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José-Daniel Aroca-AguilarID
1,2, Ana Fernández-Navarro1, Jesús Ontañón3, Miguel Coca-
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Abstract

Myocilin is an extracellular glycoprotein with a poorly understood biological function and typi-

cally known because of its association with glaucoma. In this study, we analyzed the expres-

sion and biological activity of human myocilin in some non-ocular tissues. Western

immunoblot showed the presence of myocilin in blood plasma as well as in liver and lym-

phoid tissues (thymus and lymph node). Quantitative PCR confirmed the expression of

MYOC in these lymphoid organs and revealed that its mRNA is also present in T-lympho-

cytes and leukocytes. In addition, detection of 30 kDa C-terminal myocilin fragments in thy-

mus and liver suggested that myocilin undergoes an in vivo proteolytic processing that

might regulate its biological activity. The presence of myocilin in blood was further corrobo-

rated by peptide mass fingerprinting of the HPLC-isolated protein, and gross estimation of

its concentration by Western immunoblot indicated that it is a medium-abundance serum

protein with an approximate concentration of 0.85 mg/ml (15.5 μM). Finally, in vitro analyses

indicated that myocilin acts as an anti-adhesive protein for human circulating leukocytes

incubated with endothelial cell monolayers. Altogether, these data provide insightful infor-

mation on new biological properties of myocilin and suggest its putative role as a blood

matricellular protein.

Introduction

After 20 years of intense myocilin study, its biological function remains elusive. Independent

isolation of expressed sequence tags from subtracted ciliary body [1, 2] and retina [3] cDNA

libraries revealed the expression of the myocilin gene in ocular tissues. The protein, initially

called Trabecular Meshwork Inducible Glucocorticoid Response (TIGR), was identified in

human trabecular meshwork cell cultures after prolonged exposure to glucocorticoids [4], and
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was later denominated myocilin (MYOC). Linkage analysis led to the identification of the gene

encoding this protein as the first glaucoma gene [5]. Since then, this 55 kDa extracellular glyco-

protein, has been primarily known by its role in different types of glaucoma [5–8]. This protein

belongs to the olfactomedin family of proteins [2] and is secreted into the extracellular space

associated with exosomes [9, 10]. It forms extracellular aggregates, which in aqueous humor

(AH) range from 120–180 kDa [11] and are in part due to disulfide bonds [12]. Interestingly,

MYOC mutations cause disease only in the eye by a gain-of-function mechanism [13–17].

Myocilin consists of three independently folded functional domains: i) the N-terminal

domain, which contains two coiled coils and one leucine zipper motif, being involved in myo-

cilin self-aggregation [11]; ii) the central linker domain, where calpain II cuts the polypeptide

chain, splitting the N- and C-terminal domains [18, 19], and iii) the olfactomedin-like globular

domain, which folds as a β-propeller [20] and carry most glaucoma-associated variants [2].

Recently, it has been reported that myocilin is a Y-shaped dimer-of-dimers in which the N-ter-

minal coiled-coil region forms a tetrameric stem linked by disulfide bonds, and the leucine-

zipper forms two dimeric arms, connected to two pairs of monomeric OLF domains by a

linker region [21]. The biological function of the proteolytic cleavage in the linker domain is

not completely understood, but it has been reported to regulate different molecular interac-

tions of recombinant myocilin [22, 23], and it is known to be affected in vitro by the extracellu-

lar bicarbonate concentration [24]. Fragments of this protein, mainly derived from the C-

terminal half of the protein, have also been identified in different glaucoma-related tissues and

biological fluids such as the ciliary body, AH [18] and trabecular meshwork [25], indicating

that the specific proteolytic cleavage of this protein also occurs in vivo. Myocilin activates the

Wnt pathway suggesting that this phenomenon might mediate its biological function [26, 27].

Due to its role in glaucoma, myocilin expression has primarily been studied in ocular tissues

involved in this disease and its presence in the trabecular meshwork, ciliary body and AH has

been well established [2, 18, 25, 28, 29]. Herein, we have explored the localization and biologi-

cal role of this protein in some non-ocular tissues. We have found that it is present in plasma,

some lymphoid tissues and leukocytes and our data also indicate that it reduces the adhesion

of human circulating leukocytes to cultured endothelial cell monolayers, providing new

insights into the biological properties of myocilin.

Results

Expression of myocilin in non-ocular tissues

Myocilin was immunodetected by Western blot in different non-ocular organs and tissues.

The samples included blood plasma, liver and two representative lymphoid organs (thymus

and lymph node). Recombinant myocilin produced in HEK-293T cells was used as a positive

control. Myocilin was detected using a chicken IgY polyclonal antibody (C21A), directed

against a previously described peptide located in the C-terminal region of the protein [28].

This antibody revealed a characteristic 55 kDa band in all samples (Fig 1, arrow, upper panel),

except in lymph node. Interestingly, the C21A antibody recognized specific bands close to the

32 kDa marker in thymus and liver (Fig 1, arrowhead), indicating that they correspond to a C-

terminal myocilin fragment. Two 80–85 kDa myocilin aggregates were also detected in thymus

and lymph node (Fig 1, white arrowhead, upper panel). As expected, the antibody recognized

HPLC purified recombinant myocilin (Fig 1, prMyoc), and these bands were clearly more

intense than the weak signals obtained with the preimmune antibody in plasma and liver. To

confirm these results myocilin immunodetection was repeated using a commercial purified

monoclonal anti-myocilin antibody, which has been described to recognize the N-terminal

leucine zipper region of the protein [30], and a highly cross-adsorbed anti-mouse IgG F(ab’)2
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fragment as secondary antibody. A main band of approximately 55 kDa was detected in all

samples (S1 Fig, arrowhead) and specific low molecular weight signals, clearly below the 32

kDa marker, were also observed in lymph node and thymus (S1 Fig, arrow). These signals may

correspond to the N-terminal fragment of myocilin, which is predicted to have lower molecu-

lar weight than the C-terminal fragment [18]. High concentration of this commercial antibody

(1:50) and long exposure time (60 min) were required to detect myocilin, resulting in strong

background. These data indicate that the sensitivity of the commercial anti-myocilin antibody

is lower than that of the antibody used in this study and support the specificity and sensitivity

of the anti-myocilin IgY antibody developed in this work.

