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Abstract: Porous polymers have been synthesized by an aza-Michael addition reaction of a multi-
functional acrylamide, N,N′,N′′,N′′′-tetraacryloyltriethylenetetramine (AM4), and hexamethylene
diamine (HDA) in H2O without catalyst. Reaction conditions, such as monomer concentration
and reaction temperature, affected the morphology of the resulting porous structures. Connected
spheres, co-continuous monolithic structures and/or isolated holes were observed on the surface of
the porous polymers. These structures were formed by polymerization-induced phase separation
via spinodal decomposition or highly internal phase separation. The obtained porous polymers
were soft and flexible and not breakable by compression. The porous polymers adsorbed various
solvents. An AM4-HDA porous polymer could be plated by Ni using an electroless plating process
via catalyzation by palladium (II) acetylacetonate following reduction of Ni ions in a plating solution.
The intermediate Pd-catalyzed porous polymer promoted the Suzuki-Miyaura cross coupling reaction
of 4-bromoanisole and phenylboronic acid.

Keywords: porous polymer; Michael addition reaction; acryl amide; diamine; electroless plating

1. Introduction

Various types of porous polymers have been prepared by polymerization-induced
phase separation (vinyl type monomers [1–22], click type polymerizations such as epoxy-
amine reaction [23–34], epoxy-thiol reaction [35–37], thiol-ene/yene [38–44], thiol-(meth)
acrylate [45–47]) and temperature induced phase transfer [48–68]. Applications of the
porous polymers have been developing in various fields, for examples separation columns
for liquid chromatography [1,2,4–8,10–18,24,25,27–30,32,35–37,39,41–43,45,46,50], catalyst
supports [20,68–70], conductive material supports [71,72], battery separators [34], binders
of metal and plastic adhesion [73], cell cultivation scaffolds [47,74–76], and so on. The
porous structure and properties, such as mechanical properties (hard or soft), thermal prop-
erties, stability (stable or degradable), affinity with solvents (hydrophilic or hydrophobic),
of the porous polymers can be widely controllable by molecular (chemical) structure and
formation process (reactions conditions) the polymers. Variations of the structure and
properties of the porous polymers should be desirable for expanding their applications.
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We have been developing several types of porous polymers synthesized by addition
reactions between a multi-functional monomer, as a source of joint parts (“joint-source
monomer”), and a α,ω-bifunctional monomer, as a source of linker parts (“linker-source
monomer)”, in some solvents via polymerization-induced phase separation. In our pre-
vious studies, combinations of multi-functional thiol, polyol, acrylate, and amine as the
joint-source monomer and diisocyanate, divinyl ether, dithiol, diamine and diacrylate
compounds as the linker-source monomer could yield porous polymers under specific
reaction conditions [77–83]. The porous polymers showed surface morphology formed
by co-continuous monolithic structures or connected spheres. These structures should be
generated by phase separation via spinodal decomposition. Addition of a pore-generator
(porogen) is useful to accelerate the phase separation. Polymeric compounds or surfac-
tants are commonly used as the porogen. However, these porogenic materials must be
removed from the obtained porous polymers before use. The joint-linker concept makes it
possible to obtain porous polymers without a porogen. Purification of the resultant porous
polymers is possible by washing with a solvent and subsequent drying. Combinations
of the joint-source and linker-source monomers should expand the variety of the porous
polymers with various chemical structures, properties and functions.

We previously prepared some porous polymers containing hydrolytically degradable
groups in their polymer networks. For examples, the addition reaction of triphenol and
poly(ethylene glycol)divinyl ether compounds in acetonitrile in the presence of an acid
catalyst yielded a porous polymer accompanied by formation of acetal group in the polymer
network [83]. The porous polymer was easily hydrolytically degradable under atmospheric
conditions. Some porous polymers have been obtained from Michael addition reactions
between multi-functional thiol or amine compounds and poly(ethylene glycol)diacrylate.
The resultant porous polymers were quickly hydrolytically degradable in acidic or basic
water. The porous polymers were also gradually degraded by hydrolysis of acrylate groups
in the polymer networks caused by atmospheric moisture [77,80]. Degradability is a useful
feature for products which need to display a low environment load and/or biodegradability.
By contrast, it is not suitable for the applications which need long lifetimes, such as columns
or filters for separation, battery separators, supports for catalysts and so on. The hydrolytic
stability of the porous polymer should also make it possible to handle the polymer in
H2O. This feature would be useful to modify surface of the polymer by various chemical
reactions under acidic or basic conditions.

