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Abstract

Introduction: Twin studies indicate that a substantial fraction of ovarian cancers
should be predictable from genetic testing. Genetic risk scores can stratify women
into different classes of risk. Higher risk women can be treated or screened for
ovarian cancer, which should reduce ovarian cancer death rates. However, current
ovarian cancer genetic risk scores do not work that well. We developed a genetic
risk score based on variations in the length of chromosomes.

Methods: We evaluated this genetic risk score using data collected by The Cancer
Genome Atlas. We synthesized a dataset of 414 women who had ovarian serous
carcinoma and 4225 women who had no form of ovarian cancer. We characterized
each woman by 22 numbers, representing the length of each chromosome in their
germ line DNA. We used a gradient boosting machine to build a classifier that can
predict whether a woman had been diagnosed with ovarian cancer.

Results: The genetic risk score based on chromosomal-scale length variation could
stratify women such that the highest 20% had a 160x risk (95% confidence interval
50x-450x) compared to the lowest 20%. The genetic risk score we developed had an
area under the curve of the receiver operating characteristic curve of 0.88 (95%
confidence interval 0.86–0.91).

Conclusion: A genetic risk score based on chromosomal-scale length variation of
germ line DNA provides an effective means of predicting whether or not a woman
will develop ovarian cancer.

Keywords: Genetic risk score, Ovarian cancer, Polygenic risk score, Risk prediction,
Copy number variation, TCGA the Cancer genome atlas

Introduction
Ovarian cancer kills about 150,000 women per year worldwide [1]. The most common

form of ovarian cancer, ovarian serous carcinoma is often diagnosed late (stage III

(51%) or IV (29%)) and has a relatively bleak 5-year survival rate [2]. If women with an

elevated risk of developing ovarian cancers could be identified, interventions could be

taken that would reduce the number of women who die from ovarian cancer. These in-

terventions include prophylactic oophorectomies, which would completely avoid ovar-

ian cancer, and more targeted screening, which could identify ovarian cancers in
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earlier stages, where surgery is an effective cure [3–7]. These interventions could both

increase 5-year survival times and reduce the overall number of deaths due to ovarian

cancer.

A substantial fraction of ovarian cancers should be predictable by genetic testing.

The heritability of ovarian cancer has been measured at about 40% (95% confidence

interval 23–55%) by the Nordic Twin Study [8]. The maximum discriminative accuracy

of a genetic risk test is a function of both the heritability and the prevalence of the dis-

ease [9, 10]. Based on the measured heritability (about 40%) and prevalence (about

0.1%) of ovarian cancer, the maximum accuracy, measured by the area under the re-

ceiver operating characteristic curve (AUC), should be greater than 0.95, where 1.0 in-

dicates a perfect test. Current genetic risk scores do not approach that level of

accuracy.

Most current genetic risk scores are derived from single nucleotide polymorphisms

(SNPs) identified by genome wide association studies [11–16]. These tests, called poly-

genic risk scores, construct a score based on a linear combination of the value of a col-

lection of SNPs. This strategy has been moderately successful with ovarian cancer. One

study followed this strategy to construct a polygenic risk score where women who

scored in the top 20% had a 3.4-fold increased risk compared to women who scored in

the bottom 20% [17].

We developed an alternative strategy to compute genetic risk scores. Our strategy is

based on structural variation rather than SNPs and uses machine learning algorithms,

which include non-linear effects, rather than linear combinations.

Methods
We tested this strategy with data from the Cancer Genome Atlas (TCGA) project.

TCGA was a project sponsored by the National Cancer Institute to characterize the

molecular differences in 33 different human cancers [18–20]. The project collected

samples from about 11,000 different patients, all of whom were being treated for one of

33 different types of tumors. The samples collected usually included tissue samples of

the tumor, tissue samples of normal tissue adjacent to the tumor and normal blood

samples. (Normal blood samples were not available from patients diagnosed with

leukemias.)

Most of the patient normal blood samples were processed to extract and characterize

germline DNA. All germline DNA samples were processed by a single laboratory, the

Biospecimen Core Resource at Nationwide Children’s Hospital. Single nucleotide poly-

morphisms (SNPs) were measured from the patient samples with an Affymetrix SNP

6.0 array. This SNP data was then processed (by the TCGA project) through a bioinfor-

matics pipeline [21], which included the packages Birdsuite [22] and DNAcopy [23].

