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Mitigating postprandial hyperglycaemic excursionsmay be effective in not only enhancing

glycaemic control for people with type 2 diabetes but also reducing the onset of

diabetes-related complications. However, there are growing concerns over the long-term

efficacy of anti-hyperglycaemic pharmacotherapies, which coupled with their rising

financial costs, underlines the need for further non-pharmaceutical treatments to regulate

postprandial glycaemic excursions. One promising strategy that acutely improves

postprandial glycaemia for people with type 2 diabetes is through the provision of

mealtime whey protein, owing to the slowing of gastric emptying and increased secretion

of insulin and the incretin peptides. The magnitude of this effect appears greater

when whey protein is consumed before, rather than with, a meal. Herein, this dietary

tool may offer a simple and inexpensive strategy in the management of postprandial

hyperglycaemia for people with type 2 diabetes. However, there are insufficient long-term

studies that have investigated the use of mealtime whey protein as a treatment option

for individuals with type 2 diabetes. The methodological approaches applied in acute

studies and outcomes reported may also not portray what is achievable long-term

in practice. Therefore, studies are needed to refine the application of this mealtime

strategy to maximize its clinical potential to treat hyperglycaemia and to apply these

long-term to address key components of successful diabetes care. This review discusses

evidence surrounding the provision of mealtime whey protein to treat postprandial

hyperglycaemia in individuals with type 2 diabetes and highlights areas to help facilitate

its clinical application.

Keywords: type 2 diabetes, postprandial hyperglycaemia, whey protein, secondmeal effect, pre-load, postprandial

glycaemic control

INTRODUCTION

For people with type 2 diabetes [T2D], the regulation of postprandial glycaemia [PPG] is critical
to achieving optimal glycaemic control (1, 2), which may mitigate complications associated with
T2D and hyperglycaemia (3–7). Indeed, PPG excursions are associated with deleterious effects on
the vasculature (8), and independently predict the onset of microvascular complications (9) and
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the incidence of future cardiovascular events (10, 11). The
targeted treatment of PPG is, however, secondary, only occurring
when glycaemic targets have not been met (12). Yet, meeting
clinically desirable HbA1c values does not always preclude
postprandial hyperglycaemic excursions (13). Accordingly,
treatment strategies should be employed to focus not only on
reducing HbA1c but controlling PPG.

Several pharmacotherapies are effective in treating
hyperglycaemia (12). However, there is uncertainty regarding
their efficacy long-term (14). There are also increasing concerns
with the safety and side effects of commonly prescribed
agents, including thiazolidinediones, sulfonylureas and prandial
insulins (15), which coupled with their rising costs (16),
underscores the need for non-pharmaceutical strategies for
glycaemic management.

Accumulating evidence suggests that nutrient pre-loading
can profoundly improve PPG for people with T2D (17–
20). Consuming a macronutrient at a fixed interval before a
meal primes gluco-regulatory milieu allowing for the efficient
sequestration of glucose from the subsequent feed (18, 19, 21).
The efficacy of this response is, however, dependent on the
nutrient composition of the pre-load (22) with a body of work
supporting the use of dietary protein (17, 23), and in particular,
whey protein [WP] as an effective strategy (19, 24).

In this review, we appraise recent evidence surrounding the
provision of mealtimeWP on PPG regulation in people with T2D
and proceed to discuss experimental shortcomings surrounding
this nutritional strategy and their implications for future research
and clinical practice.

WHEY PROTEIN AND A POSTPRANDIAL
GLYCAEMIA REDUCING MILIEU

WP is rich in branched-chain amino acids [BCAA] and bioactive
peptides that augment several interconnected mechanisms
associated with PPG regulation (Figure 1). Briefly, these include:
amino-acid induced insulinemia (25, 26); augmentation of the
incretin effect (26, 27); and suppression of dipeptidyl peptidase
IV [DPP-IV] activity (28–30)—although work within humans
is unclear (31). Additionally, WP delays the rate of gastric
emptying (19, 32–34)–likely mediated by glucagon-like peptide
1 [GLP-1]-related mechanisms (35, 36)–purported as a central
mechanism associated with improved PPG handling (37). The
latter mechanism is of importance for individuals with controlled
T2D who demonstrate accelerated gastric emptying rates (38,
39). The regulation of gastric emptying following mealtime WP
may also be of significance for patients with diminished β-cell
function (40), where improvements in PPG have been reported
following treatments that slow gastric emptying in absence of
increased insulin concentrations (40, 41).

Abbreviations: BCAA, branched chained amino acids; CGM, continuous glucose
monitoring system; DPP-IV, dipeptidyl peptidase IV; GLP-1, glucagon-like peptide
1; PPG, postprandial glycaemia; T2D, type 2 diabetes; WP, whey protein.

MEALTIME WHEY PROTEIN AS A
NON-PHARMACOLOGICAL APPROACH
TO TREAT POSTPRANDIAL GLYCAEMIA

Several lines of evidence demonstrates the capacity of WP to
regulate PPG in patient (19, 31–34, 42, 43) and non-patient
(44–46) populations. A summary of acute randomized-control
trials utilizing mealtime WP to control PPG in individuals
with T2D is presented in Table 1. Yet, the clinical impact
of this inherently simple strategy remains unclear. Although
Trico et al. boldly postulate that a protein-rich nutrient pre-
load may offer similar effects to what can be achieved with
available anti-hyperglycaemic agents (17), as previously proposed
by Jakubowicz et al. (31), objective evidence supporting such
claims is limited.