The three-dimensional porous structure strongly affects the performance of porous
polymers in their applications. A co-continuous monolithic structure, which is formed
by the coexistence of a polymer backbone and vacant spaces, is superior for solvents
to flow through the porous polymer under low pressure. The porous polymers with
co-continuous monolithic structures can be prepared by polymerization-induced phase
separation via spinodal decomposition. Some reaction systems based on the joint and
linker concept successfully yielded porous polymers formed by a co-continuous monolithic
structure [77,80–83]. However, the reaction systems and reaction conditions which form
the desirable porous structures are limited. Highly internal phase emulsion (HIPE) is
another effective way to prepare porous polymers with co-continuous structures, which are
composed by connected holes [84]. HIPE is applicable in the reaction systems using H2O
as the solvent with an emulsifier. If H2O can be used as a solvent in the polymerizations
based on the joint and linker concept, HIPE should be usable to form porous polymers
with controlled surface morphology.

As the next step of our development, we planned to synthesize hydrolytic stable
porous polymers based on the joint and linker concept in H2O. We came to an idea to use a
monomer with an acrylamide group for the polymerizations. The acrylamide group shows
hydrolytic stability in H2O and high reactivity with amines via the aza-Michael addition
reaction. We select a multi-functional acrylamide compound, as the joint-source monomer.
We report herein the synthesis of porous polymers by the aza-Michael addition reaction of
commercial available compounds N,N′,N′′,N′′′-tetraacryloyltriethylenetetramine (AM4)
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and hexamethylene diamine (HDA) in H2O (Scheme 1). Our studies focus on effect of
reaction conditions, monomer concentration and reaction temperature, on the surface
morphology of the resulting porous polymers. The present reaction system produced
porous polymers induced by phase separation via not only spinodal decomposition but also
HIPE, depending on the polymerization conditions. In other word, the porous structure of
AM4-HDA network polymers can be widely controlled by two types of phase separations
without further addition of an emulsifier. Basic properties and some applications, plating,
support for a catalyst, of the porous polymers were also investigated.
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Scheme 1. Synthesis of porous polymers by the aza-Michael addition reaction between AM4 and HDA in H2O.

2. Materials and Methods
2.1. Materials

N,N′,N′′,N′′′-Tetraacryloyltriethylenetetramine (AM4) was kindly donated by Fujifilm
Corporation (Tokyo, Japan), and used as received. 1,6-Hexanediamine (HDA, Fujifilm
Wako Pure Chemical Industries, Osaka, Japan) was commercially obtained, and used as
received.

SnCl2 (Tokyo Chemical Industry Co. Ltd., Tokyo, Japan), PdCl2 (Fujifilm Wako Pure
Chemical Industries), and hydrochloric acid (Kanto Chemical Co., Inc., Tokyo, Japan) were
commercially obtained and used as received. Ni-P electrolyte, which was consisted of
nickel chloride (1.8 wt %), sodium hypophosphite (2.4 wt %), complexing agent (2.4 wt %),
and ion-exchanged water (93.4 wt %), was commercially obtained from Okuno Chemical
Industries Co., Ltd. (Osaka, Japan). Palladium(II) acetylacetonate (Pd(acac)2, Tokyo
Chemical Industry Co. Ltd.), CO2 (99.99%, Nippon Tansan Co., Ltd., Tokyo, Japan) and
polyoxyethylene lauryl ether (Tokyo Chemical Industry Co. Ltd.) were was commercially
obtained.

Ethanol (EtOH, Kanto Chemical Co., Inc., Tokyo, Japan), K2CO3 (Kanto Chemical
Co., Inc.), phenylboronic acid (Tokyo Chemical Industry Co. Ltd.), and 4-brompanisol
(Tokyo Chemical Industry Co. Ltd.) were commercially obtained and used as received.
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2.2. Synthesis of Porous Polymers

HDA has two NH2 groups. The reactions of AM4 and HDA were conducted consid-
ering HDA as bi-functional molecule (Case I, [acrylamide] = [NH2], feed molar ratio of
AM4/HDA: 1/2) or tetra-functional molecule (Case II, [acrylamide] = [active hydrogen],
feed molar ratio of AM4/HDA: 1/1), as shown in Scheme 1.