The result of this pipeline is, for each sample, a listing of a chromosomal region (char-

acterized by the chromosome number, a starting location, and an ending location) and

the associated value given as the “segmented mean value.” The segmented mean value

is defined as the logarithm, base 2 of one-half the copy number. A normal diploid re-

gion with two copies will have a segmented mean value of zero.

The Affymetrix SNP 6.0 array provides intensity measurements indicating whether or

not specific probes on the array bind to specific sequences in the sample. These inten-

sity measurements are usually interpreted in a binary fashion, indicating whether a
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specific sequence is absent or present in the sample. This process provides the geno-

type for a sample, quantified by the presence or absence of single nucleotide polymor-

phisms (SNPs). If these intensity measurements are instead interpreted in an analog

fashion, one can discern whether specific sequences are absent, present with a single

copy, two copies, three copies, etc. Thus providing a relative copy number value at each

SNP location. By collecting these values across the chromosome scale, we compute a

number that we call the chromosome-scale length.

NCI has provided most of the TCGA data on the Genomic Data Commons [24]. The

copy number variation data available is called the masked copy number variation on

the Genomic Data Commons. The masking process removes “Y chromosome and

probe sets that were previously indicated to have frequent germline copy-number vari-

ation.” [21].

This research uses de-identified coded datasets produced by TCGA. Therefore it is

not considered human subjects research.

We accessed the TCGA data through Google’s BigQuery, a cloud-based database.

This resource is hosted and maintained by the Institute of Systems Biology [25]. We

used the copy number segment (masked) table extracted from the Genomic Data Com-

mons in February 2017. We also used information from the Biospecimen (extracted

April 2017) and Clinical (extracted June 2018) tables. The copy number table contained

all the information for the chromosome scale length variation data. The Biospecimen

table was used to identify which samples were from normal blood (representing germ

line DNA). The Clinical table provided information on the individual patient’s gender,

race, and ovarian cancer status. Information in the different tables was tied together by

the sample barcode parameter.

All patients in the TCGA ovarian cancer sample had a well characterized form of

ovarian cancer. TCGA only included those who were newly diagnosed with ovarian ser-

ous adenocarcinoma. The tumor had was confirmed to be serous by a board-certified

pathologist after examining histological samples of the tumor. Mucinous, endometrioid

and other types of ovarian tumors were excluded.

The final dataset consisted of a dataset with 4639 rows, each representing a different

patient. Each row started with a label, “ovarian cancer” or “normal”, and then 22 num-

bers. The mean age at diagnosis of the patients with ovarian cancer was 59.7 years,

while the mean age for the “normal” sample was 58.6 years. Each number represented a

measure of the length for one of the chromosomes. These length measurements were

reported by the TCGA bioinformatics pipeline as extremely long copy number varia-

tions, usually greater than 90% of the length of the chromosome. We obtained these

numbers from the TCGA dataset stored on Google’s BigQuery. The TCGA bioinfor-

matics pipeline did not report any copy number values for many specific genomic re-

gions, presumably that indicates the copy number value is normal, with two copies.

However, we coded these as not available, or “N/A” in our dataset. This dataset was

used for the machine learning analysis.

We used the statistical computer language R to query the BigQuery database, collect

the data and manipulate it into different forms. We took extensive care to avoid typical

problems that lead to falsely high AUCs in machine learning. For instance, we ensured

that no data leakage occurred, which can lead to deceivingly high AUCs when copies of

a sample appear in both the training and test sets.
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We used the H2O machine learning package in R to create machine learning models.

H2O takes care of setting many of the proper default values, depending on whether the

goal of the model is classification or regression. For the gradient boosting machine

(GBM) models, H2O performs preprocessing, randomization, encoding categorical vari-

ables, and other data processing steps appropriate for the chosen model.

H2O has an automated machine learning algorithm, named AutoML [26]. Given a

spreadsheet like- dataset, AutoML will run through four different machine learning al-

gorithms and evaluate which provides the best models for the given problem. For each

of the machine learning algorithms, it will evaluate several different hyperparameters.