MYOC expression in liver, lymphoid tissues and lymphocytes was further analyzed by

SYBR green real-time quantitative-PCR (qPCR). The highest expression relative to lymph

node was observed in thymus (6.9-fold increase) (Fig 2). MYOC mRNA was also detected at

lower levels in T-lymphocytes and circulating leukocytes (0.12- and 0.15-fold change, respec-

tively). Interestingly, and in accordance with our previous studies, MYOC mRNA was absent

in liver [2], indicating that although the protein is present in this organ, the gene is not

expressed.

Identification of myocilin as a blood plasma protein

In order to confirm the interesting finding of myocilin in human blood, samples of plasma,

serum, and albumin-depleted plasma were analyzed by Western immunoblotting. This analy-

sis revealed a major broad 50 kDa-band in serum and plasma, and a 85 kDa-signal in the three

samples (Fig 3A, black and white arrowheads, respectively). The abundance of albumin (Fig

3A, asterisk) increased the electrophoretic mobility of myocilin, both in serum and plasma. In

fact, albumin-depleted plasma, in addition to the 85 kDa band (Fig 3A, white arrowhead),

showed one band of approximately 55 kDa (Fig 3A, black arrow). Comparison of these signals

Fig 1. Analysis of myocilin expression in human tissues by Western immunoblot. An aliquot of human plasma and

lysates of the different tissues (20 μg total protein), were analyzed by SDS-PAGE. HPLC purified recombinant human

myocilin (0.5 μg) was used as a positive control (prMyoc). Myocilin was detected by Western immunoblotting using a

chicken IgY polyclonal antibody (C21A). As a negative control a replica of the membrane was analyzed in parallel with

the preimmune antibody. Exposure time: 30 s. The Ponceau stained membranes are presented in S2 Fig.

https://doi.org/10.1371/journal.pone.0209364.g001
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and those obtained with the preimmune C21A antibody (Fig 3B) indicated that some 55 kDa

overlapping signals were nonspecific and correspond to unidentified plasma proteins that

were removed by coagulation. The electrophoretic mobility of plasma myocilin after albumin

depletion was similar to that of purified recombinant protein and to that of the recombinant

protein detected in the conditioned culture medium after bovine albumin depletion (positive

controls). Although bovine albumin was removed less efficiently than human albumin by the

immunoaffinity kit, these results provide further support for the presence of myocilin in

human blood plasma. Overall, this analysis showed that myocilin is present in albumin-

depleted plasma as a 55 kDa-monomer and an 85 kDa-complex. To confirm the presence of

myocilin in human blood serum we isolated the protein by reverse-phase HPLC (Fig 4A).

SDS-PAGE and Western immunoblot of the chromatographic fractions revealed the presence

Fig 2. Analysis of myocilin expression in human lymphoid tissues and leukocytes by RT-qPCR. cDNAs (100 ng)

were used to amplify myocilin mRNA as indicated in Materials and Methods. The amount of mRNA detected in lymph

node was used as a reference to calculate the fold-change of myocilin mRNA. Values are expressed as mean ± SEM of at

least three independent experiments carried out in triplicate. Asterisks indicate statistical significance as compared to

lymph node: p<0.01 (��); p<0.001 (���); Statistical significance was calculated by Student’s t-test.

https://doi.org/10.1371/journal.pone.0209364.g002
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of myocilin in fractions six to eight, which were composed of various proteins according to elec-

trophoretic analysis with Coomassie Blue staining (Fig 4B). To increase the purity of myocilin,

these three fractions were pooled and rechromatographed using a lower slope acetonitrile gradient

(Fig 4C). Fractions corresponding to the main peak (five and six) were mixed and analyzed again

by SDS-PAGE. Combined Coomassie Blue staining and Western blotting immunodetection

showed a partially purified myocilin preparation (Fig 4D). The lower Coomassie blue stained

band was cut from the gel and subjected to in-gel trypsin digestion and MALDI-TOF peptide

mass fingerprint. This analysis led to the identification of 39 myocilin peptides (Table 1) out of

295 (13%), which covered 64% of the myocilin amino acid sequence (S3 Fig). Altogether these

results demonstrated the presence of myocilin in human blood serum.

Next, we estimated by Western immunoblot and densitometry the concentration of myoci-

lin in human blood serum samples obtained from 12 control individuals (Fig 5A). All serum

samples showed a main 55 kDa-myocilin band, corresponding to the monomer, as well as

low-abundance 90 kDa-complexes. Gross densitometric estimation showed a mean concentra-

tion of serum myocilin of 15.5± 3 μM (approximately 0.85±0.16 mg/ml), with individual values

varying from 12 μM (subject 1) to 23 μM (subject 5) (Fig 5B).

Effect of myocilin on adhesion of circulating human leukocytes to

endothelial cells

The presence of myocilin in plasma and lymphoid tissues, along with its proposed effect on

cell adhesion [31], prompted us to evaluate its possible effect on leukocyte adhesion to

Fig 3. Immunodetection of myocilin in human blood serum and plasma by Western blotting. Samples of human serum and plasma (30 μg total protein each), and

albumin and IgG depleted human plasma (40 μg total protein) were included in the analysis. Positive controls consisted of culture medium containing recombinant

myocilin (rMyoc) expressed in HEK-293T cells and one microgram of HPLC-purified recombinant myocilin (prMyoc). As a control of depletion, a sample of culture

medium containing recombinant myocilin was treated in parallel (Depl. rMyoc). Electrophoresis was performed on an 8% polyacrylamide gel and the anti-myocilin

C21A polyclonal antibody was used. As a negative immunodetection control, samples were analyzed in parallel with the corresponding preimmune antibody