A reaction of AM4 with HDA (monomer concentration: 10 wt %, feed molar ratio of
AM4/HDA: 1/2) is described as an example. AM4 (0.182 g, 0.51 mmol), H2O (2.70 mL),
and HDA (0.117 g, 1.01 mmol) were added to a 20 mL of vial, and stirred by a vortex
mixer for several minutes to make a homogeneous solution. The reaction solution was
introduced to a 10 mL ampoule. After the ampoule was sealed, the reaction was conducted
at the desired temperature for 24 h. The obtained porous polymer was washed with an
excess of methanol with ultra-sonification for several hours. The porous polymer, which
was obtained as a block, was air-dried at room temperature, and further dried in vacuo
at 30 ◦C for 6 h. Code of this sample is defined as follows: I-20w-30d (case of AM4/HDA
feed ratio-monomer concentration-temperature). The reactions with different AM4/HDA
feed ratios and/or monomer concentrations were conducted using the same procedures.

2.3. Plating of Porous Polymer
2.3.1. Method 1

AM4-HDA porous polymer (1.7 g) was immersed in H2O (10 mL) for 24 h. The
wet porous polymer was soaked in a PdCl2/SnCl2 solution (50 mL) and transferred to a
commercial available acidic Ni-P electrolyte “Top Nikoron VS” (Okuno Chemical Industries
Co., Ltd.) at 70 ◦C for the Ni plating [85,86]. The plating was conducted for 5, 10, or 20 min.

2.3.2. Method 2

AM4-HDA porous polymer (1.7 g), Pd(acac)2 (30.0 mg), and CO2 were introduced into
a 50 mL high pressure reaction cell of the high-pressure experimental apparatus (JASCO
Co., Ltd., Tokyo, Japan) at 70 ◦C and 15 MPa (supercritical carbon dioxide, sc-CO2) with
agitation for 2 h for catalyzation. The Ni plating of the catalyzed porous polymer was
conducted in the same cell in the presence of Ni-P electrolyte (37. 6 µL) and polyoxyethy-
lene lauryl ether, C12H25(OCH2CH2)15OH, (200 µL) in sc-CO2 at 70 ◦C and 15 MPa with
agitation for 30 min.

2.4. Suzuki-Miyaura cross Coupling Reaction with Pd Catalyzed Porous Polymer

Water (15 mL), EtOH (15 mL), K2CO3 (0.97 g, 7.0 mmol), phenylboronic acid (0.64 g,
5.25 mmol), and 4-brompanisol (0.65 g, 3.5 mmol) were added to a flask with a stirrer piece.
A Pd(acac)2 catalyzed AM4-HDA porous polymer (0.44 g, Pd 2.18 wt %) was cut to small
blocks about 1 mm, then was added into the flask and stirred at 55 ◦C for 3 h. The reaction
solution was extracted with 100 mL of CHCl3, and collected oil phase was evaporated and
dried at room temperature in vacuo for 6 h.

2.5. Analytical Procedures

The mechanical properties of the gels were investigated by the compression test with
a Tensilon RTE-1210 apparatus (ORIENTEC Co. Ltd., Tokyo, Japan). The test samples were
cut to 1 cm cube, and pressed at a rate of 0.5 mm/min at room temperature.

Scanning electron microscopy (SEM) images of the porous polymers or SEM/energy
dispersive X-ray spectroscopy of Pd catalyzed or Ni plated AM4-HDA porous polymers
were acquired by a JEOL JSM-7610F microscope with a LEI detector at an acceleration
voltage of 3.0 kV or 20 kV, respectively. As prepared samples (without coating or treatment)
were used for the observations. Ni content was determined by ZAF correlation method.
Size distribution of spheres and holes in SEM images was evaluated by image analysis
using a software of Image-J.



Materials 2021, 14, 800 5 of 15

The surface area of the porous polymer was measured by nitrogen sorption using an
Autosorb 6AG (Quantachrome Instruments, Boynton Beach, FL, USA), and determined by
Brunauer-Emmett-Teller (BET) equation.

Thermal analysis of a polymer was conducted with a differential scanning calorimetry
(DSC) of a DSC 8230 system (Rigaku, Tokyo, Japan). The sample was heated from room
temperature to 400 ◦C at a rate of 10 ◦C/min under nitrogen atmosphere.