To the authors’ knowledge, only one study has directly
compared mealtime WP with conventional pharmacological
treatments (33). In an acute intervention involving 22
metformin-treated T2D males, Wu et al. (33) reported similar
reductions in PPG between the provision of a WP (25 g) pre-
load, consumed 30min before a test meal, and administration
of the DPP-IV inhibitor, vildagliptin. Remarkably, the authors
showed that combining treatments enhanced vildagliptin’s
efficacy by two-fold compared to its sole administration (33).
Whether the reported benefits are sustained long-term, or if
they have any implications in the efficacy to treat T2D, remains
unknown. Clearly, the strategy of combining a dietary and
pharmacological approach is an attractive avenue that warrants
further investigation.

CURRENT LIMITATIONS IMPEDING THE
TRANSLATION OF MEALTIME WHEY
PROTEIN AS A THERAPY TO TREAT TYPE
2 DIABETES

Acute experimental trials show that mealtime WP can markedly
improve PPG in people with T2D (Table 1) and may offer
an adjunctive therapy for the treatment of this disease (33).
However, investigations to date are largely focused on proof-of-
concept rather than efficacy to treat, adopting methodological
approaches that lack real-world applicability andmay not portray
what could be achievable in practice. For instance, studies have
primarily examined the efficacy of mealtime WP to regulate
PPG after the consumption of test meals that would seldom be
consumed in the T2D community [i.e., powdered potatoes with
glucose (19, 32–34); meals rich in saturated fat (47, 48)] and often
over a single postprandial period (19, 31–34). The WP doses
provided have also been unrealistically large (19, 31, 48) and
presented in formats that do not align with contemporary living.
While these studies prove effective in testing an experimental
hypothesis, such approaches do not represent free-living eating
behaviors and patterns. Therefore, it cannot be assumed that
these results can be translated into everyday care or be effective
in the long-term treatment of T2D.
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FIGURE 1 | Schematic illustration depicting mechanisms and pathways associated with postprandial glucose regulation following WP consumption and its potential

application for type 2 diabetes management. WP is rich in BCAA (leucine, isoleucine and valine) and bioactive peptides (α-La and β-Lg) that stimulate the secretion of

the incretin peptides and insulin from pancreatic β-cells. Incretin peptides, particularly GLP-1, stimulate β-cell activity, augmenting the release of insulin, where GLP-1

also regulates the rate of gastric emptying mediated through vagal afferents that convey information to the brainstem. Further gut peptides including CCK and PYY are

stimulated following WP ingestion, which also delay the rate of gastric emptying and regulate the gastrointestinal transit of food via central-related mechanisms.

Bioactive peptides residing WP may also inhibit DPP-IV activity, increasing the concentrations of intact incretin moieties. Insulin can also cross the blood brain barrier

within the central nervous system, which may suppress appetite and regulate hepatic glucose production via the brain-liver axis. Dashed lines represent combined

influences. BCAA, branch chain amino acids; CCK, cholecystokinin; DPP-IV, dipeptidyl-peptidase IV; GIP, glucose-dependent insulinotropic peptide; GLP-1,

glucagon-like peptide-1; PYY, peptide tyrosine tyrosine; α-La, α-lactalbumin; β-Lg, β-lactoglobulin.

IMPLICATIONS FOR FUTURE RESEARCH

Supplemental Timing
The capacity of WP to regulate PPG is dependent on
supplemental timing, specifically when consumed before- rather
than with- (19) or following- (46) the main meal, pertaining to
an early and pronounced secretion of GLP-1 and a slowing of
gastric emptying (19). Yet, a significant caveat to this approach
is the timing of the pre-load and commencement of the meal. For
instance, a wealth of studies have presented WP 30min before
the nutrient challenge (19, 31, 33, 34, 44, 45), which is unlikely
to replicate free-living behaviors. Indeed, adherence to prandial

medications, which are prescribed to align with eating occasions,
can fall short due to patient forgetfulness and the burden of
having to plan ahead (49, 50). This similarly may be the case for
WP with larger pre-load “windows.” Promisingly, WP consumed
≤15min before a meal augment significant glycaemic benefit (32,
42, 46, 51, 52). There is additionally no further improvement in
PPG when WP is consumed 30min prior to- rather than 15min
before- the meal (51), which may have significance for patients
adopting this strategy. However, the latter study was performed
in individuals with the Metabolic Syndrome and not those with
overt diabetes. It is unclear if such findings are translatable to
T2D individuals.
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Whey Protein Dose
Evidence to date has primarily presented unrealistically large
WP doses (25–55 g), entailing a significant caloric load with
a large financial cost associated (19, 31, 33, 48). Indeed, the
glucose-lowering efficacy ofWP is reported to be dose-dependent
(44). However, when accounting for the energy content of
WP pre-loads (20–70 g), despite reducing energy intake at ad
libitum meals compared to a control treatment, cumulative
energy intake is similar (44, 53). This may explain why there
were no differences in body mass in overweight and obese
individuals with (34) and without (54) T2D following long-term
(4–12wks) mealtime WP supplementation [54–75 g·d−1 (250–
280 kcal·d−1)]. Given the importance of weight management in
the care and prevention of T2D (12), and where higher out-of-
pocket costs are associated with poor adherence to anti-diabetic
treatments (50), this needs careful consideration when designing
long-term trials or assessing current evidence. Promisingly, small
amounts of mealtimeWP (<100 kcal) have been shown to reduce
PPG in people with T2D (32–34, 42) and are reported to not cause
weight-gain following their sustained consumption (34). These
data suggest that the consumption of mealtime WP (<100 kcal)
may modulate daily energy intake, which could be a secondary
mechanism to improve PPG through a reduction in meal size.
However, to the best of the authors’ knowledge, the satiating
effects of mealtime WP of any amounts has not been assessed in
individuals with T2D.