The process is limited by the amount of time devoted to it. After the allotted time,

AutoML reports a scoreboard ranking the best algorithms. For the gradient boosting

machine algorithm, we started with the default H2O settings. These default settings

build trees to a maximum depth of five trees with a sample rate of 1 [27]. For the re-

sults reported in Table 2, we used an allotted time of one hour. In tests, we found that

the results do not change substantially with times up to 10 h.

We used 5-fold cross validation with the GBM algorithm to produce Table 3 and

Fig. 2. Cross validation uses repeated model runs with non-overlapping data. This ap-

proach allows one to use of all samples in the limited dataset. For Table 3 and Fig. 2,

we estimated 95% confidence intervals for the odds ratios following the method de-

scribed in [28].

Figure 3 was produced with a single model run by splitting the dataset into a training

set holding 80% of the data and a test set containing 20% of the data.

Code is available to reproduce this work at: https://github.com/jpbrody/cancer-

prediction-cnv/blob/master/ovarian-TCGA.R

Results
Using the TCGA dataset, we identified a measure that we call chromosome-scale length

variation. Taken together, structural variations like insertions, deletions, translocations

and copy number variations slightly alter the overall length of an individual’s chromo-

some. Thus, the lengths of the set of chromosomes can be used to characterize a per-

son. A histogram showing the distribution of relative chromosome lengths taken from

germ line DNA samples in the TCGA dataset is shown in Fig. 1. By convention, these

lengths are reported in units of log base 2. A value of “0” represents the consensus,

average, chromosome length.

From the TCGA dataset, we synthesized a case-control study to test whether

chromosome-scale length variation data can construct a genetic risk score. We identi-

fied 4225 women who had not been diagnosed with any form of ovarian cancer and

414 women who had been diagnosed with ovarian serous carcinoma. Statistical descrip-

tions of the two populations are shown in Table 1.

Next, we evaluated the effectiveness of several different machine learning algorithms.

We measured how well these algorithms could classify a woman, based solely on the

set of 23 chromosome-scale length variation measurements, into either the class with

ovarian cancer or without. The measurement of success we used was the area under

the curve (AUC) of the receiver operating characteristic curve. The results of these

measurements are shown in Table 2.
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Based on the results in Table 2, we used the Gradient Boosting Machine algorithm

throughout the rest of this manuscript. In the next step, we sought to classify the 4669

women in the dataset. We used a k-fold cross validation procedure, with k = 5. The

dataset was randomly partitioned into five equal groups. The first group was held out

(to be the test set), while the other four groups were used to train a model to distin-

guish the two classes (women with ovarian cancer and women without ovarian cancer).

The trained model assigned a numerical score to each of the women in the first group

(test set) quantifying how likely that woman was a member of the ovarian cancer class.

The process was repeated 5 times, with a different group held out each time. The result

is a numerical score for each of the 4669 women.

Fig. 1 This figure shows a histogram of chromosome scale length variation for most of chromosomes
1,6,13, and 17. For most patients in the TCGA dataset, a normal blood sample was taken, genomic DNA was
extracted from that sample and analyzed with an Affymetrix SNP 6.0 array. The data from this array was
processed by the TCGA project through a bioinformatic pipeline that resulted in a segment mean value,
which is a number equal to the log base two of one half the copy number value. This histogram indicates
that most people have a nominal value of 0, indicating exactly two copies of the diploid chromosome. A
value of 0.02 would indicate the person has on average 2.028 copies of the chromosome, or about 1.4%
longer than the average length of the chromosome

Table 1 From the TCGA dataset, we constructed two groups, both solely composed of women.
The first group, containing 414 women, all had been diagnosed with ovarian serous carcinoma.
None of the second group, with 4225 women, had been diagnosed with any form of ovarian
cancer. This table compares the two populations

Diagnosed with Ovarian
Serous Carcinoma

Not diagnosed with
Ovarian cancer

Total 414 4225

Mean age 58.3 years 59.7 years

% Black 25/414 = 6% 492/4225 = 12%

% White 352/414 = 85% 3064/4225 = 73%

% Asian 14/414 = 3% 259/4225 6%
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The predictions were compared to the known ovarian cancer status of each of the

4669 women. First, all 4669 women were ranked by their score, representing the likeli-

hood that they were from the ovarian cancer class. By comparing this ranking with

their known ovarian cancer status, we can evaluate how well the model classified the

women.