1H-NMR spectra were recorded on a JNM-LA300 spectrometer (JEOL, Tokyo, Japan)
in pulse Fourier transform mode. The pulse angle was 45◦ and 32 scans were accumulated
in 7 s of the pulse repetition. Dimethylsulfoxide-D6 was used as the solvent.

3. Results and Discussion
3.1. Synthesis and Structure of Porous Polymers

Aza-Michael addition reactions of AM4 and HDA in H2O were conducted under
the conditions described in the experimental part. The reaction yielded porous polymers
over a wide range of temperatures. Figure 1 shows production diagram of the AM4-HDA
reaction system of Case I. The reaction systems with low monomer concentrations, less
than 20 wt %, preferentially yielded porous polymers as blocks of ample shape. By contrast,
the reaction systems with high monomer concentrations, 20 and 30 wt %, tended to yield
gels. The increase of monomer concentration in the reaction system would convert the state
from separated double phase to homogeneous single phase during the network formation.
The reactions at high temperatures, 80–90 ◦C, yielded the porous polymers even in the
reaction systems with high monomer concentration. In general, increase of the reaction
temperature increases the solubility of the resultant polymer network, and would tend
to form the gel with homogeneous phase. We shall return to this point of the unexpected
result later.
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Figure 1. Production diagram of state of AM4-HDA system Case I (feed molar ratio of
AM4/HDA: 1/2), # porous polymer,4 gel.

Related surface area of an AM4-HDA porous polymer I-10w-25d evaluated by nitrogen
adsorption/desorption (Figure S1) was 3.8 m2/g. The related surface areas of other porous
polymers were too low to evaluate quantitatively. The low value of surface area is not
derived from a “microporous” but rather a “macroporous” structure. The surface structure
of the porous polymers was observed by SEM. Figure 2 shows SEM images of some AM4-
HDA porous polymers prepared under the various conditions with Case I, feed molar ratio
of AM4/HDA: 1/2 (histograms of diameter size distribution of spheres and/or holes are
available in Figure S2). The porous polymer of I-20w-70d showed a surface morphology
formed by connected spheres ranged from 1.8 to 5.2 µm diameter, as shown in Figure 2a
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and Figure S2a. The corresponding porous polymers obtained at 80 ◦C or 90 ◦C, I-20w-80d
or I-20w-90d, also showed a similar surface morphology (Figure 2b,c), and the diameter of
the spheres (Figure S2b,c) were larger than those of I-20w-70d. The surface morphology of
these porous polymers would be induced by phase separation via spinodal decomposition.
The spheres observed in SEM images would be fixed at the late stage of the spinodal
decomposition, as illustrated in Scheme 2a. A rise of the reaction temperature should
increase the polymerization rate and increase the solubility of the intermediate polymer
network, which fixed the porous structure with large spheres at a later stage of the phase
separation. The reaction with higher monomer concentration (25 wt %) at 80 ◦C, I-25w-80d,
yielded a porous polymer, whose surface morphology was formed by connected spheres
of 1.4–5.0 µm diameter and isolated holes of 1.1–5.9 µm diameter, as shown in Figure 2d
and Figure S2d. The corresponding reaction (25 wt %) at 90 ◦C, I-25w-90d, yielded a
porous polymer whose surface morphology was formed by connected holes of 2.3–21.0 µm
diameter, as shown in Figure 2e and Figure S2e. A small portion of connected spheres was
also observed in this porous polymer. An increase of the monomer concentration to 30 wt %,
I-30w-90d, widened the diameter range of the holes (2.1–52.0 µm) in the resultant porous
polymers, as shown in Figure 2f and Figure S2f. One explanation for these results is that the
intermediate AM4-HDA polymer network would behave like an emulsifier, and the holes
in the porous polymers should be derived from highly internal phase emulsion (HIPE) [75],
as illustrated in Scheme 2b. The size of holes should be derived from the size of aqueous
droplets of the emulsion in the reaction system. The increase of monomer concentration
and reaction temperature should increase the size of aqueous droplets caused by collapse
(flocculation and/or coalescence) of the emulsion. The diameter size distribution of holes
or co-existence of holes and spheres can be explained by inhomogeneity of the phase
separations in those reactions. The monomer concentration (non-reacted monomers) in
the reaction solutions decreased with progressing of the polymerization, and small holes
and/or spheres would be fixed at the late stage of the polymerization. Another possibility
is the co-existence of different monomer concentrations in the reaction system derived from
phase equilibrium.
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The reactions with Case II, feed molar ratio of AM4/HDA: 1/1, were conducted
regarding HDA as a tetrafunctionalized monomer. The reactions also produced porous
polymers. SEM images of some samples obtained in the reactions are shown in Figure 3.
The reaction with 25 wt % of monomer concentration at 40 ◦C yielded the porous polymer
II-25w-40d, whose surface morphology was formed by small spheres and isolated holes
of less than 2 µm in diameter, as shown in Figure 3a. These structures should be derived
from phase separation via spinodal decomposition (Scheme 2a) and HIPE (Scheme 2b),
respectively. The reactions at higher temperatures, 60 ◦C and 80 ◦C, II-25w-60d and II-25w-
80d, yielded porous polymers formed by isolated holes with large (more than 10 µm) and
small (less than 5 µm) diameters, which would be induced by HIPE, as shown in Figure 3b,c
and Figure S3b,c. These results indicate that the reactions with Case II would induce HIPE
even at low reaction temperatures due to the relatively high concentration of AM4 in these
reaction conditions in comparison with the reactions with Case I. Increase of the monomer
concentration (30 wt %) in the reaction system at 40 ◦C turned the morphology of the porous
polymer into distorted connected holes (II-30w-40d), as shown in Figure 3d. The reaction
at low temperature should decrease the solubility of the intermediated polymer network
and induce phase separation via spinodal decomposition. Furthermore, the reaction with
higher monomer concentration increased the rate of network formation. These factors
should fix the porous structure at earlier stage of the phase separation with a microscopic
co-continuous structure.
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3.2. Properties of AM4-HDA Porous Polymer
3.2.1. Mechanical and Thermal Properties