(Preimmune). Exposure time: 1 min. The asterisk indicates the position of non-specific albumin signals. The white arrowhead indicates the position of a myocilin

aggregate. The black arrowhead shows the altered electrophoretic mobility of myocilin in serum and plasma produced by albumin and the black arrow indicate the

position of the recombinant myocilin monomer in the different samples. Full-length blots and Ponceau S stained membranes are presented in S4 Fig.

https://doi.org/10.1371/journal.pone.0209364.g003
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endothelial cells in culture. To this end, isolated circulating human leukocytes were treated as

described in Materials and Methods. We observed that myocilin produced a significant and

dose-dependent reduction of leukocyte adhesion to HUVEC monolayers (Fig 6A), similar to

that of the control antiadhesive protein SPARC [32]. The myocilin C-terminal fragment also

showed a significant antiadhesive effect, although it was less intense than that of the full-length

protein and was saturated at a concentration of 200 nM (Fig 6A). In a parallel assay we evalu-

ated the adhesion of HEK-293T cells to HUVEC cells and although an increased adhesion ten-

dency was observed with myocilin, the differences were not statistically significant (Fig 6B).

These data indicate the specificity of the detected antiadhesive effect and that it may depend

Fig 4. Isolation of myocilin from human blood serum by reverse-phase HPLC. (A) A sample of human serum was processed as indicated in materials and methods.

The sample was eluted using the acetonitrile gradient shown by the red line. The collected fractions (1–12) are indicated above the abscissa axis. (B) Aliquots of the

chromatographic fractions were analyzed by SDS-PAGE and the eluted proteins were detected by Coomassie blue staining (CB). Fractions containing myocilin were

identified by Western blot (WB) using an anti-myocilin C21A polyclonal antibody (WB). The full-length blot is presented in S5 Fig. (C) Pool 1 from panel A was

refractionated in the same chromatographic system using the indicated acetonitrile gradient. (D) Fractions 5 and 6 from panel C were analyzed by SDS-PAGE and

proteins were also detected by Coomassie blue staining and Western Blot as indicated in B. To maximize band separation the electrophoresis was run until the 48 kDa

marker reached the bottom of the gel. The full-length polyacrylamide gel is shown in S6 Fig. Green arrows in (A) and (C) indicate the elution peak corresponding to

myocilin. Fractions 6 and 7 from (A) and fractions 5 and 6 from (C) were mixed to form Pool 1 and Pool 2, respectively.

https://doi.org/10.1371/journal.pone.0209364.g004
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Table 1. Myocilin peptides identified by MALDI-TOF analysis after in-gel trypsin digestion of pool 2 (Fig 4C and 4D) resulting from reverse-phase HPLC fraction-

ation of human blood serum.

m/z

observed

m/z

theoretical

Δm/z

(%)

Number of

oxidized amino

acids

aAmino acid

residues

Peptide sequence Missed trypsin

target sites

Cumulative sequence

coverage (%)

2976.114 2978.4395 0.08 1 8–33 b(R)CCSFGPEMPAVQLLLLACLVWDVGAR(T) 0 22.2

3175.493 3177.6498 0.07 1 92–119 (R)LSSLESLLHQLTLDQAARPQETQEGLQR(E)

1894.914 1893.9593 0.05 0 201–216 (R)EVSTWNLDTLAFQELK(S)

1883.802 1882.897 0.05 0 273–287 (R)DPKPTYPYTQETTWR(I)

1460.744 1459.6774 0.07 0 473–484 (K)YSSMIDYNPLEK(K)

1475.859 1475.6723 0.01 1 473–484 (K)YSSMIDYNPLEK(K)

1857.929 1858.9044 0.05 1 486–500 (K)LFAWDNLNMVTYDIK(L)

1275.778 1275.6288 0.01 0 127–136 (R)ERDQLETQTR(E) 1 45.8

2278.954 2280.1466 0.05 0 129–147 (R)DQLETQTRELETAYSNLLR(D)

1289.813 1289.6015 0.02 0 183–193 (R)GQCPQTRDTAR(A)

1142.722 1142.5913 0.01 1 190–200 (R)DTARAVPPGSR(E)

2574.492 2574.3198 0.01 1 194–216 (R)AVPPGSREVSTWNLDTLAFQELK(S)

2590.694 2590.3148 0.01 2 194–216 (R)AVPPGSREVSTWNLDTLAFQELK(S)

1442.869 1442.8213 0.00 0 217–229 (K)SELTEVPASRILK(E)

1458.693 1458.8162 0.01 1 217–229 (K)SELTEVPASRILK(E)

1629.831 1628.8101 0.06 1 259–272 (R)TAETITGKYGVWMR(D)

2707.216 2707.2609 0.00 2 267–287 (K)YGVWMRDPKPTYPYTQETTWR(I)

2721.768 2723.2559 0.05 3 267–287 (K)YGVWMRDPKPTYPYTQETTWR(I)

2872.215 2871.3795 0.03 2 273–296 (R)DPKPTYPYTQETTWRIDTVGTDVR(Q)

1566.916 1565.8533 0.07 0 343–355 (R)TVIRYELNTETVK(A)

2785.545 2783.4574 0.07 1 399–422 (K)GAIVLSKLNPENLELEQTWETNIR(K)

1751.797 1750.8356 0.05 0 471–484 (R)YKYSSMIDYNPLEK(K)

1586.577 1587.7723 0.08 0 473–485 (K)YSSMIDYNPLEKK(L)

2171.434 2171.1205 0.01 0 486–503 (K)LFAWDNLNMVTYDIKLSK(M)

1444.656 1444.7615 0.01 0 34–46 (R)TAQLRKANDQSGR(C) 2 64.3

1691.667 1690.8719 0.05 0 77–91 (R)DSSTQRLDLEATKAR(L)

2367.418 2366.2086 0.05 0 137–156 (R)ELETAYSNLLRDKSVLEEEK(K)

2217.171 2216.1014 0.05 0 161–179 (R)QENENLARRLESSSQEVAR(L)

1530.596 1530.8347 0.02 0 169–181 (R)RLESSSQEVARLR(R)