The comparison is presented in two different forms. Table 3 provides a tabular form

of relative risk for the population segmented into five different groups. Figure 2 shows

similar information in graphical form, where the population is segmented into 50

groups.

Finally, we took the dataset of 4669 women and split it into a training set (80%) and

a test set (20%). Using H2O, we trained a Gradient Boosting Machine model to predict

whether a woman was in the group with ovarian cancer, or not. The results are pre-

sented in Fig. 3, which shows a classic receiver operating characteristic curve of the

model’s predictions. Figure 4 presents the SHAP contribution plot, which helps explain

how the Gradient Boosting Machine model arrives at its result.

Discussion
The results presented here compare favorably to other genetic risk scores for ovarian

cancer. For instance, a previous study found that a polygenic risk score in the top 20%

conferred a 3.4-fold risk increase compared to women in the bottom 20% [17]. As seen

in Table 3, the top 20% in our results had an increase of over 100-fold risk over women

who scored in the bottom 20%.

Table 2 This table lists five different machine learning algorithms we evaluated for predicting
ovarian cancer from chromosome-scale length variation data using the H2O package in R. The
algorithms are ranked by the best AUC it achieved using 5-fold cross validation

Algorithm AUC

Gradient Boosting Machine 0.88

Distributed Random Forest 0.87

Extremely Randomized Trees 0.86

Deep learning 0.82

Generalized Linear Model 0.68

Table 3 Using 5-fold cross validation, each woman in the dataset received a score from the model
built to predict ovarian cancer. The women were ranked by score from lowest to highest and then
partitioned into five quintiles. This table presents the number of women with and without ovarian
cancer in each quintile along with the odds ratio (relative to the entire group) and the 95%
confidence interval for the odds ratio

Quintile Number of women
without ovarian cancer

Number of women with
ovarian cancer

Total number
of women

Odds
ratio

95%
confidence
interval

1 925 3 928 0.03 0.01--0.09

2 925 3 928 0.03 0.01--0.09

3 901 27 928 0.30 0.21--0.45

4 842 86 928 1.04 0.82--1.33

5 632 295 927 4.76 4.01--5.65
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Fig. 2 This figure shows that women ranked higher by the predictive model are significantly more likely to
have ovarian cancer. The predictive model ranked all 4669 women in the dataset based on their likelihood
of having ovarian cancer, based solely on germ line DNA data. This ranking was then split into 50 equal
partitions, each with about 93 women. This plot shows the odds ratio (relative to 414 ovarian cases out of
4669 total) of each of the 50 equal partitions along with the 95% confidence intervals

Fig. 3 The receiver operating characteristic curves for different model predictions. The area under the curve
for the Gradient Boosting Machine model was 0.89. An actual predictive test for ovarian cancer would
require choosing a threshold. Depending on the threshold, the true positive rate and false positive rate (or
equivalently the sensitivity and specificity) will vary. This graph demonstrates how these two factors
will vary
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Table 2 quantifies different algorithms applied to this problem. These results are il-

lustrative, but not conclusive. Tuning machine learning models is an art, and it might

be possible, for instance, to tune a deep learning network to obtain superior results. In

similar work on TCGA colon cancer data, we found that a pairwise neuron network al-

gorithm performs equal to a gradient boosting machine [30]. The gradient boosting

machine generally runs faster and is easier to tune. Others have evaluated different ma-

chine learning algorithms for different bioinformatic problems and found that no one

algorithm is superior [31]. They also found that a gradient boosting machine algorithm

does perform well on many different types of datasets, consistent with these findings.

Germline mutations in the genes BRCA1 and BRCA2 are known to predispose

women to ovarian and breast cancers. We considered whether these mutations had a

significant effect on our results. First, 22 women in the TCGA ovarian cancer category

had BRCA1 or BRCA2 germline mutations, while another 27 in the control group had

BRCA1 or BRCA2 mutations (these were breast cancer patients, included here as con-

trols because they were non-ovarian cancer women patients) [32]. Second, most com-

mon germline BRCA mutations change the overall length by just a few bases out of the

81 million bases on chromosome 17 [33]. This change would be imperceptible in our

data, which focuses on large scale variations. Based on these two factors, we do not be-

lieve that BRCA1/2 mutations are responsible for the predictive ability presented here.