The mechanical properties of the AM4-HDA porous polymers, which were obtained
in the reactions at 90 ◦C, were investigated by compression tests. All the porous polymers
were soft and flexible and were not breakable under a compression of 50 N. Stress-strain
curves of the AM4-HDA porous polymers obtained from the reaction systems with Case I,
feed molar ratio of AM4/HDA: 1/2, are shown in Figure 4, and the results are summarized
in Table 1. The Young’s modulus of the porous polymer increased with the increase in the
monomer concentration of the reaction systems. An increase of the monomer concentration
increased the filling space, which should increase the Young’s modulus of the porous
polymers. The holes’ morphology formed in the reaction systems with high monomer
concentration also induced higher Young’s modulus than the spheres’ morphology formed
in the reaction systems with low monomer concentration (Figure 2), as previously reported
in other reaction systems [81]. AM4-HDA porous polymer of Case II, II-30w-90d, showed
higher Young’s modulus (Figure S4) than the corresponding porous polymer of Case I,
I-30w-90d. The higher crosslinking density derived from higher acryloyl concentration
(2.5 mmol) in the reaction system of Case II in comparison with corresponding reaction
system with Case I (2.0 mmol) should induce higher Young’s modulus, as summarized in
Table 1.
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Table 1. Mechanical properties of AM4-HDA porous polymers a.

Monomer
Concentration

[wt %]

AM4/HAD
Feed Ratio
[mol/mol]

Acryloyl b

[mmol/L]

Young’s
Modulus

[kPa]

Surface
Morphology

Diameter c

[µm]

20 1/2 (Case I) 1.3 93 spheres 1.6–5.0

25 1/2 (Case I) 1.7 101 Spheres &
holes

2.9–4.3
2.3–21.0

30 1/2 (Case I) 2.0 240 holes 2.1–52.0
30 1/1 (Case II) 2.5 328 holes 1.1–9.0

a Reaction temperature: 90 ◦C, b concentration of acryloyl group in the reaction system, c range of diameter of the
spheres and/or holes.

The thermal properties of an AM4-HDA porous polymer I-10w-25d were studied with
DSC measurements. The sample was heated from room temperature to 400 ◦C at a rate of
10 ◦C/min under a nitrogen atmosphere (Figure S5). Endothermic peaks were detected
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at around 90 ◦C and 350 ◦C in the DSC profile. The endothermic peak at around 90 ◦C in
the DSC profile should derive from the evaporation of water. The latter peak should be
caused by thermal degradation of acrylamide groups in the polymer network. The porous
polymer was heated on a hot plate from room temperature to 200 ◦C to observe the form.
The porous polymer softened by heating, but the form did not change.