1445.778 1445.7026 0.01 0 182–193 (R)RGQCPQTRDTAR(A)

1461.753 1461.6975 0.00 1 182–193 (R)RGQCPQTRDTAR(A)

3331.425 3333.7577 0.07 1 201–229 (R)EVSTWNLDTLAFQELKSELTEVPASRILK(E)

2332.544 2332.2507 0.01 0 217–237 (K)SELTEVPASRILKESPSGYLR(S)

2348.439 2348.2456 0.01 1 217–237 (K)SELTEVPASRILKESPSGYLR(S)

2363.635 2364.2405 0.03 2 217–237 (K)SELTEVPASRILKESPSGYLR(S)

3506.444 3507.7424 0.04 2 227–258 (R)

ILKESPSGYLRSGEGDTGCGELVWVGEPLTLR

(T)

1894.914 1894.028 0.05 0 343–358 (R)TVIRYELNTETVKAEK(E)

2035.489 2036.9746 0.07 1 469–484 (K)NRYKYSSMIDYNPLEK(K)

1894.914 1894.9255 0.00 1 471–485 (R)YKYSSMIDYNPLEKK(L)

aThe numbers indicate the position of the amino acids in the polypeptide chain of myocilin.
bThe letters between parentheses indicate the amino acid residues flanking the different trypsin cleavage sites.

https://doi.org/10.1371/journal.pone.0209364.t001
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on the cell type. The reduction of adhered leukocytes to HUVEC monolayers by the different

molecules at a concentration of 400 nM was confirmed by microscopic examination of the

samples (Fig 6C).

Discussion

Up to date, most myocilin research have focused on ocular tissues due to its role in glaucoma.

Studies of the expression of myocilin at the protein level have been hampered by limited speci-

ficity of available antibodies. In this study, we have explored the presence and biological func-

tion of myocilin in non-ocular tissues, using a chicken IgY antibody raised against a previously

Fig 5. Estimation of myocilin concentration in human blood serum by Western immunoblot. (A) Human blood serum aliquots (30 μg total protein) from control

subjects (1–12) were analyzed by Western immunoblot using the chicken polyclonal anti-myocilin C21A antibody. Samples containing 0.5 μg and 1 μg of HPLC

purified recombinant human myocilin were used as a reference for densitometry. Each sample was analyzed in triplicate. The image shows a representative Western

blot. The full-length membrane is shown in S5 Fig. (B) Estimated myocilin concentration in blood serum samples from 12 human donors. Values are expressed as

mean ± SEM of triplicates from two independent analyses. rMyoc: recombinant myocilin.

https://doi.org/10.1371/journal.pone.0209364.g005

Fig 6. Effect of recombinant myocilin on human leukocyte adhesion to endothelial cell monolayers (HUVEC). (A) Calcein-labelled human leukocytes were

isolated and incubated with different concentrations of the indicated purified recombinant proteins as described in Materials and Methods. Then, leukocytes were

added to TNFα activated HUVEC cell monolayers. Adhered cells were quantified by fluorescence). Purified bovine serum albumin (Albumin) was used as a negative

control of cell adhesion. Cell adhesion was expressed as a percent of adhered cells in the absence of assayed proteins. (B) As a control of cell specificity, the assay was

performed in parallel with HEK-239-T cells. Percentage of adhesion values are expressed as mean ± SEM of at least two independent experiments carried out in

triplicate. (C) Fluorescence microscopy of leukocytes adhered to HUVEC cells. The cells were treated as indicated in A. Ten random fields were observed on a Nikon

Eclipse Ti fluorescence microscope and representative photographs are shown. Magnification: 40X. Statistical differences were calculated using the one-way ANOVA

test. p<0.05 (�); p<0.01 (��).

https://doi.org/10.1371/journal.pone.0209364.g006
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described myocilin epitope located in the C-terminal region of the protein [28]. The phyloge-

netic distance between chicken and human proteins allowed us to improve sensitivity and to

reduce background noise in myocilin detection, using IgY antibodies [33]. This antibody

detected the myocilin monomer (55 kDa) in human blood plasma, thymus and liver. In accor-

dance with this result, our previous studies using a rabbit anti-myocilin antibody against the

same epitope also detected a 55 kDa band in several human ocular tissues, including iris, cili-

ary body and trabecular meshwork [28]. An 80–85 kDa myocilin aggregate was also detected

in lymph node as will be explained later. qPCR confirmed the expression of MYOC in these

two lymphoid organs (lymph node and thymus) as well as in circulating leukocytes and T-lym-

phocytes, but not in liver. In accordance with these results two previous studies detected

MYOC mRNA by Northern blot in thymus [34, 35]. However, these reports did not identify

MYOC mRNA in leukocytes, probably due to the low sensitivity of Northern blot compared

with qPCR. Likewise, a previous study also detected MYOC transcripts in ficoll-isolated circu-

lating human leukocytes, which are enriched in lymphocytes [36]. The identification of 30 kDa

C-terminal fragments of myocilin in thymus and lymph node suggests the existence of a tis-

sue/organ-specific myocilin proteolytic processing. These results also support a functional role

for this posttranslational processing, which was initially demonstrated in the recombinant pro-

tein [18, 19]. According to our previous studies this proteolytic processing might regulate

myocilin aggregation [22], but additional studies are required to clarify this point. Myocilin

fragments present in liver might have a different functional meaning because this organ does

not express detectable myocilin. Therefore, it can be speculated that the liver might be involved

in plasma myocilin turnover. Other molecular forms of myocilin are indicated by the presence

of 80–85 kDa myocilin bands observed in thymus, lymph node and also in plasma, which

might correspond to heterocomplexes of myocilin and unidentified proteins orto complexes

of full-length myocilin and myocilin fragments. In line with these ideas, it is known that myo-

cilin forms extracellular multimers [11], which are maintained by posttranslational disulfide

bond formation [12, 21, 22] and non-covalent interactions between the leucine zipper motifs

[11, 22]. Detailed medical records were not available from donors of the different commercial

tissue samples and, although unlikely, we cannot completely rule out any that myocilin

detected in these samples is affected by unreported diseases. Further investigations are

required to clarify these issues.

