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A B S T R A C T   

Automated Vehicles (AVs) based on a collection of advanced technologies such as big data and 
artificial intelligence have opened an opportunity to reduce traffic accidents caused by human 
drivers. Nevertheless, traffic accidents of AVs continue to occur, which raises safety and reliability 
concerns about AVs. AVs are particularly vulnerable to accidents on urban roads than on high
ways due to various dynamic objects and more complex infrastructure. Several studies proposed a 
scenario-based approach of experimenting with the response of AVs to specific situations as a way 
to test their safety. Reliable and concrete scenarios are necessary to test AV safety under critical 
conditions accurately. This study aims to derive a typical accident scenario for evaluating the 
safety of AVs, specifically in urban areas, by analysing collisions reported by the DMV of Cali
fornia, USA. We applied a hierarchical clustering method to find groups of similar reports and 
then executed association rule mining on each cluster to correlate between accident factors and 
collision types. We combined statistically significant association rules to constitute a total of 14 
scenarios that are described according to an adapted PEGASUS framework. The newly obtained 
scenarios exhibit significantly different accident patterns than the typical Human-driven Vehicles 
(HVs) in urban areas reported by National Highway Traffic Safety Administration. Our discovery 
urges AV safety to be tested reliably under scenarios more relevant than the existing HV accident 
scenarios.   

1. Introduction 

Automated Vehicles (AVs) developed with state-of-the-art artificial intelligence (AI) and big data technologies have brought 
positive effects such as improved mobility and reduced social costs through AVs’ contribution to the decrease of traffic accidents [1]. 
SAE [2] classified AVs into six levels (lv.0 - lv.5). At a higher level, AVs are more capable of coping with various situations with less 
human intervention. Some AVs at lv.3 are on the market, and several companies such as GM, Google, and Nuro are conducting test runs 
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of lv.4 AVs that require driver intervention only under certain critical conditions. Despite recent advancements, AVs are not entirely 
free from accidents. It is reported that accidents involving AVs constantly have occurred for various reasons, even under ideal con
ditions [3,4]. Furthermore, the recent fatal pedestrian fatality involving AVs is causing fears and hampering the successful 
commercialization of AVs. 

The research community has tried to understand AV accidents by referring to the accident data collected from Human-driven 
Vehicles (HVs) [5]. However, AVs could exhibit different accident patterns compared to HVs. Instead, a few researchers looked 
into AVs accident data made publicly available on the web by the state of California [6–11]. The Department of Motor Vehicles (DMV) 
of California mandates the submission of collision reports in case of accidents during AV test driving. However, most previous studies 
have relied on manual analysis of accident characteristics. With such approaches, AV test scenarios that are necessary for evaluating 
the safety functions of AVs cannot be efficiently generated [12–15]. In addition, the manual analysis by humans can yield subjective 
and biased conclusions. 

We are keen to employ data-driven methods based on clustering and association rule mining algorithms for more efficient and 
objective analysis. This paper focuses mainly on urban-area accidents in which AVs are prone to get involved due to the non-trivial 
interactions in an open system with complex infrastructure and pedestrians besides vehicles [16,17]. Urban area accidents are 
more frequent and follow patterns that differ from highway accidents. Accidents on the highways can be relatively much more fatal. 
However, AV encountering non-vehicular objects on highways is less likely [18]. Given the result of the data-driven analysis of DMV 
collision reports, we compose accident scenarios according to the framework proposed by the PEGASUS project. 

The contribution of our research work can be summarized as follows:  

(1) We have devised data-driven analytical tools to extract statistically significant accident patterns from 165 DMV collision reports 
involving AVs.  

(2) We have generated 313,748 correlations (association rules) between 14 accident factors and collision types.  
(3) We implemented a novel method to combine any two association rules to constitute an AV accident scenario. As a result, we 

have derived 14 unique AV accident scenarios that are specified according to an adapted PEGASUS scenario description 
framework.  

(4) We have confirmed a significant difference between the AV and HV accident patterns by comparing our newly generated 
scenarios with the urban-area HV pre-crash reports by NHTSA (National Highway Traffic Safety Administration). Such dis
covery justifies our work of analyzing AV accident patterns to derive safety test scenarios more relevant for AVs. 

In summary, we utilized AV data and employed data mining techniques such as clustering and association rule mining to ensure 
both the reliability and the concreteness of AV accident scenarios. These scenarios can effectively prevent AV accidents. 

The remainder of this paper is structured as follows: In Section 2, we examine previous studies regarding data utilization and 
scenario derivation for AVs; In Section 3, we introduce the format and semantics of DMV collision reports, the data preprocessing 
procedure and the data analysis methodology; In Section 4, we evaluate the analysis results; In Section 5, we present a few cases of 
urban accident scenarios we derived based on the results from Section 4; Finally, we conclude in Section 6. 

2. Related works 

This section reviews studies that analyze traffic accidents in HVs and AVs and derive accident scenarios for both vehicles. 
Shanthi and Ramani (2012) [19] predicted the injury severity in traffic accidents using various classification algorithms, and they 

derived factors affecting the injury severity. With an accuracy of 99.73 %, they confirmed that the vehicle’s collision type, seat po
sition, age group, and drug significantly affected the injury severity. Taamneh et al. (2016) [20] used several classification methods, 
such as decision trees and Naive Bayes, to select age, gender, and collision type as major accident factors related to injury severity in 
traffic accidents. The study by Taamneh et al. revealed that 18-30-year-olds were vulnerable to traffic accidents, and driver injuries 
occurred more frequently than pedestrians and passengers. Muhammad et al. (2017) [21] analyzed the cause of the accident using an 
ID3 decision tree based on accident data on the Kano-Wudil Highway. As a result, they found that incorrect passing, loss of control of 
the vehicle, tire puncture, and brake failure were the main causes of the accident. In addition, Bahiru et al. (2018) [22] conducted a 
study to classify and predict accident severity, and they found that weather conditions, traffic lanes, and accident times were essential 
factors influencing accident severity. Janani and Devi (2016) [23] and Li et al. (2017) [24] identified the characteristics of traffic 
accidents using classification, clustering, and association rules. Li et al. identified that roadway surface, weather, and light conditions 
did not affect the fatality rate of traffic accidents, while driving under the influence or the collision type substantially affected the 
fatality rate. Boggs et al. (2020) [25] confirmed that most accidents (61 %) were rear-end collisions, and 13.3 % were injury accidents 
through text analysis of the DMV collision report. Furthermore, through the setting of random parameters in the Bayesian analysis, 
they found that the correlation between disengagement of the autonomous driving system and rear-end collision was significantly 
high, and the possibility of AV rear-end collisions were quite low near public/private schools. Lee et al. (2023) [26] analyzed the AV 
accident using a DMV collision report, and they identified the correlation between pre-crash conditions, AV driving modes, crash types, 
and crash outcomes. This study argued that in autonomous driving mode, AV should pay attention to the longitudinal distance from the 
front or back vehicle and that road and infrastructure functions such as intersections, ramps, and slip lanes need to be improved. 

Several studies used clustering methods to extract characteristics from data to determine the cause of traffic accidents. In addition, 
association rules were mined to identify the relationship between variables in the data. DrissiTouzani et al. (2020) [27] classified 
accidents into 10 clusters through the K-means clustering algorithm, and they confirmed that most traffic accidents occurred during 
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the day, and the type of collision, initial shock point, and movement of the vehicle were essential factors in traffic accidents. Lin et al. 
(2014) [28] and Kumar and Toshniwal (2016) [29] derived significant and robust association rules using both clustering and asso
ciation analysis, and they emphasized that clustering helped to narrow down the characteristics and patterns before the association 
analysis. Also, Kong et al. (2022) [30] performed cluster correspondence analysis using dimension reduction based on near-crash data. 
As a result, they derived six clusters with four types: near-crash with adjunct vehicles; near-crash with the following or leading ve
hicles; and near-crash with objects on the road. This study also found characteristics of the near-crash such as slow or stopped, rapid 
deceleration or stop of the leading vehicle. Wang et al. (2022) [31] derived six clusters through k-medoid clustering using two-wheeled 
vehicle crash data in China. Based on this analysis, they presented functional, logical, and concrete scenarios specifically for AV test. 