3.2.2. Absorption of Solvents

The AM4-HDA porous polymer absorbed various solvents. Figure 5 shows the absorp-
tion capacity of a AM4-HDA porous polymer I-25w-10d (feed molar ratio of AM4/HDA:
1/2, monomer concentration in reaction solution: 10 wt %, preparation temperature 25 ◦C).
The polymer absorbed 165–580 wt % of solvents based on the original weight. A linear
relationship was observed between the density of most of the solvents and the weight gain
(Figure S6), except for H2O and EtOH. The absorption capacities of H2O and EtOH (espe-
cially EtOH) were higher than those of other solvents based on their density. The calculated
solubility parameter (SP) value (Fedors’ method [87]) of repeating unit of the AM4-HDA
polymer network is 11.4 (cal/cm3)1/2. The SP value of H2O or EtOH is 23.4 (cal/cm3)1/2

or 12.7 (cal/cm3)1/2), respectively. The SP value of EtOH is close to that of the AM4-HDA
repeating unit. The high absorption capacity of EtOH should be derived from the high affin-
ity between the polymer network and EtOH. The absorption capacity of DMSO was lower
than that of H2O, despite a closer SP value, 14.5 (cal/cm3)1/2, to the repeating unit in the
network. Calculation of SP by Fedors’ method is normally applicable in solution systems
without electrostatic interactions and/or dipolar interactions in cohesion between solute
and solvent. One explanation of the present results is that hydrogen bonding between the
AM4-HDA polymer network and hydroxyl group of H2O or EtOH should increase the
affinity between the network and the solvent.
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Figure 5. Absorbance capacity of AM4-HDA porous polymer I-10w-25d, feed molar ratio of
AM4/HDA: 1/2, monomer concentration in reaction solution: 10 wt %, preparation temperature
25 ◦C.

3.3. Plating of AM4-HDA Porous Polymer

Ni plating of AM4-HDA porous polymer was conducted after Pd catalyzation by
Method 1, via catalysis in a PdCl2/SnCl2 solution, as described in the experimental section.
Hydrogen bubbles were detected during the electroless plating reaction process. The
plating turned the surface of the porous polymer black (Figure S7). These results mean
that a Ni-P deposition reaction occurred on the porous structures. SEM images of the Ni
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plated porous polymer are shown in Figure 6. After the plating for 5 min, the metallization
occurred among the polymer spheres, as shown in Figure 6b. Pd could deposit easily in
the gap between the spheres at this state. Fusion of metallized polymer spheres by lateral
growth, which is the typical growth of electroless plating on initial stage, was observed
after the plating for 10 min, as shown in Figure 6c. The plating for 20 min induced rough
surface due to excess plating of Ni on the Ni plated surface of Figure 6c by normal nodule
growth, which is the typical phenomenon observed on second stage of electroless plating.
Although these results showed possibility of Ni plating of the AM4-HDA porous polymer
using Method 1, inside of the porous polymer was not plated by Ni. One explanation of
the result is that the normal growth of Ni closed the pour structure on the surface by Ni.
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Figure 6. SEM images of the Ni plated AM4-HDA porous polymer I-10w-60d by Method 1, monomer
concentration in reaction solution: 10 wt %, plating time: (a) original, (b) 5 min, (c) 10 min, and (d)
20 min.