A disadvantage of this approach, compared to more conventional SNP-based genetic

risk scores, is that the results are difficult to understand and extract biological meaning.

A fundamental difference exists between statistical methods for prediction and those

for attribution [34]. The method presented here is optimized for prediction, SNP-based

genetic risk scores grew out of genome wide association studies, which were designed

for attribution, identifying specific genes responsible for cancer.

The Gradient Boosting Machine computational model is complex, consisting of

dozens of decision trees. Furthermore, the data that is used to traverse the decision tree

is also complex. The data consists of chromosome scale length variation, which is the

Fig. 4 This SHAP contribution plot ranks the importance to the predictive model for each chromosome
[29]. Each person is represented by a dot. The color of the dot represents the normalized chromosome
length. The position of the dot on the x-axis represents the impact of that chromosome on the model’s
prediction for that person. The figure indicates that Chromosome 17’s length is more important than
Chromosome 4’s length in predicting ovarian cancer
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result of many different insertions, deletions, translocations, and other structural

changes. Polygenic risk scores based on SNPs are easy to interpret. One can identify

how much each SNP contributes to the score and one can locate this SNP in the gen-

ome and understand the function of nearby genes that might change. Although this ap-

proach is lacking in explanatory power, its ultimate goal is predictive power.

We considered whether the results were due to two common problems faced by gen-

ome wide association studies: batch effects or population stratification. We found it un-

likely that our model is identifying batch effects rather than real effects. First, all

samples were collected from the same tissue, blood. This eliminates one common

source of batch effects, since the DNA extraction process is the same for each sample.

Second, all samples were processed by the same laboratory, the Nationwide Children’s

Hospital Biospecimen Core Resource, with the same type of instrument. This labora-

tory followed the same protocol throughout their processing phase. Finally, we looked

up the batch history of each sample. The 424 ovarian cancer samples were processed in

15 separate batches. The non-ovarian samples were processed in several hundred dif-

ferent batches. For these reasons, we do not believe the results are due to batch effects.

Population stratification occurs in case/control studies when the cases and controls

contain substantially different proportions of genetically discernable subclasses. Most

TCGA samples were collected in the United States from a racially diverse group. For

instance, over half the ovarian cancer samples were collected at five locations in the

United States: Memorial Sloan Kettering, Washington University, University of Pitts-

burgh, Duke, and Mayo Clinic- Rochester. Table 1 lists demographic information about

the two populations. Although the table does indicate slightly different proportions by

race in the case and control groups, it does not seem to be different enough to account

for the AUC observed. We cannot rule out population effects, but do not believe they

would be responsible for such a large effect.

We could not use the typical process to correct for population stratification, because

it is specific to logistic regression. The typical process uses the algorithm EIGENSTR

AT to identify a number of (typically ten) principal components of the population [35].

Then, these principal components are fed into the logistic regression analysis to “cor-

rect for” or “adjust for” population stratification. This process of “adjusting for” a factor

is unique to linear/logistic regression, it cannot be done in the same way with the non-

linear machine learning algorithms. Again, the statistical algorithms for prediction are

fundamentally different than those used for attribution [34].

This study has several weaknesses. First, the control population in this analysis is not

randomly drawn from the general population, but instead consists of women who were

part of the study because they were diagnosed with another form of cancer. This may

lead to confound effects of the conclusions. Second, the results rely on a single dataset.

The general applicability of this method would be better established if we were able to

show that a model trained on one dataset would perform well on a second dataset that

was collected independently. Demonstrating that a model is transferrable is a longer-

term goal of ours.

Future work could refine this method to improve the predictive ability of this

method. The AUC might be improved through several strategies, including feature en-

gineering, for instance using sub-chromosomes rather than complete chromosomes,

data augmentation strategies, and the inclusion of SNP data. Further work can also
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establish how robust the model is: can a model trained with the TCGA data be success-

fully applied to a person not in the TCGA dataset.

Conclusion
A genetic risk score based on chromosomal-scale length variation of germ line DNA

could provide an effective means of predicting whether or not a woman will develop

ovarian cancer. Several avenues are open to further improve the AUC of this genetic

risk score test.
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