Studies on accident prevention technology development and scenario generation for vehicle safety evaluation have been conducted 
based on real-data analysis [32–40]. Nitsche et al. (2017) [32] derived 34 crash scenarios using clustering and association analysis and 
extracted 12 scenarios of accidents with a high risk of injury. Sui et al. (2019) [33] derived car-two-wheeler test scenarios with 
clustering, and they derived six scenarios. Yuan et al. (2020) [34] derived a high-risk scenario using ANN based on HV accident data. 
They set time, weather, road type, and speed limitations as input, and five high-risk scenarios were derived considering the accident 
frequency and probability distribution. Kong et al. (2021) [35] analyzed the pattern of near-crash events through association rule 
mining between factors other than secondary tasks. They used VCC50 Elite data from 50 connected vehicles with adaptive cruise 
control and lane-keeping assistance functions. In addition, they utilized the apriori algorithm and performed the association rule 
mining by setting the presence or absence of a secondary task to the consequent. This paper confirmed that the rapid deceleration or 
stop of the leading vehicle, regardless of the secondary task, is highly related to the near crash. In the case of a near-crash without a 
secondary task, the rapid deceleration or stop of the leading vehicle is positively associated with lane change and sideswipe accidents. 
Pan et al. (2021) [36] and Tan et al. (2021) [37] derived accident test scenarios by clustering analysis to develop AEB/FCW technology 
to prevent accidents practically. Essenturk et al. (2022) [38] derived traffic accident patterns through ROCK (Robust Clustering with 
Links) and market basket analysis using UK’s STATS19 database. ROCK was performed on 26 clusters (derived from clustering) to 
create seven clusters, and an AV test scenario was presented. This study significantly contributes to the derivation of AV test scenarios 
by employing clustering, ROCK analysis, and market basket analysis. However, it is important to acknowledge certain limitations 
associated with the use of HV data in this research. Kang et al. (2022a) [39] used a vision transformer to detect critical situations 
involving AVs. The vision transformer caught critical situations at an F1 score of 94 %. Given the interpretation of the result returned 
by the vision transformer, Kang et al. followed the PEGASUS framework to derive accident scenarios under which AV safety functions 
can be tested. Liu et al. (2021) [5] extracted accident characteristics of HVs data based on the NHTSA pre-crash scenario and extracted 
aspects of AVs accidents. Liu et al. also developed a scenario for evaluating the safety of AVs by comparing the characteristics of two 
vehicles. However, this study pointed out a limitation to applying HVs data-based accident scenarios to AVs due to the different 
characteristics of the two vehicles, such as differences in perception-response time (PRT) between human and system drivers. 
Accordingly, it is necessary to derive a reliable scenario using AV data to secure the practical safety of AVs. Similarly, Novat et al. 
(2023) [40] conducted a study comparing the accident characteristics of AV and conventional vehicles through the Bayesian network 
using CA BMV (California Bureau of Motor Vehicles) data. This study emphasized that AV and conventional vehicles have different 
collision patterns. For instance, AVs had more rear-end collisions than conventional vehicles, and sideswipe/broadside and other 
collision types were less likely to occur. Their study does not deal with the generation of accident scenarios. 

Although accident analysis and scenario generation studies based on AVs data are required, the manufacturer’s confidential in
formation restricts access to AV driving data. On the other hand, the DMV in California, USA, is obliged to submit accident reports 
during AV tests. The report is made available on the DMV website, and the data has been used in various ways in recent studies on AVs 
accident analysis. Most studies affirmed that AVs’ representative accident collision type was a rear collision [9,41–44]. Leilabadi and 
Schmidt (2019) [9] found a strong correlation between the road surface and the accident’s severity and that the type of accidents 
appeared differently depending on the driving mode (automated mode and conventional mode). Das et al. (2020) [41] identified six 
significant collision patterns, including left/right turn and proceeding straight before the collision. Torres et al. (2021) [42] analyzed 
the DMV report using multimedia logic regression, and they affirmed that the movement before the collision of AVs had a significant 
influence on the collision type of the accident. Ashraf et al. (2021) [43] derived rules for AV accidents using a decision tree and as
sociation analysis. Most accidents occurred when the AVs stopped in the automated mode at the intersection. Also, Ashraf et al. found 
that an accident frequently occurred when HVs passed the AVs or two vehicles turned. Kang et al. (2022b) [44] conducted random 
forest analysis by constructing a DMV collision report and presented more than 100 autonomous vehicle accident scenarios based on 
the random forest results. 

A few research works tested the response of AVs to a specific situation [12–15]. For such tests, scenario derivation studies have been 
conducted. Stark et al. (2020) [45] raised the need to generate scenarios using accident data exclusively for AVs. Alambeigi et al. 
(2020) [11] derived situations that should be noted in AV accidents through topic modeling analysis. This study suggested that AV 
manufacturers need to check the following incidents in-depth: (1) manual transitions; (2) side collisions; and (3) rear-end collisions 
due to left/right turns in cross-section. Song et al. (2021) [18] proposed seven typical crash scenarios by analyzing the accident 
characteristics of AVs through clustering analysis and sequence analysis based on DMV collision report and DMV disengagement 
report. 

These previous research works came short in reliability and concreteness. Nitsche et al. (2017) [32] secured the concreteness of the 
AVs scenario through clustering analysis and association analysis but failed to secure reliability by using data from HV accidents that 
may exhibit different patterns than AV accidents. In addition, Song et al. (2021) [18] composed AVs scenario based on the data from 
AV accidents. However, their proposed scenarios were vaguely written with limited factors such as vehicle movement and collision 
type. 
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Scenario-based testing is an important approach as a method of assessing AV safety. The scenario requires reliability, and this 
reliability is based on data. Since AV and HV accident patterns are different [5,40], scenarios created based on AV data should be 
reliable. In addition, the scenario consisting of various situations that threaten the safety of AV must clearly present various factors for 
AV testing. It is concreteness, so the scenario needs to secure concreteness to test a range of situations. Therefore, we found that most 
AV accident scenarios derived from most studies lack reliability or concreteness. To address these critical shortcomings, our research 
possesses the following characteristics as shown in Table 1. We derived AV accident scenarios based on clustering and association rule 
mining to enhance the concreteness of the scenarios. Notably, our research aims to secure the reliability of the AV accident scenario by 
utilizing real-world AV accident reports. Also, we have adapted the standard scenario format, such as the PEGASUS project. 

3. Accident data analysis methodology 

In this section, we introduce analysis methods based on the data extracted from the DMV reports. 

3.1. Data collection 

We constructed an AV accident database with structured data from collision reports archived at DMV in California, USA. Currently, 
California permits the manufacturers such as Waymo and GM to test drive their AVs on real roads. If an accident occurs during test 
driving, the manufacturers must file a report and make it publicly available on the DMV website [46]. The report specifies the 
manufacturer of AVs, driving mode, road conditions, the type of collision, and the movement preceding the collision of vehicles related 
to the accident. AVs and HVs involved in the collision report are denoted as VEH 1 and VEH 2, respectively, as shown in Fig. 1. Since 
the revision in 2018, DMV additionally specifies whether the accident occurred while driving in an automated or manual mode. Out of 
370 reports since 2018, we narrowed it down to 165 collision reports that occurred while AVs were in an automated mode. 

Table 1 
A comparison of our methods with previous studies.  

Studies Scenario 
Derivation 

AV Accident Data Usage Clustering Association Rule 
Mining 

.Alambeigi et al. (2020) [11] X O X X 
Liu et al. (2021) [5] O O X X 
Sui et al. (2019) [33] O X O X 
Nitsche et al. (2017) [32] O X O O 
Song et al. (2021) [18] O O O X 
Our methods O O O O  

Fig. 1. Default & optional value of DMV collision report.  
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3.2. Accident factors and encoding 

The format of a DMV collision report is shown in Fig. 1. From the report, we identified accident factors as follows. 
The most critical factor is the collision type, expressed as a 2-tuple. The first and second elements of the tuple specify AV and HV 

body parts involved in an accident or their motions at the moment of collision, respectively. 
For instance, (Sideswipe, Sideswipe) indicates that an AV and an HV swiped each other on the side. Another example, such as (Hit 

object, None), means that an AV hit a non-vehicular object. AV and HV movements and their relative positions in terms of lanes are also 
expressed at description as shown in Fig. 1-(b). 

From the optional written description section of the report, we first extracted additional fields to consider, as shown in Fig. 2. We 
excluded manufacturer, damage, and human injury information since they are not the cause of an accident. Over 80 % of the velocity 
information was missing from the reports. Since we could not ensure the statistical significance, we had to ignore the velocity fields 
despite their importance in inferring the correlation with an accident if enough information was provided. We did not use the precise 
address of the accident location. Instead, we classified the address to a location type, such as intersections, roads, and parking lots. The 
location types are added to the list of accident factors. 

We compiled the final list of 14 accident factors, as shown in Fig. 2. The encoded values for each factor are specified in Fig. 3. The 
value N/A refers to the information that was not available in the report. 

3.3. Preliminary statistics of DMV collisions 

We discovered a few preliminary statistical characteristics of the DMV reports as follows. 

Fig. 2. Selection from the DMV collision report.  

