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Abstract

cis-dichlorodiammineplatinum(II) (CDDP)-loaded polymeric micelles for cancer therapy have been

developed to reduce the serious side effects of cisplatin CDDP. Herein, polymeric micelles incorpo-

rated with cisplatin are prepared based on the complexation between CDDP and hydrophilic poly

(L-glutamic acid)-b-poly (2-methacryloyloxyethyl phosphorylcholine) (PLG-b-PMPC) diblock copoly-

mers. These CDDP-loaded micelles possess an average size of 91 nm with narrow distribution, pro-

viding remarkable stability in media containing proteins. The release of CDDP from the micelles is

faster at pH 5.0 and pH 6.0 than that at pH 7.4 and in a sustained manner without initial burst

release. In addition, there is almost no difference in cellular uptake between these CDDP-loaded

micelles and free CDDP. Moreover, in vitro cytotoxicity test shows they possess high efficacy to kill

4T1 cells as compared with free drug. Thus, PLG-b-PMPC copolymer might be a promising carrier

for CDDP incorporating in cancer therapy.
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Introduction

Cisplatin is an important class of antitumor drug and has been

widely used for the treatment of many cancers, such as non-small

cell lung carcinoma [1], ovarian cancer [2], testicular cancer [3] and

gastric cancer [4]. However, due to its severe dose-related side

effects, i.e. neurotoxicity, nephrotoxicity, ototoxicity, nausea and

myelosuppression [5–7], the clinical use of cisplatin is limited.

Several cisplatin administration strategies and other platinum-based

anti-tumor drugs have been used for reducing the disadvantages of

cis-dichlorodiammineplatinum (II) (CDDP), which succeeded in less

toxic but less efficacy [6–10]. Besides, the side effects are still the

crucial barriers to increase dosage, which even result in irreversible

renal failure [11]. Therefore, considerable efforts have been dedi-

cated for delivery systems that target platinum drugs to solid tumors

to reduce the side effects while improving the efficiency of the drugs.

Over the last two decades, the development of nanotechnology

and the discovery of the enhanced permeability and retention (EPR)

effect have provided powerful tools for drug delivery system (DDS)

to reduce the side effects and improve the efficacy of antitumor

drugs [12]. The EPR effect has been demonstrated to enhance the

accumulation of long-circulating macromolecules, which has facili-

tated the application of drug-loaded nanocarriers [13, 14].

Moreover, nanocarriers with suitable particle size (1 0–100 nm) and

narrow size distribution can avoid rapid renal clearance by reticu-

loendothelial system (RES) [15]. Nowadays, several kinds of CDDP-

loaded nonocarriers, such as liposomes and polymer-platinum

conjugates, have been develeped and even reached clinical trials

[16]. However, these fomulations are still defective by poor stability,

low loading efficacy, weak solubility or undesired aggregation

behaviour [17]. To overcome these drawbacks, the strategies of
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assembling polymeric micelles by using block copolymers and cis-

platin have been attractive to enhanced stability, superior blood

half-life and tumor selectivity of CDDP-loaded nonocarriers [18–

21]. Traditionally, polymers possess carboxyl groups have been

investigated to incorporate cisplatin and form the hydrophobic core

of micelles. Among them, polymeric micelles incorporating cisplatin

prepared by Kataoka’s group via the polymer-metal complex forma-

tion between CDDP and poly(ethylene glycol)-b-poly (glutamic

acid) block polymers have proceeded into clinical evalution [17, 22].

Although bioinspired poly (glutamic acid) with multi carboxyl

groups is derived from naturally occurring glutamic acid, which is

biocompatible and biodegradable [23].

For the above CDDP-loaded micelles, hydrophilic PEG is usually

used as shell-forming block to protect the drugs inside the core, pre-

vent the interaction with plasma proteins and cells, avoid the recog-

nition by macrophages and prolong the circulation in the

bloodstream [24–27]. Besides conventional PEG, zwitterionic poly-

mers containing phosphorylcholine are also attractive for their

excellent hydrophilic, biomimetic property, outstanding biocompat-

ibility, high antithrombogenic properties and remarkable resistant

to protein adsorption [28–30]. For instance, poly (2-methacryloy-

loxyethyl phosphorylcholine) (PMPC) has been introduced into sev-

eral nanocarriers as shell-building blocks for drug delivery [31–35].