Ni plating of AM4-HDA porous polymer was also conducted by Method 2, via
catalyzation by Pd(acac)2 in sc-CO2 following plating, as described in the experimental
procedures. Figure 7a,b show SEM images and Pd elemental mapping of the Pd catalyzed
porous polymer, before plating. The element mapping showed the existence of elemental
Pd over the surface of the porous polymer and Method 2 was effective to impregnate Pd
into the porous structure. SEM image and Ni element mapping of the porous polymer after
plating are shown in Figure 7c,d. In comparison with the results obtained by Method 1,
Figure 6, the characteristic feature of the SEM image, Figure 7c, is a deep and complicated
pore structure that remained on the surface after plating by Ni. Elemental Ni was detected
on the whole surface of the porous polymer by element mapping, as shown in Figure 7d.
The content of Ni was quite high (73.4 wt %). These experimental results by Method 2
offer these interesting insights: (1) Pd catalysts were deposited over all of the surface of the
microporous structure; (2) Ni grew laterally on the Pd-catalyzed pore surface inside; (3)
after covering the surface by Ni, further Ni growth occurred normally and the metallized
polymer spheres were fused. This kind of metal growth in electroless plating was also
found in Pd electroless plating on γ-alumina [88]. As widely accepted, metallization
of complicated polymer structures is difficult. Although the present study is a typical
example of metallization of Ni on complicated pore structure of polymeric material using
sc-CO2, the precise control of the reaction conditions of the electroless plating would enable
complete metal coverage of the microporous structures.
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Figure 7. (a) SEM image and (b) Pd elemental mapping of Pd catalyzed AM4-HDA porous polymer I-
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porous polymer after Ni plating in sc-CO2, plating time: 30 min.

3.4. Coupling Reaction by Pd Catalyzed Porous Polymer

Suzuki-Miyaura coupling reactions of 4-bromoanisole and phenylboronic acid, Scheme 3,
were conducted using Pd-containing AM4-HDA porous polymer, catalyzed in sc-CO2
for 2 h (by Method 2 before Ni plating). The reaction conversion of 4-methoxy biphenyl
in crude reaction mixtures, determined by 1H-NMR spectroscopy, was 82%, and the
isolated yield was 40%. The conversion of the corresponding reaction with Pd(acac)2 in
homogeneous system was more than 98%. The reaction did not progress further with the
original AM4-HDA porous polymer. Although the conversion was lower than with the
homogeneous reaction system with Pd(acac)2, the Suzuki-Miyaura coupling reaction could
be promoted by the Pd-containing porous polymer.
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4. Conclusions

Aza-Michael addition reaction of AM4 and HDA in H2O successfully yielded porous
polymers via polymerization-induced phase separation. The reaction conditions, monomer
concentration, reaction temperature and feed molar ratio of AM4 to HDA, strongly affected
the surface morphology of the resultant porous polymers. The reactions with low monomer
concentrations and at low temperatures tended to yield the porous polymers composed
of connected spheres, which could be induced by spinodal decomposition. In contrast,
porous polymers with isolated and/connected holes, which were induced by HIPE, were
preferentially obtained in the reactions with high monomer concentrations and at high
reaction temperatures. The porous polymers were soft and flexible and were not broken
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by compression. The porous polymer absorbed various solvents, especially protic polar
solvents like H2O and EtOH, due to the high affinity between the network and the solvents.

The surface of the AM4-HDA porous polymer could be plated with Ni. However,
the plating of inside of the porous polymer was impossible because the Ni plated surface
hindered further plating. A Pd(acac)2-treated porous polymer promoted Suzuki-Miyaura
coupling reactions of 4-bromoanisole and phenylboronic acid.

The aza-Michael addition reaction of the multifunctional acrylamide and diamine
compounds in H2O is one of the effective methods to synthesize the porous polymers, based
on the joint and linker concept. As the next step, we are studying the precise control of the
morphology of the porous polymers in combination with theoretical simulation studies of
the formation process of the network. The fabrication of columns, sheets and discs by the
present porous polymer should be useful for further applications of the porous polymers,
such as separation columns, supports for conductive materials, battery separators, scaffolds
for cell cultivation etc. These investigations are now underway and the results will be
reported elsewhere in due course.

Supplementary Materials: The followings are available online at https://www.mdpi.com/1996-194
4/14/4/800/s1, Figure S1: Nitrogen adsorption-desorption isotherms of AM4/HDA porous polymer
I-10w-25d. Figure S2: Size distribution of spheres and/or holes of AM4-HDA porous polymers
Case I (feed molar ratio of AM4/HDA: 1/2). Figure S3: Size distribution of holes of AM4-HDA
porous polymers Case II (feed molar ratio of AM4/HDA: 1/1). Figure S4: Stress-strain curves of
AM4-HDA porous polymers (a) I-30w-90d and (b) II-30w-90d. Figure S5: DSC profile of AM4-HDA
porous polymer I-10w-25d. Figure S6: Correlation between absorption capacity of AM4-HDA porous
polymer I-10w-25d and density of solvent. Figure S7: Photo images of the Ni plated AM-HDA porous
polymer I-10w-25d and density of solvent.
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