Long-Term Efficacy
Investigations examining the efficacy of mealtime WP beyond
single isolated meals are few in number (n= 2; Table 1), which is
surprising given postprandial hyperglycaemic excursions display
significant diurnal variances (55–57) and are highly prevalent
throughout the day (13). Promisingly, we have demonstrated the
capacity of mealtime WP to regulate PPG excursions beyond
a single meal in adult males with T2D (42). In an acute,
randomized-control trial, consuming WP (15 g) immediately
prior to conventional breakfast and lunch meals reduced PPG
excursions (∼17% AUC0−90min) compared to an energy-free
control beverage (42). Although exploratory in nature, these
findings may have importance considering glycaemic excursions
following breakfast and lunch markedly contribute to the
prevalence of daytime hyperglycaemia in T2D patients (13).
Whether such benefits are sustained long-term and under free-
living conditions, or if they have any implications in the
treatment of T2D, is unclear.

To the best of the authors’ knowledge, only one investigation
has examined the long-term efficacy of mealtime WP to treat
T2D. In a randomized-control trial, Watson et al. (52) reported
statistically significant, but arguably clinically insignificant,
improvements in HbA1c (−1.0 mmol·mol) following 12wk
consumption of a pre-meal WP shake compared to a void
comparator. However, this study was not designed to ascertain
the relative influence of each compound of the pre-load [WP
(17 g) or guar gum (5g)], which may both individually regulate
glycaemia (32). The studied T2D cohort also had excellent
glycaemic control at baseline (∼49 mmol·mol) contributing to
the very modest reductions in HbA1c (58). Conversely, in a pilot

study involving seven well-controlled people with T2D, serum
fructosamine, which reflects recent glycaemic control, tended
to be lower (p = 0.06) following a 28d period of pre-meal
WP (25 g) compared to an inert placebo (34). While the above
studies suggest that mealtimeWPmay positively affect long-term
glycaemic control (34, 52), this is vastly under-researched and
requires validation in future trials.

Nonetheless, evidence from the latter two studies suggests
that the pancreatic β-cells and gluco-regulatory mechanisms
within the small intestine retain their sensitivity to prolongedWP
exposure (34, 52). This is important considering GLP-1-mediated
regulation of gastric emptying and PPG are subjected to rapid
tachyphylaxis following the incretin peptide’s sustained exposure
(59, 60), where adaptive changes by which nutrients regulate
gastrointestinal function have also been reported following
prolonged intake of fat (61) and glucose (62).

Behavioral Change or the Hawthorne
Effect?
The Hawthorne effect describes when an individual alters
their behavior in response to being observed, often in a
positive manner (63), making it increasingly problematic to
disentangle the efficacy of an intervention to treat long-term
glycaemic outcomes (64). Indeed, the effectiveness of dietary
interventions when unassisted can be poor (65). Accordingly,
this needs consideration when critiquing current evidence and
determining mealtime WP’s sustainability out with of the
controlled research environment. It is therefore essential to adopt
a multi-dimensional approach; assessing not only quantitative
outcomes but also highlighting patient behaviors, and barriers
and facilitators to this strategy. Indeed, such approaches are
fundamental aspects of successful diabetes care (12).

Free-Living Glycaemic Variability
One study conducted by Watson et al. (52) suggested that
mealtime WP might improve free-living PPG control as
hypothesized from the observed reductions in HbA1c. However,
meeting clinically desirable HbA1c values does not guarantee
negligible postprandial hyperglycaemic excursions (13). Indeed,
reliance onHbA1c to characterize alterations in glycaemic control
fails to account for daily glycaemic excursions and variances (66).

In an era of personalized and precision medicine,
advancements in continuous glucose monitoring systems
[CGM] can overcome limitations associated with surrogate
measures of glycaemia (67). CGM allows for the detailed
assessment of intra- and inter-daily glycaemic excursions
under free-living conditions (66, 67). Yet, there is limited
information regarding 24 h glycaemic exposure following
concerted dietary interventions.

One small study has used CGM to assess free-living glycaemic
control following mealtime WP (21 g) in people with T2D
over a 48 h free-living period, reporting no benefit of WP
compared to an inert placebo (68). However, such findings
were largely compounded by the heterogenic cohort studied,
as acknowledged by the authors, and may have been affected
by various extraneous variables that were not accounted for.
The 48 h period assessed is substantially less than what is
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TABLE 1 | A summary of acute, randomized-control, crossover trials that have utilized mealtime WP to regulate postprandial glycaemic excursions in people with T2D.

References Studied cohort Design Treatment Comparator Findings Key messages

Bjørnshave

et al. (47)

Metformin-controlled

T2D (n = 12; 3F/9M) -

Age: 62.9y [57–68.8] -

HbA1c: 50 mmol·mol

[range: 46–52]

- Dx: Not reported.

Age-weight matched

controls (n = 12)

- Randomized, crossover design.

- Two visits separated by 7d.

- Treatments were consumed

before (15min) or with a high-fat

breakfast meal (932 kcal: 40 g

CHO) + 1,500mg

acetaminophen.

- Fasting and postprandial (6 h)

blood samples and VAS taken.

- WPI

(17.6 g)

pre-load.

- WPI (17.6 g)

co-ingested.

- In individuals with T2D, glycaemia

was greater throughout compared to

healthy controls.

- WP pre-load ↑ early insulin (∼48%

AUC0−30min) and GIP secretion

(∼15% AUC0−30min) without affecting

PPG in both cohorts.

- Rates of gastric emptying (i.e.,

acetaminophen pharmacokinetics)

were ↔ between groups.

- Gastric emptying was slower

following the WP pre-load (t =

0–30 min).

- WP timing did not affect

postprandial lipemic markers in

both groups.

PPG is similar when WP is

consumed 15min before or with a

fat-rich meal, despite a delay in

gastric emptying and an early

increase in insulin following the WP

pre-load.

Frid et al.

(24)

Diet-controlled T2D (n

= 14; 6F/8M)

- Age: 27–69y

- BMI: 26.2 ±

3.1 kg·m2

- HbA1c: 36 ±

3 mmol·mol

- Dx: Not reported.

- Randomized, crossover design.