Due to its membrane-mimetic structure, PMPC has been reported to

be helpful for DDS in facilitating cellular association and enhancing

cellular uptake [35, 36]. In our previous work, we had synthesized a

poly (c-benzyl-L-glutamate)-block-poly (2-methacryloyloxyethyl

phosphorylcholine) (PBLG-b-PMPC) copolymer for drug loading,

which showed great antitumor efficacy [37]. However, the release of

drugs was slow without stimuli-responsive property. Therefore, we

hope to develop a more desirable drug carrier for quickly releasing

the cargo in specific environment.

In this work, hydrophilic poly (L-glutamic acid)-block-poly

(2-methacryloyloxyethyl phosphorylcholine) (PLG-b-PMPC) copoly-

mer is synthesized to complex with cisplatin, forming polymeric

micelles as CDDP carriers through self-assembling (Scheme 1). The

release of CDDP is controllable and shows a faster drug release at low

pH. Additionally, these CDDP-loaded micelles possess an average size

of sub-100 nm with narrow distribution, great protein stability, fast

cellular uptake and also high tumor cells inhibition efficacy.

Materials and methods

Materials
c-benzyl-L-glutamate-N-carboxyanhydride (BLG-NCA, 97%,

Chengdu Enlai biological technology Co., Ltd, China) was recrystal-

lized twice from n-hexane/ethyl acetate (1/1, V/V) before using.

2-methacryloyloxyethyl phosphorylcholine was purchased from

Nanjing Natural Science and Technology Institute and used without

further purification. N-Boc-ethylenediamine, 2-Bromoisobutyryl

bromide, 3-(4, 5-Dimethyl-thiazol-2-yl)-2, 5-diphenyl tetrazolium

bromide (MTT), and 2,20-Dipyridyl (bpy) were purchased from

Chengdu Best Reagent Co., LTD (Chengdu, China) and used as

received. Cuprous bromide (CuBr) from Chengdu Best Reagent Co.,

LTD (Chengdu, China) was purified by washing with acetic acid

and ethanol. Cisplatin (CDDP) was purchased from Shanghai Ziyi

Reagent (Shanghai, China). Extra dry N, N-Dimethylformamide

Scheme 1. Schematic illustration of self-assembly of cisplatin-loaded PLG-b-PMPC polymeric micelles
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(DMF) was purchased from Arcos Organics. All other reagents and

solvents were purchased from Chengdu KeLong Chemical Reagent

Company (Chengdu, China) and used without further purification.

Synthesis of PLG-b-PMPC copolymers
First, macroinitiator PBLG-Br was synthesized according to our pre-

vious report [37]. Then, PBLG-b-PMPC copolymers were synthe-

sized by ATRP method. Briefly, PBLG-Br (1 g, 0.2 mmol) and MPC

(2.1 g, 7.0 mmol) were dissolved in a dry flask with 30 ml solvent

(MeOH/DMSO, 1/1, v/v). After the oxygen was removed by a

freeze-pump-thaw procedure for three times, CuBr (28.8 mg,

0.2 mmol) and 2, 20-dipyridyl (62.4 mg, 0.4 mmol) were added into

the flask under the atmosphere of N2. The reaction was performed

for 48 h at 38�C with flame-sealed and the protection of N2. The

reaction mixture was purified by passing through a silica gel col-

umn, concentrated, and precipitated into excess ethyl ether. The

product was dried in vacuum at room temperature overnight. For

the deprotection of the benzyl groups, PBLG-b-PMPC was dissolved

in 0.1 M NaOH at room temperature for 1 h. The mixture was dia-

lyzed against deionized water for 2 days. PLG-b-PMPC diblock

copolymer was obtained by precipitating into excess amount of cold

diethyl ether and followed by vacuum drying.

Preparation of CDDP-loaded polymeric micelles
Briefly, 20 mg PLG-b-PMPC and 4 mg CDDP were dissolved in

10 ml deionized water and stirred at 37�C for 72 h. CDDP-

incorporated micelles thus prepared were purified by dialysis against

deionized water for 24 h (MWCO 3500). The whole procedure was

performed in the dark. The final volume of micellar solution was set

to be 20 ml. The size distribution of the CDDP-loaded micelles was

evaluated by a Malvern Zetasizer Nano ZS at 25�C. Drug loading

content (DLC) and drug loading efficiency (DLE) were determined

by inductively coupled plasma mass spectrometry (ICP-MS) and cal-

culated by the following equations:

DLC %ð Þ ¼ mass of loaded CDDP

mass of the CDDP� loaded micelles
� 100% (1)

DLE %ð Þ ¼ mass of loaded CDDP

mass of CDDP used for loading
� 100% (2)

In vitro drug release and micellar stability
The release profiles of CDDP from CDDP-loaded micelles were

evaluated by dialysis method. Typically, 2 ml CDDP-loaded micelles

solution (1 mg/ml) was add to a dialysis bag (MWCO 3500) in

100 ml PBS solution and then incubated at 37�C in the dark. At pre-

determined time intervals, 2 ml solution were taken out from the

release media and 2 ml fresh PBS was added into the release media.

