, 1973. [CrossRef]
19. Chou, K.-C.; Cai, Y.-D. Prediction and classification of protein subcellular location-sequence-order effect and pseudo amino acid

composition. J. Cell. Biochem. 2003, 90, 1250–1260. [CrossRef]
20. Chou, K.-C. Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins Struct. Funct. Bioinform. 2001,

43, 246–255. [CrossRef]
21. Dehzangi, A.; Heffernan, R.; Sharma, A.; Lyons, J.; Paliwal, K.; Sattar, A. Gram-positive and Gram-negative protein subcellular

localization by incorporating evolutionary-based descriptors into Chou’s general PseAAC. J. Theor. Biol. 2015, 364, 284–294.
[CrossRef]

22. Meher, P.K.; Sahu, T.K.; Saini, V.; Rao, A.R. Predicting antimicrobial peptides with improved accuracy by incorporating the
compositional, physico-chemical and structural features into Chou’s general PseAAC. Sci. Rep. 2017, 7, srep42362. [CrossRef]

23. Chen, W.; Ding, H.; Feng, P.; Lin, H.; Chou, K.-C. iACP: A sequence-based tool for identifying anticancer peptides. Oncotarget
2016, 7, 16895–16909. [CrossRef]

24. Manavalan, B.; Basith, S.; Shin, T.H.; Choi, S.; Kim, M.O.; Lee, G. MLACP: Machine-learning-based prediction of anticancer
peptides. Oncotarget 2017, 8, 77121–77136. [CrossRef]

25. Xu, L.; Liang, G.; Wang, L.; Liao, C. A Novel Hybrid Sequence-Based Model for Identifying Anticancer Peptides. Genes 2018, 9,
158. [CrossRef] [PubMed]

26. Boopathi, V.; Subramaniyam, S.; Malik, A.; Lee, G.; Manavalan, B.; Yang, D.-C. mACPpred: A Support Vector Machine-Based
Meta-Predictor for Identification of Anticancer Peptides. Int. J. Mol. Sci. 2019, 20, 1964. [CrossRef]

27. Li, Q.; Zhou, W.; Wang, D.; Wang, S.; Li, Q. Prediction of anticancer peptides using a low-dimensional feature model. Front.
Bioeng. Biotechnol. 2020, 8, 892. [CrossRef]

28. Akbar, S.; Hayat, M.; Tahir, M.; Chong, K.T. cACP-2LFS: Classification of Anticancer Peptides Using Sequential Discriminative
Model of KSAAP and Two-Level Feature Selection Approach. IEEE Access 2020, 8, 131939–131948. [CrossRef]

29. Agrawal, P.; Bhagat, D.; Mahalwal, M.; Sharma, N.; Raghava, G.P.S. AntiCP 2.0: An updated model for predicting anticancer
peptides. Brief. Bioinform. 2021, 22, bbaa153. [CrossRef]

30. Tyagi, A.; Kapoor, P.; Kumar, R.; Chaudhary, K.; Gautam, A.; Raghava, G.P.S. In Silico Models for Designing and Discovering
Novel Anticancer Peptides. Sci. Rep. 2013, 3, srep02984. [CrossRef] [PubMed]

http://doi.org/10.1002/ijc.25516
http://doi.org/10.3322/caac.21551
http://doi.org/10.1093/annonc/mdl983
http://www.ncbi.nlm.nih.gov/pubmed/16801335
http://doi.org/10.1155/2012/967347
http://www.ncbi.nlm.nih.gov/pubmed/23316341
http://doi.org/10.1002/med.20252
http://www.ncbi.nlm.nih.gov/pubmed/21922503
http://doi.org/10.2174/13816128113199990591
http://doi.org/10.1007/s10989-011-9253-0
http://doi.org/10.1377/hlthaff.28.1.160
http://doi.org/10.1126/scitranslmed.3003272
http://doi.org/10.1007/s12561-014-9111-7
http://doi.org/10.1016/j.sjbs.2012.12.002
http://doi.org/10.1186/s12929-017-0328-x
http://doi.org/10.1016/j.coph.2008.06.002
http://doi.org/10.1586/14737159.5.2.145
http://doi.org/10.1021/pr060225u
http://doi.org/10.3390/molecules24101973
http://doi.org/10.1002/jcb.10719
http://doi.org/10.1002/prot.1035
http://doi.org/10.1016/j.jtbi.2014.09.029
http://doi.org/10.1038/srep42362
http://doi.org/10.18632/oncotarget.7815
http://doi.org/10.18632/oncotarget.20365
http://doi.org/10.3390/genes9030158
http://www.ncbi.nlm.nih.gov/pubmed/29534013
http://doi.org/10.3390/ijms20081964
http://doi.org/10.3389/fbioe.2020.00892
http://doi.org/10.1109/ACCESS.2020.3009125
http://doi.org/10.1093/bib/bbaa153
http://doi.org/10.1038/srep02984
http://www.ncbi.nlm.nih.gov/pubmed/24136089


Sensors 2022, 22, 4005 18 of 19

31. Li, F.-M.; Wang, X.-Q. Identifying anticancer peptides by using improved hybrid compositions. Sci. Rep. 2016, 6, srep33910.
[CrossRef]

32. Akbar, S.; Hayat, M.; Iqbal, M.; Jan, M.A. iACP-GAEnsC: Evolutionary genetic algorithm based ensemble classification of
anticancer peptides by utilizing hybrid feature space. Artif. Intell. Med. 2017, 79, 62–70. [CrossRef]

33. Kabir, M.; Arif, M.; Ahmad, S.; Ali, Z.; Swati, Z.N.K.; Yu, D.-J. Intelligent computational method for discrimination of anticancer
peptides by incorporating sequential and evolutionary profiles information. Chemom. Intell. Lab. Syst. 2018, 182, 158–165.
[CrossRef]

34. Vijayakumar, S.; Lakshmi, P. ACPP: A web server for prediction and design of anti-cancer peptides. Int. J. Pept. Res. Ther. 2015, 21,
99–106. [CrossRef]

35. Hajisharifi, Z.; Piryaiee, M.; Beigi, M.M.; Behbahani, M.; Mohabatkar, H. Predicting anticancer peptides with Chou′s pseudo
amino acid composition and investigating their mutagenicity via Ames test. J. Theor. Biol. 2014, 341, 34–40. [CrossRef]
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