Fig. 3. Encoding values of accident factors.  
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1. We found that 93 % of the accident were car-to-car collisions (Fig. 4-(a)).  
2. 90 % of the accidents occurred in clean weather (Fig. 4-(b)).  
3. 69 % of the accidents occurred in daylight (Fig. 4-(c)).  
4. In 30 % of the accidents, AVs stopped while HVs proceeded straight prior to the collision, i.e., (Stopped, Proceeding straight) 

(Fig. 4-(d)).  
5. In 10 % of the accidents, AVs and HVs both proceeded straight prior to the collision, i.e., (Proceeding straight, Proceeding 

straight) (Fig. 4-(d)).  
6. In 7 % of the accidents. HVs made a right turn while AVs were stopped, i.e., (Stopped, Making a right turn) (Fig. 4-(d)).  
7. 70 % of the collisions occurred on HVs rear-end (Fig. 4-(e)).  
8. In 13 % of the collisions, AVs and HVs sideswiped each other (Fig. 4-(e)).  
9. In 50 % of the accidents, AVs and HVs were located on the same lane (83 cases, 50 %), as shown in Fig. 4-(f).  

10. 92 % of the accidents took place on dry road surface (Fig. 4-(g)).  
11. 90 % of the accidents occurred under abnormal road conditions (Fig. 4-(h)).  
12. 77 % of the accidents happened at intersections (Fig. 4-(i)).  
13. 39 % of the accidents occurred between 12 and 18 (Fig. 4-(j)).  
14. 15 % of accidents occurred on red light (Fig. 4-(k)). 

We had to implemented additional analytical procedures to unravel key associations between the collision types and other accident 
factors which could not be found otherwise with the preliminary statistical analysis. 

Fig. 4. Result of preliminary statistical analysis.  
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3.4. Clustering and association rule mining 

To derive a meaningful correlation between the collision types and the other accident factors, we implemented a two-phase analysis 
method as shown in Fig. 5. 

The first phase involves a task of grouping reports exhibiting similar characteristics. To derive the groups, we ran a hierarchical 
clustering algorithm [47]. We chose the ward linkage method to assess the closeness between encoded reports, which computes the 
sum of squares of deviations between data within and across clusters [48]. By calculating the distribution of the data, we could 
generate clusters that are less sensitive to outliers than the non-hierarchical clustering approaches. In the second phase, we conducted 
association rule mining for each DMV report cluster to correlate between accident types and the other accident factors. We employed 
the Apriori algorithm [49] for association analysis that extracts frequent item sets according to the configurable minimum support 
level. With an efficient pruning of less frequent item sets, the Apriori algorithm is capable of mining meaningful association rules fast. 
The association rule is expressed as A(Antecedent) → B(Consequent), meaning that B co-occurred with A. In our context, A is the item 
set of accident factors, and B is the type of collision by AVs and HVs. How strongly A and B are correlated can be measured with the 
metrics defined in Eq. (1) ~ (3). Support (Eq. (1)) refers to the probability of a rule including both A and B divided by the number (N) of 
items in the entire set. Confidence (Eq. (2)) is the probability that B occurs when A is included in the rule, which indicates the reliability 
of the rule. Lift (Eq. (3)) affirms the association between A and B by computing the conditional probability of B occurring when A is in 
the rule divided by the probability of B occurring in the entire item sets. If there is no relation between A and B, the Lift equals 1. 
Otherwise, the higher the Lift value is, the more significant the relationship between A and B is. 

Support(A → B)=
P(A ∩ B)

N
(1)  

Confidence(A → B)=P(B|A)=
P(A ∩ B)

P(A)
(2)  

Lift(A → B)=
P(B|A)
P(B)

=
P(A ∩ B)
P(A)P(B)

(3) 

With our two-phase analysis method, association rules are mined only among the most relevant and similar collision reports within 
each cluster. Therefore, the association rules can be extracted significantly faster than the approach of running the Apriori algorithm 

Fig. 5. Process for presenting AVs accident scenario.  

Fig. 6. Dendrogram after applying hierarchical clustering with threshold (y) set to 8.  
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brute-forcefully for the entire item sets without segmenting through clustering. 

4. Accident data analysis result 

In this section we discuss the result of the association rule mining per collision report cluster. The rules we extracted are later sued 
for composing accident scenarios to test during the safety evaluation of AVs. 

4.1. The result of hierarchical clustering 

Our hierarchical clustering algorithm produced the five most distinct clusters when the threshold y was set to 8 in the dendrogram, 
as shown in Fig. 6. We computed the distribution of the appearance of every accident factor and collision type to reveal the differ
entiating characteristics of each cluster as shown in Table 2 and Table 3. All clusters reported an HV colliding with the rear end of a 
stopped HV at an intersection. Table 3 shows the unique collision patterns of each cluster. Clusters 1 and 4 were mainly about 
sideswipe collisions. Particularly in cluster 1, the AVs were on the left side of HVs at the moment of collision. Opposite to Cluster 1, 
Cluster 4 contained accidents when AVs were on the right side of HVs. Cluster 2 is the only one that contained 12 % of reports on cars 

Table 2 
Confirm distribution of each cluster.   

Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4 

Type of Accident (TA) 
Car-Alone 0 % 0 % 12 % 0 % 0 % 
Car-to-Car 85 % 96 % 76 % 100 % 100 % 
Movement Preceding Collision (MPC) (AVs, HVs) 
(Stopped, Proceeding straight) 38 % 13 % 8 % 53 % 13 % 
Type of Collision (TC) (AVs, HVs) 
(N/A, Rear-end) 74 % 43 % 60 % 100 % 25 % 
(Sideswipe, Sideswipe) 3 % 39 % 0 % 0 % 50 % 
(Hit object, None) 0 % 0 % 8 % 0 % 0 % 
(Head-on, Head-on) 3 % 0 % 0 % 0 % 0 % 
Relative Position (RP) (AVs, HVs) 
(Left, Right) 12 % 100 % 0 % 0 % 0 % 
(Right, Left) 3 % 0 % 0 % 0 % 96 % 
(Same, Same) 68 % 0 % 0 % 100 % 4 % 
(Opposite, Opposite) 5 % 0 % 0 % 0 % 0 % 
(N/A. N/A) 12 % 0 % 100 % 0 % 0 % 
Location 
Intersection 85 % 70 % 68 % 88 % 54 % 
Parking lot 0 % 4 % 8 % 0 % 0 % 
Road 15 % 26 % 24 % 12 % 46 %  

Table 3 
Common characteristics and specific accident patterns of each cluster.  

Common characteristics of accident 

A rear-end collision occurred when an AV is stopped and a HV is proceeding straight due to a Car-to-Car accident at an intersection. 
Characteristics of accident for each cluster 

Cluster 0 A cluster containing an accident in which an AV and a HV faced each other and collided head-on. 
Cluster 1 A cluster containing a sideswipe accident with an AV is positioned to the relatively left of a HV. 
Cluster 2 A cluster containing an accident where an AV collided with an object. 
Cluster 3 A cluster consisting of a rear-end accident with an AV and a HV vehicle in the same lane. 
Cluster 4 A cluster containing a sideswipe accident with an AV positioned to the relatively right of a HV.  

Table 4 
Parameters set for association rule mining.  

Index Value 

Antecedent TA Weather Lighting AVs_MPC 
HVs_MPC AVs_RP HVs_RP Location 
RS RC Time TL 

Consequent AVs_TC HVs_TC 
Min_support 0.03(3 %) 
Min_ confidence 0.7(70 %) 
Min_lift 1.5  
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Table 5 
Significant association rules extracted from each cluster (A = Antecedent, C=Consequent, S=Support, L = Lift).  