- Two visits separated by 7d.

- High GI breakfast and lunch

(served 4 h post breakfast)

served with addition either

treatment or comparator.

- Fasting and postprandial blood

samples taken (4 h).

- WP

(18.2 g)

- Ham and

lactose

(matched for

protein and

CHO).

- PPG ↔ between treatments at

breakfast but was ↓ by 21% following

lunch with whey ingestion.

- WP ↑ insulin secretion by 53% and

49% (AUC0−180min) following

breakfast and lunch, respectively.

- WP ↑ GIP following both meals

(20–34% AUC0−180min) with no effect

on GLP-1.

The ingestion of WP at lunch

reduces PPG, associated with an

increase insulin and GIP

concentrations.

King

et al. (42)

Metformin ± diet

controlled T2D (n =

11 M)

- Age: 54.9 ± 2.3y

- BMI: 31.8 ±

2.6 kg·m2

- HbA1c: 51.3 ±

3.4 mmol·mol

- Dx: 4 ± 1y

- Randomized, single blind,

crossover design.

- Three visits separated by 7d.

- Treatments were consumed

immediately before

mixed-nutrient breakfast (387

kcal: 56 g CHO) and lunch meals

(879 kcal: 117 g CHO).

- Fasting and postprandial (3 h)

blood samples, and VAS taken.

- Glycaemia monitored by CGM.

- WPC

(15 g)

- WPH (15 g)

- Null CON

(water).

- WPC ↓ peak (∼1.5 mmol·L) and

PPG (∼17% AUC0−90min) vs. CON.

Glycaemia ↔ between WPC

and WPC.

- Total insulin secretion was ↑

(∼14-20% AUC0−180min) following

breakfast with WP treatments.

- No supplemental effect on

incretin peptides.

- WP ↑ subjective feelings of satiety.

Consuming WP immediately

before conventional breakfast and

lunch meals reduces peak PPG

and PPG excursions.

Jakubowicz

et al. (31)

Metformin ± SU

treated T2D (n =

15; 6F/9M)

- Age: 64.1 ± 1.4y

- BMI: 26.7 ±

1.2 kg·m2

- HbA1c: 50 ±

2 mmol·mol

Dx: 8.0 ± 1.6y

- Randomized, crossover design.

- Two visits separated by 14d.

- Treatments consumed 30min

prior to a high-GI breakfast.

Fasting and postprandial (3 h)

blood samples taken.

- WPC

(50 g)

- Null CON

(water).

- WP ↓ peak PPG (∼6 mmol·L) and

total PPG (-28% AUC0−180min).

- WP ↑ total insulin (+108%

AUC0−180min), C-peptide (+43%

AUC0−180min) and GLP-1 (+141%

AUC0−180min) exposure.

- WP ↑ intact/total GLP-1 ratio vs.

CON (∼65%) with ↔ on

plasma DPP-IV.

Consuming a WP pre-load 30min

before a high-GI breakfast reduces

peak PPG and PPG excursions,

associated with increased

secretion of insulin and GLP-1.

(Continued)
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TABLE 1 | Continued

References Studied cohort Design Treatment Comparator Findings Key messages

Ma et al.

(19)

Diet-controlled T2D (n

= 8; 1F/7M)

- Age: 58 ± 3y

- BMI: 28.6 ±

1.3 kg·m2

- HbA1c: 42 ±

2 mmol·mol

- Dx: 5.4 ± 1.1y.

- Randomized, crossover design.

- Three visits.

- A soup pre-load consumed

30min prior to a high-GI

semi-solid meal (302 kcal: 59 g

CHO). WP was either added to

the pre-load, the meal or

omitted.

- Gastric emptying measured by

scintigraphy.

- Fasting and postprandial (6 h)

blood samples taken.

- WP

(55 g) in

pre-load

- WP (55 g) in

meal

- Pre-load

only (CON)

- WP ↓ peak glycaemia ∼ 3 mmol·L

vs. CON with ↔ between WP trials.

- PPG (iAUC0−300min) ↓ following the

WP pre-load (−51%) and when

consumed with the meal (−45%); ↔

between WP trials.

- WP pre-load ↓ early (0–45min) PPG

compared to WP in the meal.

- ↑ Insulin, GLP-1, GIP and CCK

responses with the WP pre-load.

- Both WP trials delayed gastric

emptying T50, which was the slowest

with the WP pre-load (∼35%).

Consuming WP 30min before or

with a high-GI breakfast reduces

peak PPG and PPG excursions.

WP is effective in stimulating insulin

and incretin peptide secretion and

delaying gastric emptying.

A WP pre-load is more effective in

reducing early PPG excursions

compared to its consumption with

a meal owing to an early increase

in GLP-1 and slowing of

gastric emptying.

Ma et al.

(34)

Diet-controlled T2D (n

= 7; 4F/3M)

- Age: 60 ± 2y

- BMI: 31 ± 2 kg·m2

- HbA1c: 42 ±

2 mmol·mol

- Dx: not reported.

- Randomized, single-blind,

crossover design.

Laboratory phase

- Days 1 and 28, treatments

were consumed 30min prior to a

high-GI breakfast (314 kcal: 62 g

CHO).

- Gastric emptying measured by

scintigraphy

- Fasting and postprandial (6 h)

blood samples taken.

Free-living phase

- Treatments consumed 30min

prior to each main meal for 28d

before 14d washout.

- WPI

(25g)

- Null CON

(flavored

beverage)

- Peak glycaemia was 1.3 mmol·L

lower following WP vs. CON.

- Gastric emptying was delayed after

WP vs. CON.

- No change in PPG or gastric

emptying rates following 28d of

supplement consumption.

- Serum fructasomine tended to be

lower following WP (p = 0.06)

vs. CON.

- HbA1c unaffected by WP.

- Energy intake and body mass

similar throughout both 28d periods.