The released platinum was confirmed by ICP-MS.

The stability of the micelles was evaluated by monitoring the

particle size in 10, 20 and 50% (fetal bovine serum (FBS)/micellar

solution, v/v) FBS over time.

Cytotoxicity assay
The cytotoxicity of PLG-PMPC copolymers, free CDDP and CDDP-

loaded PLG-b-PMPC micelles against 4T1 cells were evaluated by

the MTT assay. 4T1 cells were seeded in 96-well plates at a density

of 5000 cells per well in 200 ll RPMI 1640 culture medium, which

contained 10% FBS and supplemented with penicillin (50 U/ml) and

streptomycin (50 U/ml) and incubated at 37�C in 5% CO2

atmosphere for 24 h. Then the culture medium was replaced by

200 ll fresh medium, which contained varying concentration of

PLG-PMPC, free CDDP and CDDP-loaded micelles. The cells were

incubated for another 48 or 72 h. But for free PLG-b-PMPC, the

cells were incubated for another 24 h. At each time point, 20 ll

MTT solution (5 mg/ml) was added to each well and incubated for

4 h at 37�C. Then the medium was replaced by 200 ll DMSO, fol-

lowed by shaking for 20 min. The cell viability was measured in a

Bio-Rad 680 microplate reader at a wavelength of 490 nm. The rela-

tively cell viability was calculated by the following formula:

Cell viability %ð Þ ¼
Asample

Ablank

� 100% (3)

where, Asample and Ablank referred to the absorbance of the sample

wells and blank control wells, respectively. Data were presented as

average 6 SD (n ¼ 3).

Cellular uptake assay
4T1 cells were seeded in 24-well plates at a density of 5 � 104 cells

per well in 500 ml RPMI 1640 culture medium and cultured for

24 h. The original medium was replaced by 450 mL fresh medium

and 50 ml CDDP-loaded micelles solution (the concentration of Pt

was 0.1 mg/ml) or free CDDP solution with the same concentration

of Pt. The cells were incubated for 2, 4 or 6 h at 37�C. At each selec-

tive time, the culture medium was suck away, then the cells were

washed three times with PBS before being treated with aqua regia

(HCl: HNO3 ¼ 3: 1, volume ratio) for 4 h. The solution was diluted

to determine the Pt concentration by ICP-MS.

Characterization
1H NMR spectra were recorded on a spectrometer operating at

400 MHz (Bruker AMX-400). The polydispersity of PBLG-Br were

determined by gel permeation chromatography (GPC) (Agilent

1260). The measurements were performed using DMF as the eluent

at a flow rate of 1 ml/min at 40�C and a series of narrow PMMA

standards for the calibration of the columns. The GPC measurement

of PLG-b-PMPC diblock copolymer was conducted on a water GPC

system (Agilent PL aquagel-OH column, EcoSEC (HLC-8320GPC

with distilled water as eluent (25�C, flow rate: 1 ml/min, and poly-

ethylene glycol as standards). Transmission electron microscopy

(TEM) measurements were performed on a Hitachi H-600 transmis-

sion electron microscope with an accelerating voltage of 100 KV.

A drop of the micelle solution (1 mg/ml) was deposited onto a 230

mesh copper grid and treated with 2% phosphotungstic acid at pH

6.5 negative stain solution, then allowed to dry at room temperature

before measurements. Inductively coupled plasma mass spectrome-

try (ICP-MS, VG PQExCell, Thermo Jarrell Ash, USA) was used for

determined the quantity of CDDP.