ID A C S L 

Cluster 1 
1 [TA = Car-to-Car] + [Weather = Clean] + [Lighting = Daylight] + [AVs_MPC=Stopped] + [HVs_MPC=Passing other 

vehicle] + [AVs_RP = Left] + [HVs_RP=Right] + [Location = Intersection] + [RS = Dry] + [RC––No unusual conditions] +
[Time = 6–12] + [TL = N/A] 

[HVs_TC 
=

Rear-end] 

0.08 2.3 

2 [TA = Car-to-Car] + [Weather = Clean] + [Lighting = Dark-street lights] + [AVs_MPC= Proceeding straight] +
[HVs_MPC=Changing lane] + [AVs_RP = Left] + [HVs_RP= Right] + [Location = Road] + [RS = Dry] + [RC––No unusual 
conditions] + [Time = 18–24] + [TL = N/A] 

[HVs_TC 
=

Rear-end] 

0.04 2.3 

3 [TA = Car-to-Car] + [Weather = Clean] + [Lighting = Daylight] + [AVs_MPC=Stopped] + [HVs_MPC=Passing other 
vehicle] + [AVs_RP = Left] + [HVs_RP=Right] + [Location = Intersection] + [RS = Dry] + [RC––No unusual conditions] +
[Time = 12–18] + [TL = Red light] 

[AVs_TC 
=

Sideswipe] 

0.04 2.6 

4 [TA = Car-to-Car] + [Weather = Clean] + [Lighting = Daylight] + [AVs_MPC=Stopped] + [HVs_MPC=Passing other 
vehicle] + [AVs_RP = Left] + [HVs_RP=Right] + [Location = Intersection] + [RS = Dry] + [RC––No unusual conditions] +
[Time = 12–18] + [TL = Red light] 

[HVs_TC 
=

Sideswipe] 

0.04 2.3 

5 [TA = Car-to-Car] + [Weather = Clean] + [Lighting = Dark-street lights] + [AVs_MPC= Proceeding straight] +
[HVs_MPC=Changing lane] + [AVs_RP = Left] + [HVs_RP= Right] + [Location = Intersection] + [RS = Dry] + [RC––N/A] 
+ [Time = 18–24] + [TL = N/A] 

[AVs_TC 
=

Sideswipe] 

0.04 2.6 

6 [TA = Car-to-Car] + [Weather = Clean] + [Lighting = Dark-street lights] + [AVs_MPC= Proceeding straight] +
[HVs_MPC=Changing lane] + [AVs_RP = Left] + [HVs_RP= Right] + [Location = Intersection] + [RS = Dry] + [RC––N/A] 
+ [Time = 18–24] + [TL = N/A] 

[HVs_TC 
=

Sideswipe] 

0.04 2.3 

Cluster 2 
7 [TA = Car-Alone] + [Weather = Cloudy] + [Lighting = Daylight] + [AVs_MPC = Making right turn] + [HVs_MPC=N/A] +

[AVs_RP––N/A] + [HVs_RP––N/A] + [Location = Intersection] + [RS = Dry] + [RC––No unusual conditions] + [Time =
6–12] + [TL = N/A] 

[AVs_TC 
=

Hit object] 

0.04 12.5 

8 [TA = Car-Alone] + [Weather = Cloudy] + [Lighting = Daylight] + [AVs_MPC = Making right turn] + [HVs_MPC=N/A] +
[AVs_RP––N/A] + [HVs_RP––N/A] + [Location = Intersection] + [RS = Dry] + [RC––No unusual conditions] + [Time =
6–12] + [TL = N/A] 

[HVs_TC 
=

N/A] 

0.04 6.25 

9 [TA = Car-Alone] + [Weather = Cloudy] + [Lighting = Daylight] + [AVs_MPC=Changing lane] + [HVs_MPC=N/A] +
[AVs_RP––N/A] + [HVs_RP––N/A] + [Location = Road] + [RS = Dry] + [RC––No unusual conditions] + [Time = 6–12] +
[TL = N/A] 

[AVs_TC 
=

Hit object] 

0.04 12.5 

10 [TA = Car-Alone] + [Weather = Cloudy] + [Lighting = Daylight] + [AVs_MPC=Changing lane] + [HVs_MPC=N/A] +
[AVs_RP––N/A] + [HVs_RP––N/A] + [Location = Road] + [RS = Dry] + [RC––No unusual conditions] + [Time = 6–12] +
[TL = N/A] 

[HVs_TC 
=

N/A] 

0.04 6.25 

Cluster 3 
11 [TA = Car-to-Car] + [Weather = Clean] + [Lighting = Daylight] + [AVs_MPC=Stopped] + [HVs_MPC=Proceeding straight] 

+ [AVs_RP=Same] + [HVs_RP=Same] + [Location = Intersection] + [RS = Dry] + [RC––No unusual conditions] + [Time =
6–12] + [TL = N/A] 

[AVs_TC 
=

N/A], 
[HVs_TC 
=

Rear-end] 

0.08 – 

12 [TA = Car-to-Car] + [Weather = Clean] + [Lighting = Daylight] + [AVs_MPC=Stopped] + [HVs_MPC=Proceeding straight] 
+ [AVs_RP=Same] + [HVs_RP=Same] + [Location = Intersection] + [RS = Dry] + [RC––No unusual conditions] + [Time =
12–18] + [TL = Red light] 

[AVs_TC 
=

N/A], 
[HVs_TC 
=

Rear-end] 

0.1 – 

13 [TA = Car-to-Car] + [Weather = Clean] + [Lighting = Daylight] + [AVs_MPC=Stopped] + [HVs_MPC=Proceeding straight] 
+ [AVs_RP=Same] + [HVs_RP=Same] + [Location = Intersection] + [RS = Dry] + [RC––No unusual conditions] + [Time =
12–18] + [TL = Stop sign] 

[AVs_TC 
=

N/A], 
[HVs_TC 
=

Rear-end] 

0.03 – 

14 [TA = Car-to-Car] + [Weather = Clean] + [Lighting = Daylight] + [AVs_MPC=Stopped] + [HVs_MPC=Proceeding straight] 
+ [AVs_RP=Same] + [HVs_RP=Same] + [Location = Intersection] + [RS = Dry] + [RC––No unusual conditions] + [Time =
12–18] + [TL = N/A] 

[AVs_TC 
=

N/A], 
[HVs_TC 
=

Rear-end] 

0.07 – 

15 [TA = Car-to-Car] + [Weather = Cloudy] + [Lighting = Daylight] + [AVs_MPC=Stopped] + [HVs_MPC=Proceeding 
straight] + [AVs_RP=Same] + [HVs_RP=Same] + [Location = Intersection] + [RS = Dry] + [RC––No unusual conditions] +
[Time = 12–18] + [TL = N/A] 

[AVs_TC 
=

N/A], 
[HVs_TC 
=

Rear-end] 

0.03 – 

16 [TA = Car-to-Car] + [Weather = Clean] + [Lighting = Daylight] + [AVs_MPC=Stopped] + [HVs_MPC = Making right turn] 
+ [AVs_RP=Same] + [HVs_RP=Same] + [Location = Intersection] + [RS = Dry] + [RC––No unusual conditions] + [Time =
6–12] + [TL = Green light] 

[AVs_TC 
=

N/A], 
[HVs_TC 

0.03 – 

(continued on next page) 
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colliding with non-vehicular objects by themselves. Cluster 3 only had HV hitting AVs’ read-end on the same lane. Cluster 0 is the only 
one that contained head-on collisions between AVs and HVs that were moving in the opposite direction. 

4.2. The result of association analysis 

We set minimum support, minimum confidence, and minimum lift to 0.03, 0.7, and 1.5, respectively. Antecedents and consequents 
are specified in Table 4. 

As a result, we discovered a total of 313,748 association rules. We compiled a list of the most significant rules in terms of support 
and lift. These are the rules in which all accident factors are included in the antecedent, as shown in Table 5. In cluster 0, our algorithm 
did not derive any significant association rules. Cluster 1, on the other hand revealed six association rules, such as the one with rule #3. 
The rule states that an HV sideswiped a stopped AV on the left while the HV passed other vehicles at the intersection on the red light 
during the day under clean weather. 

Cluster 2 mostly shows AVs alone hitting non-vehicular objects while changing lanes or making right turns (rule #7 and rule #9). 
From Cluster 3, all the accidents were rear-ended collisions. Thus, the lift could not be computed. Instead, we extracted rules with a 

support value of 0.03 or higher. For instance, rule #11 indicates that HVs frequently hit stopped AVs on the same lane and the in
tersections with a dry surface. Considering rule #14, we can infer that the collision pattern expressed in rule #11 frequently occurred 
during the daytime. 

Cluster 4 mostly shows the situations leading to rear-end or sideswipe collisions. In most cases in this cluster, AVs were on the right 
lane proceeding straight while HVs on the left-hand side changed lanes. 

We could not find frequent accident patterns regarding road surface and road conditions. Reports about accidents at intersections 
specify the existence of traffic lights. However, the detailed state of the traffic lights was omitted. Note that the rules extracted by the 
association analysis unravel a more detailed correlation between the accident factors and accident types. 