Consuming WP 30min before a

high-GI breakfast delays gastric

emptying and reduces peak PPG.

The ability of WP to regulate PPG

and gastric emptying is sustained

after its long-term consumption.

Mortensen

et al. (48)

Metformin ± SU

treated T2D (n =

12; 6F/6M)

- Age: 64.6 ± 3.3y

- BMI: 28.9 ±

3.7 kg·m2

- HbA1c: 51 ±

1 mmol·mol

- Dx: not reported.

- Randomized, crossover design.

- Four visits separated by

2–5wks.

- Four different protein sources

consumed with a high-fat test

meal (∼1,150 kcal: 45 g CHO).

- Fasting and postprandial (8 h)

blood samples taken.

- WP

(45 g)

- Casein

(45 g)

- Cod (45 g)

- Gluten (45 g)

- WP ↓ PPG (iAUC0−480min) by

∼30–50% vs. to other treatments. -

Insulin and incretin peptide responses

were all similar between treatments.

- WP ↓ postprandial Tg and free fatty

acids (iAUC0−360min) by ∼25% vs.

other treatments.

Consumption of WP with a fat-rich

meal reduces PPG excursions

compared to casein, cod and

gluten proteins, independent of

increased insulin and incretin

peptide concentrations.

Watson

et al. (32)

Metformin ±

diet-controlled T2D (n

= 21; 5F/16M)

- Age: 66 ± 2y

- BMI: 30.8 ± 1 kg·m2

- HbA1c: 46.4 ±

1.5 mmol·mol

- Dx: 6.3 ± 1.9y.

- Randomized, single-blind,

crossover design.

- Four visits separated by 4d.

- Treatments (mixed with 150ml

water) consumed 15min before

semi-solid high-GI breakfast (369

kcal: 61 g CHO).

- Gastric emptying measured by
13C GEBT.

- Fasting and postprandial (4 h)

blood samples taken.

- WP

(17 g)

- Guar gum

(5 g)

- WP (17 g) +

guar gum

(5 g)

- Null CON

(sucralose;

60mg)

- Early glycaemia (0–90min) ↓ by

1-2mmol·L following WP and WP +

guar gum vs. other treatments; ↔

between WP and WP + guar gum.

- PPG (iAUC−15−240min) were ∼15%

lower following WP and WP + guar

gum vs. other treatments; ↔

between WP and WP + guar gum.

- WP ↑ insulin (∼32%) and GLP-1

(∼86%) iAUC−15−240min vs. CON.

- Both WP treatments delayed gastric

emptying T50 vs. CON (∼9–17%).

A WP pre-load, consumed 15min

before a high-GI meal, reduces

PPG excursions compared to guar

gum or a CON drink.

WP is associated with an increase

in insulin and GLP-1 and slowing

of gastric emptying.

Combining guar gum with WP did

not further reduce PPG compared

to WP.

(Continued)

F
ro
n
tie
rs

in
N
u
tritio

n
|w

w
w
.fro

n
tie
rsin

.o
rg

6
O
c
to
b
e
r
2
0
2
0
|
V
o
lu
m
e
7
|A

rtic
le
5
8
7
8
4
3

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Smith et al. Whey Protein for Diabetes Management

T
A
B
L
E
1
|
C
o
n
tin

u
e
d

R
e
fe
re
n
c
e
s

S
tu
d
ie
d
c
o
h
o
rt

D
e
s
ig
n

T
re
a
tm

e
n
t

C
o
m
p
a
ra
to
r

F
in
d
in
g
s

K
e
y
m
e
s
s
a
g
e
s

W
u
e
t
a
l.

(3
3
)

M
e
tf
o
rm

in
-c
o
n
tr
o
lle
d

T
2
D
(n

=
2
2
M
)

-
A
g
e
:
6
4
.
2
±

1
.4
y

-
B
M
I:
2
7
.9

±

1
.7

kg
·m

2

-
H
b
A
1
c
:
4
9
±

2
m
m
o
l·m

o
l

-
D
x:

5
.6

±
1
.2
y

-
R
a
n
d
o
m
iz
e
d
,
d
o
u
b
le
-b
lin
d
,

c
ro
ss
o
ve
r
d
e
si
g
n
.

-
F
o
u
r
vi
si
ts
:
V
IL
D
+

w
h
e
y;

V
IL
D

+
C
O
N
;
p
la
c
e
b
o
+

w
h
e
y;

C
O
N

+
p
la
c
e
b
o
,
se

p
a
ra
te
d
b
y
7
d
.

-
P
a
tie
n
ts

p
ro
vi
d
e
d
V
IL
D
(o
r
P
L
A
)

1
2
h
a
n
d
1
.5

h
p
rio

r
to

h
ig
h
-G

I

M
M
T
T.

-
P
re
-l
o
a
d
s
(W

P
o
r
C
O
N
)

c
o
n
su

m
e
d
3
0
m
in
p
rio

r
to

M
M
T
T.

-
G
a
st
ric

e
m
p
ty
in
g
m
e
a
su

re
d
b
y

1
3
C
G
E
B
T.

-
F
a
st
in
g
a
n
d
p
o
st
p
ra
n
d
ia
l(
4
h
)

b
lo
o
d
sa

m
p
le
s
ta
ke

n
.

-
W
P
I

(2
5
g
)

-
N
u
ll
C
O
N

(w
a
te
r)

-
V
ild
a
g
lip
tin

(V
IL
D
;
5
0
m
g
)

-
N
u
ll
p
la
c
e
b
o

ta
b
le
t

-
P
e
a
k
P
P
G

↓
fo
llo
w
in
g
b
o
th

W
P
+

p
la
c
e
b
o
a
n
d
V
IL
D
+

C
O
N
tr
ia
l(
∼
1

m
m
o
l·L
);

↔
b
e
tw

e
e
n
W
P
+

p
la
c
e
b
o

a
n
d
V
IL
D
+

C
O
N
.