The presence of myocilin in blood serum was demonstrated by peptide mass fingerprint

analysis of the protein isolated by reverse-phase chromatography. In addition, the concentra-

tion of myocilin, roughly estimated from a group of normal human blood serum samples

(15.5 μM or 0.8 mg/ml), indicated that it is a medium-abundance serum protein accounting

approximately for one per cent of the total serum protein (considering a total protein concen-

tration in human serum of 65–78 mg/ml). These results show that myocilin can be included

into the group of plasma proteins that are also expressed in the ciliary body and secreted to the

AH (e.g., complement component C4, alpha-2 macroglobulin, selenoprotein P and apolipo-

protein D) [1]. Because the liver does not express myocilin, immune cells and organs could be

a source for this protein present in plasma. Myocilin has also been identified in the AH at a

concentration of approximately 0.2–0.6 ng/μl [37]. The concentration determined in this

study for myocilin in human serum is several orders of magnitude higher than the concentra-

tion reported in AH, which is not surprising since the protein content of human AH is

extremely low, containing between 120 and 500 ng/μl of total protein [38] (i.e., almost 200–

500 times less than plasma). In accordance with our results two previous studies carried out

either to characterize the human plasma proteome [39] or to verify plasma biomarkers for dia-

betic retinopathy [40], identified three myocilin peptides in plasma.
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The presence of myocilin in plasma and lymphoid tissues, which are involved in leukocyte

trafficking, and the reported role of this protein on cell adhesion [41, 42], led us to hypothesize

the possible role of myocilin on leukocyte adhesion. To the best of our knowledge, our data

evidence for the first time that recombinant myocilin reduces adhesion of peripheral human

leukocytes to monolayers of cultured endothelial cells (HUVEC) and that this feature is associ-

ated, at least in part, with the olfactomedin-containing C-terminal part of the protein. Accord-

ing to this result, it has also been described an anti-adhesive myocilin activity on trabecular

meshwork cells that may be mediated by a reduction of focal adhesions and stress fibers actin

[41, 42]. The elevated purity of the HPLC-purified recombinant proteins used in this study,

assessed by SDS-PAGE and silver nitrate staining [23], and the differences in antiadhesive

properties shown by full-length myocilin and its C-terminal fragment support that myocilin is

the active component of the preparations used to evaluate leukocyte adhesion. The effect of

myocilin on cell adhesion may differ depending on the cell type and/or experimental settings

since it is also known that immobilized recombinant myocilin promotes substrate adhesion of

podocytes and mesangial cells [31]. Moreover, and in line with our finding, two matricellular

and myocilin-interacting proteins SPARC [32] and hevin [43] inhibit endothelial cell adhesion

to some substrates. Myocilin exhibits several features found among SPARC proteins, including

counter-adhesive properties [43], which is a key functional signature of matricellular proteins

[44]. These are a group of proteins involved in cell-to-cell interactions and in the biochemical

interplay between cells and extracellular environment [45]. Leukocyte adhesion to endothelial

cells is principally mediated by selectins and integrins [46]. Therefore, we can hypothesize that

plasma myocilin disrupts or interfere the interaction of these proteins leading to reduced adhe-

sion of leukocytes to endothelial cells, although further work is required to evaluate this

hypothesis. Endoproteolytic regulatory cleavage and expression in lymphoid tissues are addi-

tional characteristics present in myocilin, SPARC and hevin [45]. Altogether, these data also

suggest a role for myocilin as a blood matricellular protein. The adhesion of circulating leuko-

cytes to activated endothelial cells is a critical step in inflammation and in the process of leuko-

cyte extravasation [47], in which hevin has been proposed to play a role [43]. Therefore, our

data, together with the presence of myocilin in plasma and its expression in lymphoid tissues,

suggest that myocilin also might participate in the initial steps of inflammation, although this

is a speculative idea that needs further investigation. Finally, and in accordance with this

hypothesis, it is well known that the expression of myocilin is induced by glucocorticoids [4],

which are involved in inflammation.

Conclusions

In summary, our results demonstrate that human myocilin is present in blood plasma, as well

as in some lymphoid tissues and leukocytes. In addition, our study indicates a role of myocilin

on leukocyte adhesion to cultured human endothelial cell monolayers and provide insights for

new biological properties of myocilin and for its putative role as a blood matricellular protein.

Materials and methods

Ethics statment

Human blood samples from normal volunteers were collected with informed and written con-

sent in compliance with the Declaration of Helsinki ethical principles, and their use was

approved by the Institutional Ethics Committee of “Complejo Hospitalario Universitario de

Albacete”, Spain.
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Chicken polyclonal antibody production

An affinity-purified chicken anti-myocilin antibody raised against a previously described syn-

thetic peptide was obtained by Immunostep. The peptide corresponded to amino acids 468–

488 (C21A: CNRYKYSSMIDYNPLEKKLFA) [19, 28] of the human protein of the human pro-

tein and contained an extra Cys residue in its N-terminal end to facilitate conjugation to Key-

hole Limpet Hemocyanin peptide. After immunization, IgY was purified from the egg yolk

using the Pierce Chicken IgY Purification Kit (ThermoFisher Scientific).