5. Deriving AV accident scenarios on urban areas 

5.1. Scenario composition framework and accident factor selection 

From the frequently seen accident patterns revealed through our data analysis method, we generate accident scenarios for AV 
safety tests in urban areas. As mentioned earlier, several projects, such as PEGASUS, CETRAN, and ENABLE-S [39,50], have introduced 
various scenarios to evaluate the safety of AVs. The PEGASUS project systematizes methods and requirements for securing the safety of 
automated driving functions and specifies accident scenarios that may occur on highways. In addition, PEGASUS project suggests 
scenarios at different levels of abstraction such as functional, logical, and concrete scenarios based on a 6-layer model [16]. The 6-layer 

Table 5 (continued ) 

ID A C S L 

=

Rear-end] 
Cluster 4 
17 [TA = Car-to-Car] + [Weather = Clean] + [Lighting = Daylight] + [AVs_MPC=Proceeding straight] + [HVs_MPC=Other 

unsafe turning] + [AVs_RP=Right] + [HVs_RP = Left] + [Location = Intersection] + [RS = Dry] + [RC––No unusual 
conditions] + [Time = 12–18] + [TL = N/A] 

[HVs_TC 
=

Head-on] 

0.04 8 

18 [TA = Car-to-Car] + [Weather = Clean] + [Lighting = Daylight] + [AVs_MPC=Proceeding straight] + [HVs_MPC=Changing 
lane] + [AVs_RP=Right] + [HVs_RP = Left] + [Location = Intersection] + [RS = Dry] + [RC––No unusual conditions] +
[Time = 6–12] + [TL = N/A] 

[AVs_TC 
=

N/A] 

0.04 3 

19 [TA = Car-to-Car] + [Weather = Clean] + [Lighting = Daylight] + [AVs_MPC=Proceeding straight] + [HVs_MPC=Changing 
lane] + [AVs_RP=Right] + [HVs_RP = Left] + [Location = Intersection] + [RS = Dry] + [RC––No unusual conditions] +
[Time = 6–12] + [TL = N/A] 

[HVs_TC 
=

Rear-end] 

0.04 4 

20 [TA = Car-to-Car] + [Weather = Clean] + [Lighting = Dark-street lights] + [AVs_MPC = Making right turn] + [HVs_MPC =
Making right turn] + [AVs_RP=Right] + [HVs_RP = Left] + [Location = Intersection] + [RS = Dry] + [RC––No unusual 
conditions] + [Time = 18–24] + [TL = N/A] 

[AVs_TC 
=

Sideswipe] 

0.04 1.85 

21 [TA = Car-to-Car] + [Weather = Clean] + [Lighting = Dark-street lights] + [AVs_MPC = Making right turn] + [HVs_MPC =
Making right turn] + [AVs_RP=Right] + [HVs_RP = Left] + [Location = Intersection] + [RS = Dry] + [RC––No unusual 
conditions] + [Time = 18–24] + [TL = N/A] 

[HVs_TC 
=

Sideswipe] 

0.04 2 

22 [TA = Car-to-Car] + [Weather = Clean] + [Lighting = Daylight] + [AVs_MPC=Proceeding straight] + [HVs_MPC=Passing 
other vehicle] + [AVs_RP=Right] + [HVs_RP = Left] + [Location = Intersection] + [RS = Dry] + [RC––No unusual 
conditions] + [Time = 6–12] + [TL = N/A] 

[AVs_TC 
=

Sideswipe] 

0.04 1.85 

23 [TA = Car-to-Car] + [Weather = Clean] + [Lighting = Daylight] + [AVs_MPC=Proceeding straight] + [HVs_MPC=Passing 
other vehicle] + [AVs_RP=Right] + [HVs_RP = Left] + [Location = Intersection] + [RS = Dry] + [RC––No unusual 
conditions] + [Time = 6–12] + [TL = N/A] 

[HVs_TC 
=

Sideswipe] 

0.04 2 

24 [TA = Car-to-Car] + [Weather = Clean] + [Lighting = Daylight] + [Avs_MPC=Changing lane] + [HVs_MPC=Changing 
lane] + [Avs_RP=Right] + [HVs_RP = Left] + [Location = Road] + [RS = Dry] + [RC––No unusual conditions] + [Time =
12–18] + [TL = N/A] 

[Avs_TC =
Sideswipe] 

0.04 1.85 

25 [TA = Car-to-Car] + [Weather = Clean] + [Lighting = Daylight] + [Avs_MPC=Changing lane] + [HVs_MPC=Changing 
lane] + [Avs_RP=Right] + [HVs_RP = Left] + [Location = Road] + [RS = Dry] + [RC––No unusual conditions] + [Time =
12–18] + [TL = N/A] 

[HVs_TC 
=

Sideswipe] 

0.04 2  
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model categorizes six ensembles: road level, traffic infrastructure, temporary modifications/events, moving objects, environmental 
conditions, and digital information. The ensemble is subdivided into factors, including road geometry, traffic signals, road conditions, 
dynamics of the ego vehicle, lighting conditions, and V2X information. These factors are essential for highway scenarios, forming 
specific highway scenarios for evaluating the safety of AV. A functional scenario is a text description of road networks, stationary or 
non-stationary objects, and environmental conditions. The functional scenario also provides lane width, speed limit, vehicle move
ment, and weather information, as shown in Fig. 7-(a). Based on the factors defined by the functional scenario, the logical scenario sets 
the range of values, and the concrete scenario sets the value of individual factors. 

The CETRAN project [51] specifies 64 representative scenarios to evaluate AVs’ safety based on the NHTSA pre-crash scenarios 
[52]. CETRAN presents moving objects as a dynamic environment tag and stationary objects as a static environment tag, as shown in 
Fig. 7-(b). Also, CETRAN specifies condition tags such as weather and lighting. Fig. 7-(b) shows an example of the scenario provided by 
CETRAN. The scenario contains a schematic diagram to identify the situation. Also, it provides detailed information on ego vehicle, 
actor vehicle, and road layout, based on the three tags (dynamic environment, state environment, and conditions) to evaluate the 
safety of AV. 

Fig. 7. Information described in the accident scenarios composed by PEGASUS and CETRAN projects.  

Table 6 
Accident factors extracted from DMV collision report and their appearance in PEGASUS or CETRAN projects. 11 factors in bold face are the factors 
that appear in PEGASUS or CETRAN project. We use all 14 factors for composing scenarios.  

Accident Factors used in the DMV Reports Appearance of the Accident Factors 

PEGASUS Project Layers CETRAN Project Tags 

1 2 3 4 5 6 Dynamic Environment Static Environment Conditions 

Type of Accident       O   
Weather     O    O 
Lighting     O    O 
AVs Movement Preceding Collision    O   O   
HVs Movement Preceding Collision    O   O   
AVs Type of Collision          
HVs Type of Collision          
AVs Relative Position    O   O   
HVs Relative Position    O   O   
Location O       O  
Road Surface O         
Road Condition   O       
Time          
Traffic Light O       O   
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Fig. 8. Accident scenarios generated based on the association rules.  
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In Table 6, we listed 14 accident factors that can be extracted through the DMV collision report. We found out that both PEGASUS 
and CETRAN scenarios specify the accident factors such as the movements of AVs and HVs preceding collision, traffic light infor
mation, and the relative positions of the vehicles. Unlike CETRAN, the PEGASUS scenarios specify road surface and condition. 
However, PEGASUS scenarios do not specify the type of accidents, while CETRAN scenarios do. 

Our accident scenarios describe AV accidents more thoroughly by including the accident factors that are considered neither by 
PEGASUS nor by CETRAN. 

The AVs urban accident scenario was presented using the association rule, including all 14 accident factors. Given the association 
rules with statistical significance (min_support = 0.03 or min_lift = 1.5), we combine the association rules to constitute scenarios. Any 
two association rules can be combined if they satisfy three conditions as follows:  

(1) Condition 1: An antecedent must contain all 14 accident factors.  
(2) Condition 2: The two association rules can be combined if they have identical antecedents.  
(3) Condition 3: The pair of consequents from the association rules generated by Rule 2 must be physically plausible and match the 

accident situation described in the antecedents. For example, if the accident was not a car-to-car collision, then having an AV 
colliding with a stationary object and an HV sideswiping the AV is not physically plausible. As another example, it is not 
physically plausible to state that HV was in a head-on collision with the AV while AV was reported to have sideswiped the HV. 

Except for rules #1, #2, and #17, an association rule in Table 5 matched another rule to constitute one of the 14 accident scenarios 
we have compiled in Fig. 8. In each scenario, we have provided a visual depiction of the vehicle motions leading to collisions. Besides 
the illustrating the accidents, we have provided the 14 factors explaining the accident situation and the collision types. We have 

Fig. 9. Scenario #7 written in a PEGASUS functional scenario format.  

H. Lee et al.                                                                                                                                                                                                             



Heliyon 10 (2024) e25000

14

indicated the rules that were combined to constitute a given scenario. We have also specified the cluster to which the combined rules 
belong. The scenarios generated from Cluster 3 are associated with a single association rule because all the rules describe the situation 
where HVs hit the rear end of the AVs. 