-
G
re
a
te
st

re
d
u
c
tio

n
s
in
p
e
a
k
P
P
G

se
e
n
fo
llo
w
in
g
W
P
+

V
IL
D

(∼
2
.5

m
m
o
l·L
).

-
W
P
+

p
la
c
e
b
o
d
e
la
ye
d
g
a
st
ric

e
m
p
ty
in
g
T
5
0
vs
.
C
O
N
+

p
la
c
e
b
o

(∼
1
6
%
),
w
h
ic
h
w
a
s
fu
rt
h
e
r
sl
o
w
e
d

w
ith

th
e
a
d
d
iti
o
n
o
f
V
IL
D
(∼

3
1
%
).

-
W
P
+

p
la
c
e
b
o
↑
to
ta
la
n
d
in
ta
c
t

G
L
P
-1

a
n
d
G
IP
,
a
n
d
in
su

lin
vs
.
C
O
N

+
p
la
c
e
b
o
(∼

1
0
–1

2
0
%
).

-
G
re
a
te
st

in
c
re
tin

a
n
d
in
su

lin

re
sp

o
n
se

se
e
n
fo
llo
w
in
g
W
P
+

V
IL
D
.

A
W
P
p
re
-l
o
a
d
re
d
u
c
e
s
p
e
a
k
P
P
G
,

a
ss
o
c
ia
te
d
w
ith

d
e
la
ye
d
g
a
st
ric

e
m
p
ty
in
g
ra
te
s
a
n
d
in
c
re
a
se

d

in
su

lin
a
n
d
in
c
re
tin

c
o
n
c
e
n
tr
a
tio

n
s.

W
P
p
ro
d
u
c
e
s
c
o
m
p
a
ra
b
le

re
d
u
c
tio

n
s
in
p
e
a
k
P
P
G

a
s
V
IL
D
.

C
o
m
b
in
in
g
W
P
w
ith

V
IL
D
h
a
s
a
n

a
d
d
iti
ve

e
ff
e
c
t
o
n
V
IL
D
’s
e
ffi
c
a
c
y.

A
p
ri
m
a
ry
s
e
a
rc
h
o
f
d
a
ta
w
a
s
p
e
rf
o
rm
e
d
w
it
h
s
e
a
rc
h
te
rm
s
“w
h
e
y
p
ro
te
in
,”
“p
re
-l
o
a
d
,”
“p
re
-m

e
a
l,”
“s
e
c
o
n
d
m
e
a
l
e
ff
e
c
t,
”
“p
o
s
tp
ra
n
d
ia
l
g
ly
c
a
e
m
ia
,”
a
n
d
“t
yp
e
2
d
ia
b
e
te
s
.”
S
tu
d
ie
s
w
e
re
in
c
lu
d
e
d
if
th
e
y
in
vo
lv
e
d
a
d
u
lt
p
a
rt
ic
ip
a
n
ts
w
it
h

T
2
D
,
w
e
re
a
c
u
te
la
b
o
ra
to
ry
-b
a
s
e
d
s
tu
d
ie
s
w
it
h
a
ra
n
d
o
m
iz
e
d
c
ro
s
s
o
ve
r
d
e
s
ig
n
th
a
t
in
c
lu
d
e
d
p
ri
m
a
ry
o
r
s
e
c
o
n
d
a
ry
o
u
tc
o
m
e
s
re
la
ti
n
g
to
P
P
G
(i.
e
.,
A
U
C
,
iA
U
C
,
o
r
p
e
a
k
g
ly
c
a
e
m
ia
)
fo
llo
w
in
g
c
o
n
s
u
m
p
ti
o
n
o
f
W
P.
T
h
e
p
ro
vi
s
io
n
o
f
W
P
o
f

a
ll
c
o
m
m
e
rc
ia
lly
a
va
ila
b
le
fo
rm
s
(i.
e
.,
c
o
n
c
e
n
tr
a
te
,
is
o
la
te
,
a
n
d
h
yd
ro
ly
s
e
d
)
w
e
re
in
c
lu
d
e
d
w
h
e
n
th
e
y
w
e
re
c
o
n
s
u
m
e
d
in
is
o
la
ti
o
n
fr
o
m
o
th
e
r
d
ie
ta
ry
n
u
tr
ie
n
ts
(i.
e
.,
d
ie
ta
ry
fib
e
rs
).

A
U
C
,
a
re
a
u
n
d
e
r
th
e
c
u
rv
e
;
C
G
M
,
c
o
n
ti
n
u
o
u
s
g
lu
c
o
s
e
m
o
n
it
o
ri
n
g
s
ys
te
m
;
C
O
N
,
c
o
n
tr
o
l;
D
P
P
-I
V
,
d
ip
e
p
ti
d
yl
-p
e
p
ti
d
a
s
e
IV
;
D
x,
d
u
ra
ti
o
n
o
f
d
ia
b
e
te
s
;
G
I,
g
ly
c
a
e
m
ic
in
d
e
x;
G
IP
,
g
lu
c
o
s
e
-d
e
p
e
n
d
e
n
t
in
s
u
lin
o
tr
o
p
ic
p
e
p
ti
d
e
;
G
L
P
-1
,
g
lu
c
a
g
o
n

lik
e
p
e
p
ti
d
e
-1
;
iA
U
C
,
in
c
re
m
e
n
ta
l
a
re
a
u
n
d
e
r
th
e
c
u
rv
e
;
M
M
T
T,
m
ix
e
d
-m

e
a
l
to
le
ra
n
c
e
te
s
t;
P
P
G
,
p
o
s
tp
ra
n
d
ia
l
g
ly
c
a
e
m
ia
;
T
g
,
tr
ig
ly
c
e
ri
d
e
;
T
5
0
,
g
a
s
tr
ic
h
a
lf-
e
m
p
ty
in
g
ti
m
e
;
V
A
S
,
vi
s
u
a
l
a
n
a
lo
g
s
c
a
le
;
V
IL
D
,
vi
ld
a
g
lip
ti
n
;
W
P,
w
h
e
y
p
ro
te
in
;