Western blotting

Protein extracts from the following adult normal human tissues were used for western blotting

analyses: liver and thymus (BioChain) and lymph node (Clontech). Age and sex of the donors

of tissues were as follows: liver, 87-years-old female; thymus, 36-years-old male; lymph node,

pooled from 59 male/females, 19-68-years-old. The reported causes of death were trauma or

sudden death. A venous blood sample from one healthy 55-years-old male volunteer member

of the research group was used for HPLC fractionation. Recombinant human myocilin used as

a positive control was produced in HEK-293T cells and purified by Ni-chelating HPLC as

described elsewhere [22]. Albumin and IgG were removed from human plasma and condi-

tioned culture medium samples using the ProteoPrep Immunoaffinity Albumin and IgG

Depletion Kit (Protea Biosciences) following the manufacturer’s instructions. Aliquots of con-

trol serum samples selected from patients undergoing cataract surgery from a previous proteo-

mic study [48] were used to estimate myocilin concentration. The protein content of samples

was determined by the Bicinchoninic Acid Protein Assay Kit (Thermo Scientific), following

the manufacturer’s recommendations. Prior to electrophoresis the samples were boiled for 5

min in standard electrophoresis loading buffer containing β-mercaptoethanol, then they were

usually subjected to 10% polyacrylamide gel electrophoresis in the presence of SDS [49], using

the Mini-PROTEAN III gel electrophoresis system (BioRad). Gels were subsequently trans-

ferred onto Hybond ECL nitrocellulose membranes (Amersham) for immunodetection. Pon-

ceau S (Panreac) staining of blots prior to antibody incubation was performed to confirm the

integrity of samples and that equal amounts of sample were analyzed [50]. The C21A was used

as primary antibody (1:500 dilution) and an anti-chicken IgY horse-radish peroxidase-conju-

gated (1:1000 dilution) was employed as secondary antibody (Santa Cruz). To assess the speci-

ficity of the antibody replicas of the samples were analyzed in parallel with the preimmune

antibody (1:500 dilution). To confirm the specificity of the C21A antibody a commercial puri-

fied monoclonal anti-myocilin antibody (MAB3446, R&D Systems, MN, USA) was used at a

1:50 dilution. This monoclonal antibody has been described to recognize the N-terminal leu-

cine zipper region of the protein [30]. A highly cross-adsorbed anti-mouse IgG F(ab’)2 frag-

ment (SAB3701015, Sigma-Aldrich) at a 1:500 dilution was employed as secondary antibody.

Chemiluminescence analysis was performed with Supersignal Dura Western Blot reagents

(Thermo Scientific) using the LAS3000-mini (Fujifilm, Tokyo, Japan) detector. Densitometry

for protein band quantification was performed using Quantity One 4.1 analysis software

(BioRad) in at least two independent experiments performed in triplicate.

Analysis of MYOC gene expression by real-time quantitative PCR (RT-

qPCR)

Commercial cDNA samples of human tissues were used for RT-qPCR (Human BioBank

cDNA for real-time PCR, Pimer Design Ltd). Expression of the different mRNAs relative to

GAPDH mRNA was determined using the 2−ΔΔCt method [51] and the primer pair 5’-

Identification of myocilin as a blood plasma protein

PLOS ONE | https://doi.org/10.1371/journal.pone.0209364 December 17, 2018 12 / 18

https://doi.org/10.1371/journal.pone.0209364


AGAAGGCTGGGGCTCATTTG-3’ and 5’-AGGGGCCATCCACAGTCTTC-3’. The following

primers were employed to amplify myocilin cDNA: 5’-AGGTTGGAAAGCAGCAGCCAGG-3’
and 5’-TGCTGTTCTCAGCGTGAGAGG-3’. For PCR analysis, 1 μl of cDNA was used as a

template in a reaction volume of 10 μl containing 5μl of Power SYBR Green PCR Master Mix

(Thermo Fisher Scientific) and 200 nM of each primer. Nuclease-free water was added up to

10 μl. Thermocycling included an initial denaturation step at 95º C for 10 min, followed by 40

cycles consisting of 15 s denaturation at 95º C followed by 60 s of annealing and extension at

60ºC. The PCR products and their dissociation curves were detected with an ABI PRISM 7500

Fast real-time PCR system (Life Technologies). Quantitative PCR results from at least three

independent experiments carried out in triplicate were used for calculation of mean expression

values in each tissue.

Isolation of serum myocilin by high performance liquid chromatography

(HPLC)

Serum samples were obtained from blood without anticoagulant. Once the serum was ali-

quoted, 100 μl of sample previously acidified with 0.1% (v/v) trifluoroacetic acid (TFA) were

used and centrifuged to remove the pellet. The serum was injected into a reverse-phase column

(Discovery BIO Wide Pore C5, Supelco) coupled to an Akta Purifier (Amersham Biosciences)

chromatograph. Prior to sample loading the column was equilibrated with H2O containing

0.1% TFA at a flow rate of 1 ml/min. The sample was eluted with linear gradients of acetoni-

trile containing 0.1% (v/v) TFA, as indicated in the corresponding figures. Fractions were

manually collected, and their purity was assessed by SDS-PAGE with Coomassie blue staining.

The presence of myocilin in the different fractions was analyzed by Western immunoblot

using the C21A antibody (1:500 dilution). Fractions containing myocilin were pooled and

subjected to a second round of purification using a lower slope acetonitrile gradient (38% to

58% acetonitrile in 45 min). The samples containing myocilin were further fractionated by

SDS-PAGE and the bands obtained were cut from the gel and analyzed by mass spectrometry.

Matrix-Assisted laser desorption ionization time-of-flight (MALDI-TOF)

peptide mass fingerprint analysis

The mass spectrometry analysis was performed at the Proteomics Service of Madrid Science Park.

The bands obtained by SDS-PAGE were excised with a scalpel and subjected to in-gel trypsin

digestion [52] and the resulting peptides were identified by mass spectrometry in a MALDI-TOF/

TOF 4700 Proteomics Analyzer (Applied Biosystems). External calibration was performed using a

mixture of angiotensin II, ACTH/CLIP, bombesin and somatostatin. The prediction of peptides

resulting from trypsin digestion of myocilin was performed using the MS-Digest tool (http://

prospector.ucsf.edu/prospector/cgi-bin/msform.cgi?form=msdigest). The theoretical mass of

these peptides was compared to the experimentally determined mass using the Mascot Search

Results online tool (www.matrixscience.com). Finally, the percentage of the myocilin sequence

covered by the tryptic peptides identified by mass spectrometry was determined.