We presented Scenario #7 from Fig. 8 as a functional scenario set by the PEGASUS project, as shown in Fig. 9. The safety function 
requirement section is about the evaluation element of AVs. Scenario #7 is to test the response of the stopped ego vehicle when the 

Fig. 10. An examples of current DMV report and suggested revision. A logical and concrete scenario for Scenario #7 based on PEGASUS scenario 
description framework. 
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target vehicle approaches from behind. This scenario should be tested at the intersection in clean weather and daylight. In addition, the 
scenario contains a visual and textual description of the accident. Road geometry is a section that provides information about the 
number of lanes, road alignment, road surface, road condition, and traffic lights. The object movement section provides information on 
the vehicle types, driving positions, and movements of vehicles during critical situations. The source of the scenario is a section 
presenting the source of data we utilized to generate the scenario. The example in Fig. 9 states that the scenario was created using the 
DMV collision report in California. 

The logical and concrete scenario elaborates more on the functional scenario, as shown in Fig. 10-(c). The framework is proposed by 
Ko et al. (2022) [53] and Kang et al. (2022a) [39] based on the PEGASUS project. The logical scenario provides a range of factors. In 
contrast, the concrete scenario specifies the exact values of the factors to configure for the safety evaluation of AVs. Fig. 10-(a) shows 
the sample DMV report that tends to be inconsistently formatted by the car manufacturers. Fig. 10-(b) shows the suggested revision of 
the DMV report format that conforms to the logical and concrete scenarios. We have added essential description elements such as AVs 
mode, vehicle speed, vehicles’ longitude movement, the number of lanes, and the number of the target vehicle. These elements can be 
fully described in Section 5.2 of the DMV report. 

5.2. Comparison between AV and HV accident scenarios 

To delve into the peculiar AV accident patterns not normally seen by conventional HVs, we compared the AV accident scenarios 
described in section 5.1 with 37 HV-only pre-crash scenarios generated by NHTSA. The NHTSA scenarios are based on the 2004 
General Estimates System crash database. It provides specific information on the typical scenario (Fig. 11-(a)) and provides the 
probability of the influential factors in the scenario (Fig. 11-(b)). 

It is necessary to AV and HV accident patterns under the same conditions. NHTSA and CA DMV data both consist of traffic accidents 
caused by HVs. We calculated the probability of HVs getting involved in an accident under the NHTSA scenarios similar to ours. 

We selected four typical scenarios that are similar to our scenarios in NHTSA, Following Vehicle Making a Maneuver and 
Approaching Lead Vehicle (scenario #1, #2, #11, #12, and #13), Vehicle Contacting Object Without Prior Vehicle Maneuver (sce
nario #3 and #4), Following Vehicle Approaching a Stopped Lead Vehicle (Scenario #5 to #10) and Vehicle Changing Lanes-Vehicle 
Traveling in Same Direction (scenario #14). In Table 7, HV/HV represents the factors and probabilities of conventional HVs accidents 
as presented in the existing NHTSA. On the other hand, HV/AV represents the factors and probabilities of involving HVs and AVs. The 
probability of HV/HV and HV/AV in scenario #1 has 2.455 % and 0.356 %, respectively. The two cases differed in terms of Traffic 
Control Device and Pre-Event Movement. Likewise, if they have the differences in the probability between HV/HV and HV/AV, we 

Fig. 11. NHTSA pre-crash scenario.  
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Table 7 
Probability of our AV scenarios occurring in NHTSA HV pre-crash scenario.  

Scenario Typical scenario typology 
(NHTSA) 

Type Lighting Weather Road 
Surface 

Land 
Use 

Relation to 
Junction 

Traffic 
Control 
Device 

Pre-Event 
Movement 

Probability 

1 Following Vehicle 
Making a Maneuver and 
Approaching Lead 
Vehicle 

HV/ 
HV 

Daylight Clear Dry Urban Intersection No traffic 
controls 

Changing 
lanes 

2.455 % 

0.76 0.91 0.85 0.58 0.4 0.5 0.36 
HV/ 
AV 

Daylight Clear Dry Urban Intersection Traffic 
signal 

Passing 
another 
vehicle 

0.356 % 

0.76 0.91 0.85 0.58 0.4 0.29 0.09 
2 Following Vehicle 

Making a Maneuver and 
Approaching Lead 
Vehicle 

HV/ 
HV 

Daylight Clear Dry Urban Intersection No traffic 
controls 

Changing 
lanes 

2.455 % 

0.76 0.91 0.85 0.58 0.4 0.5 0.36 
HV/ 
AV 

Dark 
lighted 

Clear Dry Urban Intersection No traffic 
controls 

Changing 
lanes 

0.517 % 

0.16 0.91 0.85 0.58 0.4 0.5 0.36 
3 Vehicle Contacting 

Object Without Prior 
Vehicle Maneuver 

HV/ 
HV 

Daylight Clear Dry Urban Non-junction No traffic 
controls 

Other 4.463 % 

0.46 0.87 0.64 0.66 0.7 0.82 0.46 
HV/ 
AV 

Daylight Adverse Dry Urban Intersection No traffic 
controls 

Turning right 0.026 % 

0.46 0.13 0.64 0.66 0.14 0.82 0.09 
4 Vehicle Contacting 

Object Without Prior 
Vehicle Maneuver 

HV/ 
HV 

Daylight Clear Dry Urban Non-junction No traffic 
controls 

Other 4.463 % 

0.46 0.87 0.64 0.66 0.7 0.82 0.46 
HV/ 
AV 

Daylight Clear Dry Urban Non-junction No traffic 
controls 

Changing 
lanes 

0.097 % 

0.46 0.87 0.64 0.66 0.7 0.82 0.01 
5 Following Vehicle 

Approaching a Stopped 
Lead Vehicle 

HV/ 
HV 

Daylight Clear Dry Urban Intersection No traffic 
controls 

Going 
straight 

5.19 % 

0.81 0.85 0.79 0.51 0.54 0.45 0.77 
HV/ 
AV 

Daylight Clear Dry Urban Intersection No traffic 
controls 

Going 
straight 

5.19 % 

0.81 0.85 0.79 0.51 0.54 0.45 0.77 
6 Following Vehicle 

Approaching a Stopped 
Lead Vehicle 

HV/ 
HV 

Daylight Clear Dry Urban Intersection No traffic 
controls 

Going 
straight 

5.19 % 

0.81 0.85 0.79 0.51 0.54 0.45 0.77 
HV/ 
AV 

Daylight Clear Dry Urban Intersection Traffic 
signal 

Going 
straight 

4.498 % 

0.81 0.85 0.79 0.51 0.54 0.39 0.77 
7 Following Vehicle 

Approaching a Stopped 
Lead Vehicle 

HV/ 
HV 

Daylight Clear Dry Urban Intersection No traffic 
controls 

Going 
straight 

5.19 % 

0.81 0.85 0.79 0.51 0.54 0.45 0.77 
HV/ 
AV 

Daylight Clear Dry Urban Intersection Stop/yield 
sign 

Going 
straight 

1.038 % 

0.81 0.85 0.79 0.51 0.54 0.09 0.77 
8 Following Vehicle 

Approaching a Stopped 
Lead Vehicle 

HV/ 
HV 

Daylight Clear Dry Urban Intersection No traffic 
controls 

Going 
straight 

5.19 % 

0.81 0.85 0.79 0.51 0.54 0.45 0.77 
HV/ 
AV 

Daylight Clear Dry Urban Intersection No traffic 
controls 

Going 
straight 

5.19 % 

0.81 0.85 0.79 0.51 0.54 0.45 0.77 
9 Following Vehicle 

Approaching a Stopped 
Lead Vehicle 

HV/ 
HV 

Daylight Clear Dry Urban Intersection No traffic 
controls 

Going 
straight 

5.19 % 

0.81 0.85 0.79 0.51 0.54 0.45 0.77 
HV/ 
AV 

Daylight Adverse Dry Urban Intersection No traffic 
controls 

Going 
straight 

0.916 % 

0.81 0.15 0.79 0.51 0.54 0.45 0.77 
10 Following Vehicle 

Approaching a Stopped 
Lead Vehicle 

HV/ 
HV 

Daylight Clear Dry Urban Intersection No traffic 
controls 

Going straight 5.19 % 

0.81 0.85 0.79 0.51 0.54 0.45 0.77 
HV/ 
AV 

Daylight Clear Dry Urban Intersection Traffic 
signal 

Turning right 0.003 % 

0.81 0.85 0.79 0.51 0.54 0.39 0.0005 
11 Following Vehicle 

Making a Maneuver and 
Approaching Lead 
Vehicle 

HV/ 
HV 

Daylight Clear Dry Urban Intersection No traffic 
controls 

Changing 
lanes 

2.455 % 

0.76 0.91 0.85 0.58 0.4 0.5 0.36 
HV/ 
AV 

Daylight Clear Dry Urban Intersection No traffic 
controls 

Changing 
lanes 

2.455 % 

(continued on next page) 
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highlighted them in Table 7. For example, in scenario #2, HV/AV occurred during Dark-lighted while HV/HV tends to occur more 
during daylight. The probability of HV/AV in scenario #3, #4, and #10 was significantly low, below 0.1 %, whereas the probabilities 
of HV/HV were orders of magnitude higher in those scenarios. 