Results and discussion

Synthesis of hydrophilic PLG-b-PMPC copolymers
The synthetic route of PLG-b-PMPC was shown in Scheme 2. PBLG-

Br macroinitiator was synthesized and its 1H NMR result was shown

in Fig. 1A. The molecular weight distribution of PBLG-Br macroinia-

tor was determined by GPC to be 1.22 (Fig. 2A). Amphiphilic PBLG-

b-PMPC copolymers were obtained by ATRP of MPC using PBLG-Br

as the initiator. The 1H NMR result of PBLG-b-PMPC was shown in

Fig. 1B. When compared with Fig. 1A, characteristic peaks of PBLG

(d 7.34, –C6H5; d 5.07, –CH2-C6H5) and characteristic peaks of

PMPC (d 4.27, -CH2-OC ¼ O-; d 4.17, -CH2CH2-OC ¼ O-; d 4.02,
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-CH2-CH2-N
þ(CH3)3; d 3.71, -CH2-N

þ(CH3)3; d 3.28, -Nþ(CH3)3)

were found, suggesting the successful synthesis of PBLG-B-PMPC

copolymer. Finally, hydrophilic PLG-b-PMPC copolymers were

obtained by the deprotection of benzyl groups in NaOH solution.

Obviously, Fig. 1C displayed that the benzyl group signals located at d
7.34 ppm and methylene located at d 5.07ppm disappeared after the

deprotection. Although the characteristic peaks of PLG-b-PMPC (d
2.16, -CH2COOH; d 1.96, -CH-CH2-; d 4.23, -CH2-OC ¼ O-; d
4.15, -CH2CH2-OC ¼ O-; d 4.02, -CH2-CH2-Nþ(CH3)3; d 3.61, -

CH2-N
þ(CH3)3; d 3.17, -Nþ(CH3)3) were found, indicating that the

deprotection was complete. Furthermore, the DP of the PLG segment

was calculated to be 21 based on the ratio of integration at peak b (-

CH2-COO-, 2 H) and peak c (-CH2-COOH, 2 H) in Fig. 1C.

Although the DP of the PMPC segment was calculated to be 34 based

on the ratio of integration at peak b(-CH2-COO-, 2 H) and peak

h (-CH2N
þ(CH3)3, 2 H). Therefore, the PLG-b-PMPC that we studied

in this work can be defined as PLG21-b-PMPC34 with the molecular

weight of about 12700 g�mol�1 based on the 1H NMR result. The

molecular weight of PLG-b-PMPC was further determined as

16 400 g•mol�1 by GPC with a PDI of 1.2 (Fig. 2B).

Figure 1. 1H NMR Spectra of PBLG-Br (A) in DMSO-d6, PBLG-b-PMPC (B) in CD3OD and DMSO-d6 (1/1, V/V) and PLG-b-PMPC (C) in D2O

Scheme 2. Synthetic route of PLG-b-PMPC
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Preparation and stability of CDDP-loaded PLG-b-PMPC

polymeric micelles
As shown in Scheme 1, CDDP-loaded PLG-b-PMPC polymeric

micelles could be prepared by complexing cisplatin with carboxylate

groups of the PLG segment. The average size of these CDDP-

incorporated micelles was measured by DLS, which was 91 nm with

a narrow distribution of 0.10 6 0.04 (Fig. 3A). In the TEM image,

the result revealed the well formation of these CDDP-loaded

micelles (Fig. 3B). The average diameter of the micelles in TEM

image was around 43 nm which is smaller than that scaled by DLS,

which might due to the dehydration of the PMPC shell during the

sample preparation process for TEM. The DLC and drug loading

efficacy (DLE) of Pt determined by ICP-MS were 14.8 and 86.5%,

respectively, based on the CDDP/polymer feed ratio of 20%.

It was well known that the protein adhesion onto the drug car-

rier surface was one of the most important biological barriers that

Figure 2. GPC Trace of PBLG-br macroinitiator in DMF (A) and PLG-b-PMPC diblock copolymer in water (B)

Figure 3. (A) The Size distribution of CDDP-loaded micelles with a PdI of 0.1 6 0.04; (B) TEM image of CDDP-loaded micelles; (C) Particle size of CDDP-loaded

micelles incubation with differents concentrations of FBS (FBS/micellar solution, v/v) at 37 �C as measured by DLS. The data were presented as the average 6 SD