Estimation of the concentration of myocilin in human plasma

Serum samples from control subjects were subjected to SDS-PAGE (10% polyacrylamide) fol-

lowed by Western immunoblotting using the anti-myocilin antibody C21A (Immunostep)

(1:500 dilution), as described earlier. The signals obtained from two known quantities (0.5 and

1.0 μg) of Ni-chelating HPLC-purified recombinant human myocilin [23] were used as a refer-

ence for densitometric quantification of myocilin detected by western immunoblotting using
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the Quantity One 4.6.9. software (Bio-Rad). To identify nonspecific signals an aliquot of each

sample was analyzed in parallel using the preimmune antibody (1:500 dilution). Values were

calculated from two independent assays carried out in triplicate.

Assay of leukocyte adhesion to endothelial cells in culture

The human umbilical vein endothelial cells (HUVEC, ECACC 06090720, Sigma-Aldrich) used

in the assay were cultured in Complete Endothelial Cell Growth Medium (ECACC 06091509).

The human embryonic kidney 293T cell line (HEK-293T), used as a negative control, was

obtained from the ATCC (American Type Culture Collection) and was maintained in Dulbec-

co’s modified Eagle’s medium (DMEM, Lonza) supplemented with 10% fetal bovine serum

(FBS). The two cell lines were cultured with antibiotics (Normocin, Invitrogen) at 37˚C in a

fully humidified 5% CO2 atmosphere. To evaluate the effect of myocilin on the adhesion of leu-

kocytes to endothelial cells, HUVEC cells were seeded in black-walled transparent-bottom cul-

ture plates (Greiner Bio-One), treated with 0.1% gelatin (Sigma-Aldrich). Confluent cells were

treated for 4 h with culture medium containing 10 ng/ml of TNFα (Sigma-Aldrich) and differ-

ent concentrations of recombinant proteins. Circulating leukocytes were obtained from

peripheral venous blood anticoagulated with heparin. The blood (10 ml) was diluted with

DPBS (1:1) and carefully placed onto an equivalent volume of Ficoll-Paque PLUS (GE Health-

care Life Sciences). The sample was centrifuged (800xg) at room temperature for 30 min. The

leukocyte rich layer was collected and washed twice with Dulbecco’s Phosphate Buffer Saline

(DPBS, Lonza). Leukocytes activation was performed by incubation with phytohemagglutinin

(10 ng/ml) for 20 min in RPMI-1640 complete medium (Lonza) containing 10% FBS. Acti-

vated leukocytes (5000000 cells/ml) were incubated at 37˚ C for 30 min in RPMI-1640 contain-

ing 5 μM calcein-AM (AnaSpec). After two RPMI-1640 washes, calcein-labelled leukocytes in

the same medium were seeded (500000 cells/well) on HUVEC monolayers, at 37ºC for 2 h, in

the presence of two concentrations of recombinant myocilin or SPARC (200 nM and 400 nM).

The recombinant proteins were produced in HEK-293T cells and purified from the culture

medium by Ni-chelating HPLC as previously described [22, 23]. The purity of the obtained

recombinant proteins assessed by SDS-PAGE with silver nitrate staining was at least 80% [23]. As

a control of cell specificity, calcein-labelled HEK-293-T cells (500000 cells/well) were added in

parallel to HUVEC monolayers. Non-adherent cells were removed by three DPBS washes. The

fluorescence of each well was quantified in a XS Gemini plate fluorimeter (Molecular Devices)

using excitation and emission wavelengths of 494 nm and 517 nm, respectively. Purified bovine

serum albumin (200 nM and 400 nM) was used as a negative control of cell adhesion (Sigma-

Aldrich). Cell adhesion was expressed as a percent of adhered cells in the absence of assayed pro-

teins. In addition, photographs of the preparations were obtained using a Nikon Eclipse Ti-U

(Nikon) fluorescence microscope, equipped with a Nikon-cooled digital camera DS-Ri1 (Nikon).

Statistical analysis

The statistical comparisons between groups were performed using either the t-test or the one-

way analysis of variance (ANOVA). Statistical analysis of the data was performed using the Sig-

maStat 2.0 software (SPSS Science Inc., Chicago, IL, USA).

Supporting information

S1 Fig. Analysis of myocilin expression in human tissues by Western immunoblot using a

commercial anti-myocilin antibody. (A and B) Aliquots of samples analyzed in Fig 1 (20 μg

total protein/tissue extract) and 40 μg of human plasma were analyzed by SDS-PAGE (10%

polyacrylamide). Conditioned culture medium from HEK-293T cells containing recombinant
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human myocilin (rMyoc) (25 μl) and 0.5 μg of HPLC purified recombinant myocilin (prMyoc)

were used as positive controls. (A) Myocilin was detected using a purified commercial mono-

clonal primary antibody at a 1:50 dilution. To minimize nonspecific signals in lymphoid tis-

sues and plasma a highly cross-absorbed anti-mouse IgG F(ab’)2 fragment was used as

secondary antibody (1:500). (B) As a negative control, a replica of the membrane was incu-

bated in parallel only with the secondary antibody. MWM: molecular weight marker. Exposure

time: 60 min. (C and D) Ponceau S staining of membranes showed in A and B. MWM: molec-

ular weight marker. rMyoc: recombinant myocilin. prMyoc: purified recombinant myocilin.

MWM and unlabeled lanes were not included in panels A and B.

(TIF)

S2 Fig. Ponceau S staining of membranes shown in Fig 1. After Western blotting nitrocellulose

membranes shown in Fig 1 were stained with Pounceau to check the amount of transferred protein.

HPLC purified recombinant human myocilin (0.5 μg) was used as a positive control (prMyoc).

MWM: molecular weight marker. MWM and unlabeled lanes were not included in Fig 1.

(TIF)

S3 Fig. Location within the myocilin polypeptide chain of tryptic peptides identified by

MALDI-TOF analysis. The peptides were obtained by in-gel trypsin digestion of Pool 2 (Fig

4C and 4D) and identified by MALDI-TOF analysis. The complete amino acid sequence of

myocilin is shown. The colored boxes indicate MALDI-TOF peptides which are predicted to

result from missed cleavage of none (red), one (yellow) or two (green) trypsin target peptide

bonds. The identified peptides cover 64% of the myocilin amino acid sequence.