These findings highlight two important points: 
While some AV-derived scenarios may appear similar to typical scenarios involving conventional HVs, such as scenario #5, #8, 

#11, and #14, most AV scenarios exhibit significant differences. These probability gaps represent edge cases that may have been 
overlooked from the perspective of HVs. To prevent AV traffic accidents resulting from these edge cases, it is crucial to conduct safety 
assessments based on our study. 

The utilization of AV data is vital for generating accurate AV scenarios, as the accident patterns of HVs and AVs differ. This dis
covery is invaluable, emphasizing the need to test AVs under different accident scenarios than HVs. Conducting a more in-depth 
analysis to understand the reasons behind the distinctive accident patterns exhibited by AVs would be an interesting avenue for 
future research. 

It is important to note that the NHTSA did not consider significant factors that can influence traffic accidents, such as relative 
vehicle positions. 

From the perspective of AVs, acquiring accurate information on the surrounding vehicle positions is a fundamental requirement for 
facilitating Advanced Driving Assistance Systems. Human drivers can perceive surrounding vehicles. However, their level of awareness 
is less extensive than that of AVs. Therefore, to comprehensively assess factors influencing accidents involving AVs, it is essential to 
study AV accident data. 

6. Conclusion 

We used clustering and association rule mining techniques to group similar and statistically significant patterns of AV accidents in 
urban areas with more challenging driving conditions than highways for the AVs. 

We collected raw data from 370 accidents reported by the DMV of California, USA. We obtained six different clusters of accidents 
and 313,748 association rules. With minimum support or lift of 0.03 and 1.5, respectively, we could narrow down to 25 association 
rules that can constitute an accident scenario for AV safety tests. We have provided a novel method for combining any two association 
rules to derive functional, logical, and concrete scenarios. We have extended the PEGASUS scenario description framework to include 
detailed collision types. In addition, we suggested revising the current DMV report to contain a complete description of the accident 
situation. 

We have derived 14 scenarios significantly different from the conventional HV accident scenarios reported by NHTSA. Such a 
discovery urges AVs to be reliably tested under more relevant scenarios than those involving only HVs. 

Data availability statement 

The authors do not have permission to share the data used in this research. 

Table 7 (continued ) 

Scenario Typical scenario typology 
(NHTSA) 

Type Lighting Weather Road 
Surface 

Land 
Use 

Relation to 
Junction 

Traffic 
Control 
Device 

Pre-Event 
Movement 

Probability 

0.76 0.91 0.85 0.58 0.4 0.5 0.36 
12 Following Vehicle 

Making a Maneuver and 
Approaching Lead 
Vehicle 

HV/ 
HV 

Daylight Clear Dry Urban Intersection No traffic 
controls 

Changing 
lanes 

2.455 % 

0.76 0.91 0.85 0.58 0.4 0.5 0.36 
HV/ 
AV 

Dark 
lighted 

Clear Dry Urban Intersection No traffic 
controls 

Turning right 0.316 % 

0.16 0.91 0.85 0.58 0.4 0.5 0.22 
13 Following Vehicle 

Making a Maneuver and 
Approaching Lead 
Vehicle 

HV/ 
HV 

Daylight Clear Dry Urban Intersection No traffic 
controls 

Changing 
lanes 

2.455 % 

0.76 0.91 0.85 0.58 0.4 0.5 0.36 
HV/ 
AV 

Daylight Clear Dry Urban Intersection No traffic 
controls 

Passing 
another 
vehicle 

0.614 % 

0.76 0.91 0.85 0.58 0.4 0.5 0.09 
14 Vehicle Changing Lanes- 

Vehicle Traveling in 
Same Direction 

HV/ 
HV 

Daylight Clear Dry Urban Non-junction No traffic 
controls 

Changing 
lanes 

11.102 % 

0.74 0.89 0.83 0.54 0.69 0.79 0.69 
HV/ 
AV 

Daylight Clear Dry Urban Non-junction No traffic 
controls 

Changing 
lanes 

11.102 % 

0.74 0.89 0.83 0.54 0.69 0.79 0.69  
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[7] F.M. Favarò, N. Nader, S.O. Eurich, M. Tripp, N. Varadaraju, Examining accident reports involving AVs in California, PLoS One 12 (9) (2017) e0184952, https:// 

doi.org/10.1371/journal.pone.0184952. 
[8] S.S. Banerjee, S. Jha, J. Cyriac, Z.T. Kalbarczyk, R.K. Iyer, Hands off the wheel in autonomous vehicles?: a systems perspective on over a million miles of field 

data, June, in: 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), IEEE, 2018, pp. 586–597, https://doi.org/ 
10.1109/DSN.2018.00066. 

[9] S.H. Leilabadi, S. Schmidt, In-depth analysis of autonomous vehicle collisions in California, in: 2019 IEEE Intelligent Transportation Systems Conference (ITSC), 
IEEE, 2019, October, pp. 889–893, https://doi.org/10.1109/ITSC.2019.8916775. 

[10] S. Wang, Z. Li, Exploring causes and effects of automated vehicle disengagement using statistical modeling and classification tree based on field test data, Accid. 
Anal. Prev. 129 (2019) 44–54, https://doi.org/10.1016/j.aap.2019.04.015. 

[11] H. Alambeigi, A.D. McDonald, S.R. Tankasala, Crash Themes in Automated Vehicles: A Topic Modeling Analysis of the California Department of Motor Vehicles 
Automated Vehicle Crash Database, 2020, https://doi.org/10.48550/arXiv.2001.11087 arXiv preprint arXiv:2001.11087. 

[12] ISO, 26262 – Road Vehicles – Functional Safety, 2018. 
[13] PEGASUS Project Consortium, PEGASUS method: an overview, Available: https://www.pegasusprojekt.de/files/tmpl/Pegasus-Abschlussveranstaltung/ 

PEGASUSGesamtmethode.pdf, 2019. 
[14] S. Riedmaier, T. Ponn, D. Ludwig, B. Schick, F. Diermeyer, Survey on scenario-based safety assessment of automated vehicles, IEEE Access 8 (2020) 

87456–87477, https://doi.org/10.1109/ACCESS.2020.2993730. 
[15] M. Steimle, T. Menzel, M. Maurer, Toward a consistent taxonomy for scenario-based development and test approaches for automated vehicles: a proposal for a 

structuring framework, a basic vocabulary, and its application, IEEE Access 9 (2021) 147828–147854, https://doi.org/10.1109/ACCESS.2021.3123504. 
[16] M. Scholtes, L. Westhofen, L.R. Turner, K. Lotto, M. Schuldes, H. Weber, L. Eckstein, 6-layer model for a structured description and categorization of urban 

traffic and environment, IEEE Access 9 (2021) 59131–59147, https://doi.org/10.1109/ACCESS.2021.3072739. 
[17] J.E. Park, W. Byun, Y. Kim, H. Ahn, D.K. Shin, The impact of automated vehicles on traffic flow and road capacity on urban road networks, J. Adv. Transport. 

(2021), https://doi.org/10.1155/2021/8404951, 2021. 
[18] Y. Song, M.V. Chitturi, D.A. Noyce, Automated vehicle crash sequences: patterns and potential uses in safety testing, Accid. Anal. Prev. 153 (2021) 106017, 

https://doi.org/10.1016/j.aap.2021.106017. 
[19] S. Shanthi, R.G. Ramani, Feature relevance analysis and classification of road traffic accident data through data mining techniques, Proceedings of the World 

Congress on Engineering and Computer Science 1 (2012, October) 24–26, sn. 
[20] M. Taamneh, S. Alkheder, S. Taamneh, Data-mining techniques for traffic accident modeling and prediction in the United Arab Emirates, J. Transport. Saf. 

Secur. 9 (2) (2017) 146–166, https://doi.org/10.1080/19439962.2016.1152338. 
[21] L.J. Muhammad, S. Sani, A. Yakubu, M.M. Yusuf, T.A. Elrufai, I.A. Mohammed, A.M. Nuhu, Using decision tree data mining algorithm to predict causes of road 

traffic accidents, its prone locations and time along Kano–Wudil highway, International Journal of Database Theory and Application 10 (1) (2017) 197–206. 
[22] T.K. Bahiru, D.K. Singh, E.A. Tessfaw, Comparative study on data mining classification algorithms for predicting road traffic accident severity, April, in: 2018 

Second International Conference on Inventive Communication and Computational Technologies (ICICCT), IEEE, 2018, pp. 1655–1660, https://doi.org/ 
10.1109/ICICCT.2018.8473265. 