(n ¼ 3); (D) Accumulative release of CDDP-loaded micelles in PBS (pH¼5.0, 6.0 and 7.4). All measurements were carried out in triplicate. The data were presented

as the average 6 SD (n ¼ 3)
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not only induced undesirable aggregation but also caused recogni-

tion by RES system, in which drug carriers would be rapidly cleared

out of blood circulation [38]. In this study, one of the purpose to

introduce biomimetic PMPC as micelle shell was to enhance the pro-

tein resistence of the DDS due to its zwitterionic structure. To inves-

tigate the stability of CDDP-loaded micelles, micellar solution

(1 mg/ml) was incubated with 10, 20 and 50% FBS for up to 24 h,

and the particle sizes were monitored by DLS. As shown in Fig. 3C,

there was almost no change in the particle size of CDDP-loaded

micelles with 10% FBS. Meanwhile, the particle size of CDDP-

loaded micelles solution with 20 or 50% FBS only had a slight

change, which indicated the great stability of CDDP-loaded micelles

in biological solution.

In vitro release behavior of CDDP from CDDP-loaded

PLG-b-PMPC micelles
The in vitro release behavior of CDDP from CDDP-loaded PLG-b-

PMPC micelles was investigated in PBS with pH 7.4, 6.0 and 5.0,

respectively. It has been reported that CDDP-incorporated micelles

could dissociate into unimers with CDDP release in chloride ion-rich

solutions due to an inverse ligand substitution of the Pt (II) atom from

the PLG segments to chloride. Moreover, cisplatin was usually

released faster from these micelles under acidic condition than that at

physiological condition due to the protonation of the carboxylic

groups [22]. As shown in Fig. 3D, cisplatin was released in a sustained

manner without initial burst release and the release of cisplatin at pH

5.0 and pH 6.0 were faster than that at pH 7.4, which was beneficial

for drug release specifically in tumor tissue with acidic enviroment.

Cellular uptake and cytotoxicity of CDDP-loaded PLG-b-

PMPC micelles
The cellular uptake of CDDP-loaded PLG-b-PMPC micelles was

quantified by ICP-MS with high detection sensitivity, and free

CDDP was used as control. As shown in Fig. 4, the cellular uptake

of the CDDP-loaded micelles was similar with free CDDP within

6 h, suggesting the fast cell internalization of these micelles. The sim-

ilar phenomenon might be attributed to the biomimetic PMPC shell

which was similar to the lipid bilayer and made it easily to be inter-

nalized by tumor cells, which was similar to with the work reported

by Li’s group [34].

The potential toxicity of PLG-b-PMPC block copolymer was

first evaluated by MTT method against 4T1 cells. As shown in

Fig. 5, the cell viability of 4T1 cells incubated with various concen-

tration of PLG-b-PMPC was observed to be around 100% at all

tests even at high concentration (100 mg/ml), indicating the excellent

biocompatibility of PLG-b-PMPC. The great biocompatibility could

be attributed to the zwitterionic PMPC shells of the micelles. The

tumor cells inhibition efficacy of various concentrations of CDDP-

loaded micelles was further evaluated against 4T1 cells after 48 and

72 h incubation, and free CDDP was used as control. As shown in

Fig. 6, CDDP-loaded PLG-b-PMPC micelles exhibited similar

Figure 4. 4T1 Uptake of free CDDP and CDDP-loaded micelles with the same

concentration of pt. The data were presented as the average 6 SD (n ¼ 5)

Figure 5. Cell viability of 4T1 cells incubated with blank PLG-b-PMPC at vari-

ous concentration. The data were presented as the average 6 SD (n ¼ 3)

Figure 6. In vitro cytotoxicity of CDDP-loaded micelles and free CDDP against

4T1 cells after 48 h (A) and 72 h (B). The data were presented as the average

6 SD (n ¼ 3)
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inhibition efficiency with that of free CDDP at the same drug con-

centration after 48 and 72 h incubation. The result was consistent

with the fast cell uptake behavior of the micelles (Fig. 4).

Conclusions

In this work, a CDDP loaded biomometic nanocarrier was prepared

by complexation between CDDP and the carboxyl groups of hydro-

philic PLG-b-PMPC copolymer with a desirable particle size of

91 nm and narrow size distribution. These CDDP-loaded polymeric

micelles with the zwitterionic surface exhibited excellent stability in

media containing proteins. CDDP was released from micelles in a

sustained manner without the initial burst release and the drug

release was faster in acidic condition due to the protonation of the

carboxylic groups. Moreover, these biomimetic CDDP-loaded

micelles exhibited similar cell uptake and tumor cells inhibition effi-

cacy as free CDDP, indicating a promising micellar formulation

incorporating CDDP for cancer therapy.
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