W
P
C
,
w
h
e
y
p
ro
te
in
c
o
n
c
e
n
tr
a
te
;
W
P
I,
w
h
e
y
p
ro
te
in
is
o
la
te
;
1
3
C
G
E
B
T,

1
3
C
g
a
s
tr
ic
e
m
p
ty
in
g
b
re
a
th
te
s
t;
↓
:
re
d
u
c
e
d
;
↔
:
s
im
ila
r;
↑
:
in
c
re
a
s
e
d
.

recommended when assessing free-living glycaemia with CGM
(67)—albeit such recommendations are primary care specific.
Nonetheless, duration of assessment needs consideration for
future investigations, particularly when free-living behaviors are
known to change when under observation (63).

Homogenous Study Populations
Previous interventions have studied the application of mealtime
WP in people with well-controlled T2D (HbA1c <53 mmol·mol)
treated with first-line therapies, excluding individuals with
less stringent glycaemic control and treated with intensified
regimens. Indeed, individuals likely to see the greatest benefit
of mealtime WP are those with moderately-controlled diabetes
(HbA1c <70 mmol·mol) where PPG is the predominant
contributor to overall glycaemic control (1). Yet, considering that
at a population level only ∼50% of people with T2D meet the
HbA1c target of ≤53 mmol·mol (69), and within 6y of starting
oral hyperglycaemic agents, ∼25% require exogenous insulin
(70), evidence is based on cohorts that are not representative of
the wider patient population.

The regulation of PPG also occurs, in part, by insulin-
independent mechanisms (37, 40, 71–73). Thus, for individuals
with more advanced diabetes, the use of strategies that modulate
PPG by pancreatic and extra-pancreatic means is appealing (40).
It is conceivable that the pleiotropic constituents and stimulated
pathways following mealtime WP (Figure 1) may offer clinical
benefit to individuals with limited β-cell function or advanced
T2D, who presently have been ignored when studying WP’s
glucose-lowering efficacy.

Combination Therapy
T2D is largely defined with relative rather than absolute insulin
deficiency (74). Therefore, strategies that enhance β-cell activity
may be of therapeutic benefit for those with advanced diabetes.
Indeed, GLP-1 receptor agonists work, in part, by enhancing β-
cell activity (75). Given the incretin and insulinotropic properties
of WP purported to regulate PPG (Figure 1), combining WP
with basal therapies may present an effective long-term strategy
to enhance glycaemic control. This concept has proven effective
with the combination of basal insulin and incretin agonists
compared to basal insulin regimens alone in poorly-controlled
T2D patients (76, 77). With this in mind and whereWP enhances
vildagliptin’s efficacy (33), combining mealtime WP with anti-
diabetic agents may present a novel strategy to achieve glycaemic
control coupled with the low propensity of adverse side effects
such as weight gain and hypoglycaemia.

The Presentation of Whey Protein and Its
Associated Implications for Free-Living
Adherence
Adherence to anti-hyperglycaemic treatments is not a single
behavior but a dynamic constellation of behaviors influenced by
social, environmental and individual circumstances (69). Thus,
understanding the various psychosocial elements associated with
a given treatment is critical to maximizing its application and
clinical utility (12). To the best of the authors’ knowledge, these
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are factors that have not been considered with the application of
mealtime WP.

Studies have presented WP as dry powders that require
dilution with water, producing solutions that are often
inconvenient and large in volume (∼350ml) (19, 31) and
largely unpalatable, requiring further flavoring (19, 31, 33) and
“mouth rinsing” to eliminate any aftertaste (46, 78). Although
effective under controlled conditions, this unlikely represents
a convenient approach outside of the laboratory. Indeed,
there is a general unwillingness to consume powdered protein
supplements publicly (79) with taste and convenience largely
determining eating behaviors (80). Even where available evidence
suggests the use of a particular treatment, patient preference
determines their application (12). Thus, to ensure free-living
applicability and long-term sustainability, the pre-loads provided
need to be extrapolated into treatments that are compatible with
contemporary lifestyles. Given the preponderance and social
acceptance of “grab and go” foods, providing a palatable and
discrete WP beverage, similar to a yogurt drink for example, may
be an effective strategy to increase adherence and exert clinical
benefit within the community setting.

Potential Adverse Effects
When considering the therapeutic use of mealtime WP, it is also
pertinent to recognize potential adverse events that may occur.
Indeed, concerns have been raised as a consequence of elevated
nutrient signaling that may accelerate pancreatic islet fatigue and
failure. Primarily, these are observations from incidence rates
of diabetes in pre-diabetic mice models fed a high-protein diet
(81, 82). However, there are also reductions in the efficacy of oral
insulin secretagogue therapies over time–in part due to a decline
in the β-cells’ insulin-secretory capacity (83)–where their use are
also reported predictors of exogenous insulin initiation (84).

Long-term exposure of hyperinsulinemia is reported
to compromise whole-body insulin sensitivity (85) and
increase the atherosclerotic milieu (86). Therefore, the chronic
application of WP and its associated insulinotropic effects
may counterintuitively desensitize insulin’s action and be
associated with adverse cardio-metabolic outcomes. However,
the long-term administration of sulfonylureas’, which increase
both basal and postprandial insulinaemia, are not associated
with an increase in cardiovascular events (6). Furthermore,
the periodic elevations in postprandial insulinemia that follow
WP ingestion (∼20 g) persist for ∼120min (32, 33, 87), where
sustained WP supplementation is associated with a reduction,
rather than an increase, in metabolic risk factors in insulin-
resistant individuals (54, 88, 89). These data suggest that the
insulinotropic properties of WP would pose little consequence
to long-term metabolic health. Yet, mealtime WP’s influence on
the regulation of hepatic lipid metabolism, which is sensitive to
hyperinsulinemia and is upregulated in insulin-resistant states
(90), is not known. Considering the reciprocal relationship
between hyperinsulinemia and steatosis (91), dyslipidaemia (92),
and cardiovascular events (93), this is an avenue that needs
further consideration.