[23] G. Janani, N.R. Devi, Road traffic accidents analysis using data mining techniques, JITA-JOURNAL OF INFORMATION TECHNOLOGY AND APLICATIONS 14 
(2) (2016), https://doi.org/10.7251/JIT1702084J. 

[24] L. Li, S. Shrestha, G. Hu, Analysis of road traffic fatal accidents using data mining techniques, June), in: 2017 IEEE 15th International Conference on Software 
Engineering Research, Management and Applications (SERA), IEEE, 2017, pp. 363–370, https://doi.org/10.1109/SERA.2017.7965753. 

H. Lee et al.                                                                                                                                                                                                             

http://refhub.elsevier.com/S2405-8440(24)01031-4/sref1
http://refhub.elsevier.com/S2405-8440(24)01031-4/sref2
https://doi.org/10.1109/CSCI51800.2020.00222
https://doi.org/10.3390/electronics9111829
https://doi.org/10.1016/j.aap.2021.106281
https://doi.org/10.1371/journal.pone.0168054
https://doi.org/10.1371/journal.pone.0168054
https://doi.org/10.1371/journal.pone.0184952
https://doi.org/10.1371/journal.pone.0184952
https://doi.org/10.1109/DSN.2018.00066
https://doi.org/10.1109/DSN.2018.00066
https://doi.org/10.1109/ITSC.2019.8916775
https://doi.org/10.1016/j.aap.2019.04.015
https://doi.org/10.48550/arXiv.2001.11087
http://refhub.elsevier.com/S2405-8440(24)01031-4/sref12
https://www.pegasusprojekt.de/files/tmpl/Pegasus-Abschlussveranstaltung/PEGASUSGesamtmethode.pdf
https://www.pegasusprojekt.de/files/tmpl/Pegasus-Abschlussveranstaltung/PEGASUSGesamtmethode.pdf
https://doi.org/10.1109/ACCESS.2020.2993730
https://doi.org/10.1109/ACCESS.2021.3123504
https://doi.org/10.1109/ACCESS.2021.3072739
https://doi.org/10.1155/2021/8404951
https://doi.org/10.1016/j.aap.2021.106017
http://refhub.elsevier.com/S2405-8440(24)01031-4/sref19
http://refhub.elsevier.com/S2405-8440(24)01031-4/sref19
https://doi.org/10.1080/19439962.2016.1152338
http://refhub.elsevier.com/S2405-8440(24)01031-4/sref21
http://refhub.elsevier.com/S2405-8440(24)01031-4/sref21
https://doi.org/10.1109/ICICCT.2018.8473265
https://doi.org/10.1109/ICICCT.2018.8473265
https://doi.org/10.7251/JIT1702084J
https://doi.org/10.1109/SERA.2017.7965753


Heliyon 10 (2024) e25000

19

[25] A.M. Boggs, B. Wali, A.J. Khattak, Exploratory analysis of automated vehicle crashes in California: a text analytics & hierarchical Bayesian heterogeneity-based 
approach, Accid. Anal. Prev. 135 (2020) 105354, https://doi.org/10.1016/j.aap.2019.105354. 

[26] S. Lee, R. Arvin, A.J. Khattak, Advancing investigation of automated vehicle crashes using text analytics of crash narratives and Bayesian analysis, Accid. Anal. 
Prev. 181 (2023) 106932, https://doi.org/10.1016/j.aap.2022.106932. 

[27] H. DrissiTouzani, S. Faquir, A. Yahyaouy, Data mining techniques to analyze traffic accidents data: case application in Morocco, October), in: 2020 Fourth 
International Conference on Intelligent Computing in Data Sciences (ICDS), IEEE, 2020, pp. 1–4, https://doi.org/10.1109/ICDS50568.2020.9268729. 

[28] L. Lin, Q. Wang, A.W. Sadek, Data mining and complex network algorithms for traffic accident analysis, Transport. Res. Rec. 2460 (1) (2014) 128–136, https:// 
doi.org/10.3141/2460-14. 

[29] S. Kumar, D. Toshniwal, A data mining approach to characterize road accident locations, Journal of Modern Transportation 24 (1) (2016) 62–72, https://doi. 
org/10.1007/s40534-016-0095-5. 

[30] X. Kong, S. Das, Y. Zhang, L. Wu, J. Wallis, In-depth understanding of near-crash events through pattern recognition, Transport. Res. Rec. 2676 (12) (2022) 
775–785, https://doi.org/10.1177/03611981221097395. 

[31] X. Wang, Y. Peng, T. Xu, Q. Xu, X. Wu, G. Xiang, H. Wang, Autonomous driving testing scenario generation based on in-depth vehicle-to-powered two-wheeler 
crash data in China, Accid. Anal. Prev. 176 (2022) 106812, https://doi.org/10.1016/j.aap.2022.106812. 

[32] P. Nitsche, P. Thomas, R. Stuetz, R. Welsh, Pre-crash scenarios at road junctions: a clustering method for car crash data, Accid. Anal. Prev. 107 (2017) 137–151, 
https://doi.org/10.1016/j.aap.2017.07.011. 

[33] B. Sui, N. Lubbe, J. Bärgman, A clustering approach to developing car-to-two-wheeler test scenarios for the assessment of Automated Emergency Braking in 
China using in-depth Chinese crash data, Accid. Anal. Prev. 132 (2019) 105242, https://doi.org/10.1016/j.aap.2019.07.018. 

[34] Q. Yuan, X. Xu, J. Zhau, Paving the way for autonomous vehicle testing in accident scenario analysis of yizhuang development Zone in Beijing, in: CICTP 2020, 
2020, pp. 62–72. 

[35] X. Kong, S. Das, Y. Zhang, Mining patterns of near-crash events with and without secondary tasks, Accid. Anal. Prev. 157 (2021) 106162, https://doi.org/ 
10.1016/j.aap.2021.106162. 

[36] D. Pan, Y. Han, Q. Jin, H. Wu, H. Huang, Study of typical electric two-wheelers pre-crash scenarios using K-medoids clustering methodology based on video 
recordings in China, Accid. Anal. Prev. 160 (2021) 106320, https://doi.org/10.1016/j.aap.2021.106320. 

[37] Z. Tan, Y. Che, L. Xiao, W. Hu, P. Li, J. Xu, Research of fatal car-to-pedestrian precrash scenarios for the testing of the active safety system in China, Accid. Anal. 
Prev. 150 (2021) 105857, https://doi.org/10.1016/j.aap.2020.105857. 

[38] E. Esenturk, D. Turley, A. Wallace, S. Khastgir, P. Jennings, A data mining approach for traffic accidents, pattern extraction and test scenario generation for 
autonomous vehicles, International Journal of Transportation Science and Technology (2022), https://doi.org/10.1016/j.ijtst.2022.10.002. 

[39] M. Kang, W. Lee, K. Hwang, Y. Yoon, Vision transformer for detecting critical situations and extracting functional scenario for automated vehicle safety 
assessment, Sustainability 14 (15) (2022) 9680, https://doi.org/10.3390/su14159680. 

[40] N. Novat, E. Kidando, B. Kutela, A.E. Kitali, A comparative study of collision types between automated and conventional vehicles using Bayesian probabilistic 
inferences, J. Saf. Res. 84 (2023) 251–260, https://doi.org/10.1016/j.jsr.2022.11.001. 

[41] S. Das, A. Dutta, I. Tsapakis, Automated vehicle collisions in California: applying Bayesian latent class model, IATSS Res. 44 (4) (2020) 300–308, https://doi. 
org/10.1016/j.iatssr.2020.03.001. 

[42] J. Torres, Y. Li, J. Zhang, Investigating traffic crashes involving autonomous vehicles, in: IIE Annual Conference. Proceedings, Institute of Industrial and Systems 
Engineers (IISE), 2021, pp. 1046–1051. 

[43] M.T. Ashraf, K. Dey, S. Mishra, M.T. Rahman, Extracting rules from autonomous-vehicle-involved crashes by applying decision tree and association rule 
methods, Transport. Res. Rec. 2675 (11) (2021) 522–533, https://doi.org/10.1177/03611981211018461. 

[44] M. Kang, J. Song, K. Hwang, The extraction of automated vehicles traffic accident factors and scenarios using real-world data, July), in: Congress on Intelligent 
Systems: Proceedings of CIS 2021, ume 1, Springer Nature Singapore, Singapore, 2022, pp. 1–15, https://doi.org/10.1007/978-981-16-9416-5_1. 
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