(TIF)

S4 Fig. Unprocessed original scans of myocilin detection in human blood serum and

plasma by Western blotting shown in Fig 3. Nitrocellulose membranes were incubated with

either an anti-myocilin C21A polyclonal antibody (A) or the corresponding preimmune anti-

body (B). (C and D) Ponceau S staining of membranes shown in panels A and B, respectively.

Exposure time: 1 min. MWM: molecular weight marker (prestained protein molecular weight

marker, Thermo Scientific). The MWM lane was not included in Fig 3.

(TIF)

S5 Fig. Western blot detection of myocilin present in chromatographic fractions from Fig

4A. Unprocessed original scans of myocilin. Aliquots of chromatographic fractions were ana-

lyzed by SDS-PAGE and the presence of myocilin was determined by Western blot using an

anti-myocilin C21A polyclonal antibody. Exposure time: 1 min. MWM: molecular weight

marker (prestained protein molecular weight marker, Thermo Scientific). The MWM lane was

not included in Fig 4B.

(TIF)

S6 Fig. SDS-PAGE analysis of chromatographic fractions 5 and 6 from Fig 4C. Proteins

were detected by Coomassie blue staining. To maximize band separation the electrophoresis

was run until the 48 kDa marker reached the bottom of the gel. MWM: molecular weight

marker (prestained protein molecular weight marker, Thermo Scientific). The MWM lane was

not included in Fig 4D.

(TIF)
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Conceptualization: José-Daniel Aroca-Aguilar, Miguel Coca-Prados, Julio Escribano.

Identification of myocilin as a blood plasma protein

PLOS ONE | https://doi.org/10.1371/journal.pone.0209364 December 17, 2018 15 / 18

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0209364.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0209364.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0209364.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0209364.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0209364.s006
https://doi.org/10.1371/journal.pone.0209364
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48. González-Iglesias H, Álvarez L, Garcı́a M, Escribano J, Rodrı́guez-Calvo PP, Fernández-Vega L, et al.

Comparative proteomic study in serum of patients with primary open-angle glaucoma and pseudoexfo-

liation glaucoma. J Proteomics. 2014; 98:65–78. Epub 2013/12/16. https://doi.org/10.1016/j.jprot.2013.

12.006 PMID: 24355480

49. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.

Nature. 1970; 227(259):680–5.

50. Romero-Calvo I, Ocon B, Martinez-Moya P, Suarez MD, Zarzuelo A, Martinez-Augustin O, et al.

Reversible Ponceau staining as a loading control alternative to actin in Western blots. Anal Biochem.

2010; 401(2):318–20. https://doi.org/10.1016/j.ab.2010.02.036 PMID: 20206115

51. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR

and the 2(-Delta Delta C(T)) Method. Methods. 2001; 25(4):402–8. https://doi.org/10.1006/meth.2001.

1262 PMID: 11846609

52. Li G, Waltham M, Anderson NL, Unsworth E, Treston A, Weinstein JN. Rapid mass spectrometric iden-

tification of proteins from two-dimensional polyacrylamide gels after in gel proteolytic digestion. Electro-

phoresis. 1997; 18(3–4):391–402. https://doi.org/10.1002/elps.1150180313 PMID: 9150917

Identification of myocilin as a blood plasma protein

PLOS ONE | https://doi.org/10.1371/journal.pone.0209364 December 17, 2018 18 / 18

http://www.ncbi.nlm.nih.gov/pubmed/9712151
https://doi.org/10.3382/ps.0721807
http://www.ncbi.nlm.nih.gov/pubmed/8415358
https://doi.org/10.3390/molecules16075402
http://www.ncbi.nlm.nih.gov/pubmed/21709622
http://www.ncbi.nlm.nih.gov/pubmed/9548973
http://www.ncbi.nlm.nih.gov/pubmed/22550394
https://doi.org/10.1097/IJG.0b013e3181d13020
http://www.ncbi.nlm.nih.gov/pubmed/20179615
http://www.ncbi.nlm.nih.gov/pubmed/2920779
https://doi.org/10.1016/j.jasms.2007.04.012
https://doi.org/10.1016/j.jasms.2007.04.012
http://www.ncbi.nlm.nih.gov/pubmed/17553692
https://doi.org/10.1021/pr901013d
http://www.ncbi.nlm.nih.gov/pubmed/20020744
https://doi.org/10.1002/jcp.10478
http://www.ncbi.nlm.nih.gov/pubmed/15137056
https://doi.org/10.1016/j.yexcr.2004.02.024
https://doi.org/10.1016/j.yexcr.2004.02.024
http://www.ncbi.nlm.nih.gov/pubmed/15194423
http://www.ncbi.nlm.nih.gov/pubmed/8626806
https://doi.org/10.1016/j.matbio.2014.07.005
http://www.ncbi.nlm.nih.gov/pubmed/25064829
https://doi.org/10.1002/jcb.20091
http://www.ncbi.nlm.nih.gov/pubmed/15211566
https://doi.org/10.1111/j.1582-4934.2009.00811.x
http://www.ncbi.nlm.nih.gov/pubmed/19538472
https://doi.org/10.1038/nri2156
http://www.ncbi.nlm.nih.gov/pubmed/17717539
https://doi.org/10.1016/j.jprot.2013.12.006
https://doi.org/10.1016/j.jprot.2013.12.006
http://www.ncbi.nlm.nih.gov/pubmed/24355480
https://doi.org/10.1016/j.ab.2010.02.036
http://www.ncbi.nlm.nih.gov/pubmed/20206115
https://doi.org/10.1006/meth.2001.1262
https://doi.org/10.1006/meth.2001.1262
http://www.ncbi.nlm.nih.gov/pubmed/11846609
https://doi.org/10.1002/elps.1150180313
http://www.ncbi.nlm.nih.gov/pubmed/9150917
https://doi.org/10.1371/journal.pone.0209364