Ambient elevations in fasting plasma BCAA are a metabolic
signature of dysglycaemic populations (94–96), and prospectively
predict T2D (97, 98), suggesting that dietary protein/BCAA

intake could be an important regulator of glucose tolerance.
Indeed, BCAA surfeit through infusion/pulse feeding protocols
impairs insulin signaling and glucose disposal in humans (99–
101). However, the observed elevations in plasma BCAA within
insulin-resistant individuals may be attributed to dysregulated
BCAA catabolism (102) rather than dietary BCAA intake per se
(103, 104). Moreover, and in contrast to BCAA infusion/pulse
feeding protocols, the surge in plasma BCAA following protein
consumption are not sustained, returning to their nadir within
∼180min (42, 105). In fact, the acute influx of amino acids
following dietary protein pre-loads are associated with increased
β-cell sensitivity to glucose (106) and improved PPG handling
(105), as has been demonstrated acutely across various insulin-
resistant populations (19, 31–33, 42, 46, 107). It, therefore,
appears unlikely that the BCAA content of a small WP pre-load
would be sufficient to exacerbate defects in insulin sensitivity as
observed under BCAA surfeit (99–101).

Dietary proteins, in addition to stimulating insulin secretion,
also stimulate the release of glucagon from pancreatic alpha-
cells (108), which initiates hepatic glucose output. Indeed,
several studies demonstrate that mealtime WP supplementation
increases postprandial glucagonemia in insulin-resistant
individuals with (32, 33) and without (51, 87, 109) overt
T2D. However, despite increasing glucagon concentrations,
PPG is consistently improved following the ingestion of WP
(32, 33, 51, 87, 109). This is likely due to the concomitant
increase in insulin concentrations, which is particularly effective
in suppressing glycogenolysis (108). The consumption of WP
also increases GLP-1 (19, 31–33), which may suppress hepatic
glucose output (110) and enhance peripheral glucose uptake
(72), independent of changes in islet hormones. Nonetheless,
the relevance of increasing glucagon concentrations following
consumption of mealtime WP in relation to PPG remains
controversial. Future studies should include approaches
designed to assess mealtime WP’s influence on the relative
contribution of glucose from both exogenous and endogenous
origins to the total glucose pool. This would also provide a
greater understanding of the mechanisms underpinning WP’s
gluco-regulatory effects.

FUTURE RESEARCH CONSIDERATIONS

Clinically Important Outcomes
Acute studies demonstrate immediate glycaemic benefit from
mealtime WP, providing valuable information on the immediate
post-meal responses. However, whether such outcomes translate
to clinically meaningful benefits are unclear. Indeed, changes
in metabolic health require chronic improvements in PPG
and other cardio-metabolic markers, outcomes that cannot be
achieved within the acute setting.

One study has investigated the role of pre-meal WP to treat
T2D, as quantified by HbA1c (52). While HbA1c is used as a
primary outcome to assess glycaemic control and is a surrogate
marker assessing the risk of diabetes complications (4), it fails to
tell researchers or clinicians other meaningful outcomes outside
of the weighted-average glycaemia over the preceding ∼12wks
(66). Nonetheless, the importance of reporting HbA1c for the
appraisal of diabetic treatments should not be undervalued;
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rather, it should be complimented by other glycaemic measures
(67). Studies are needed to include and specify further clinically
meaningful glycaemic outcomes that not only include HbA1c

but also time in euglycaemic range, frequency and severity of
hypoglycaemic and hyperglycaemic events, glycaemic variability,
and patient-reported outcomes.

Understanding the Clinical Potential in the
Wider Diabetes Population
Investigations have studied the efficacy of mealtime WP in
patients that do not represent the wider T2D population,
excluding those with more advanced diabetes and treated with
insulin regimens. Yet, insulin-dependent T2D individuals retain
varying degrees of clinically functioning β-cells (74) andmight be
responsive to nutrient-mediated β-cell stimulation. The complex
and pleiotropic actions of mealtime WP (Figure 1) may also
present therapeutic benefit to individuals with limited β-cell
function (40). Studies are encouraged to investigate this therapy
within realistic T2D populations and to adopt approaches to
disentangle its mechanisms to treat hyperglycaemia.

Design of Studies
To examine the real-world sustainability of mealtimeWP, studies
are encouraged to provide WP beverages that are in formats
and at times that complement modern living patterns. It is
also essential for future investigations to work with the patient,
highlighting potential barriers and facilitators to the application
of this mealtime strategy.

Supplemental Dose
It is important to consider the additional energy associated
with mealtime WP when evaluating its long-term application.
Although work demonstrates that the consumption of 15–20 g
(∼100 kcal) of WP improves PPG in T2D individuals (32, 42),
this may translate to an increase in long-term gross energy
intake. The minimum efficacious dose of mealtime WP needs to
be established.

CONCLUSION

For people with controlled T2D, experimental evidence
demonstrates that the application of pre-meal WP results in
acute improvements in PPG, which if sustained long-term,
may have therapeutic significance. Yet, the clinical application
of mealtime WP remains to be established with literature to
date idling on proof of concept rather than efficacy to treat
T2D. Addressing the experimental limitations highlighted
in this report are critical to understanding the mechanisms
underpinning WP’s potential clinical benefit and assessing its
acceptance within the wider scientific community. Only then
can mealtime WP be considered a therapeutic option for people
with T2D.
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