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Mitochondrial high-temperature requirement protease A2 (HtrA2) is an integral member of
the HtrA family of serine proteases that are evolutionarily conserved from prokaryotes to
humans. Involvement in manifold intricate cellular networks and diverse pathophysiological
functions make HtrA2 the most enigmatic moonlighting protease amongst the human
HtrAs. Despite perpetuating the oligomeric architecture and overall structural fold of its
homologs that comprises serine protease and regulatory PDZ domains, subtle
conformational alterations and dynamic enzymatic regulation through the distinct
allosteric mode of action lead to its functional diversity. This mitochondrial protease
upon maturation, exposes its one-of-a-kind N-terminal tetrapeptide (AVPS) motif that
binds and subsequently cleaves Inhibitor of Apoptosis Proteins (IAPs) thus promoting cell
death, and posing as an important molecule for therapeutic intervention. Interestingly,
unlike its other human counterparts, HtrA2 has also been implicated in maintaining the
mitochondrial integrity through a bi-functional chaperone-protease activity, the on-off
switch of which is yet to be identified. Furthermore, its ability to activate a wide repertoire of
substrates through both its N- and C-terminal regions presumably has calibrated its
association with several cellular pathways and hence diseases including
neurodegenerative disorders and cancer. Therefore, the exclusive structural attributes
of HtrA2 that involve multimodal activation, intermolecular PDZ-protease crosstalk, and an
allosterically-modulated trimeric active-site ensemble have enabled the protease to evolve
across species and partake functions that are fine-tuned for maintaining cellular
homeostasis and mitochondrial proteome quality control in humans. These unique
features along with its multitasking potential make HtrA2 a promising therapeutic target
both in cancer and neurodegeneration.
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HISTORY AND BACKGROUND

The highly conserved high temperature requirement A (HtrA) family of serine proteases that
perform amultitude of diverse physiological functions, constitute the core group of cellular proteases
(Page and Di Cera, 2008). A complex oligomeric architecture (spanning from trimeric to 24-meric
forms), which include an atypical N-terminal region, a conserved protease domain along with one or
two C-terminal PDZ (postsynaptic density of 95 kDa, disc big, and zonula occludens 1) domains in
each monomeric subunit make this family stand out among all other serine proteases (Clausen et al.,
2002). Interestingly, the N-terminal regions of HtrAs exhibit significant sequence, size, and structural
variability that encompass single transmembrane domain (prokaryotic DegS and human HtrA2),
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signal sequences, insulin-like growth factor-binding domains,
and serine protease inhibitor domains (human HtrA1, HtrA3,
and HtrA4) implicating intra- and inter-species functional
divergence. Furthermore, their catalytic activity that can be
allosterically tuned through an intricate rheostatic on/off
switch as well as the modulatory protein-protein interaction
domain(s) aka PDZ, has garnered much attention for their
immense translational possibilities.

Interestingly, unlike eukaryotes and bacteria, archaean
genomes are devoid of HtrA homologs (Koonin and Aravind,
2002). Although, all sequenced Nematoda genomes including the
model organism Caenorhabditis elegans lack HtrA-like genes,
they do encode PDZ-containing proteins (Koonin and Aravind,
2002) thus underscoring the functional relevance of this
regulatory domain in various cellular pathways. While
bacterial HtrAs have been demonstrated to be involved in
protein quality control processes such as protein folding, stress
response, and degradation of misfolded cell envelope proteins
(Clausen et al., 2002), this function is manifested in their
mammalian counterparts through the elimination of misfolded
proteins including growth factors, regulation of cell proliferation,
migration and apoptosis (Grau et al., 2005; Hou et al., 2005;
Kapri-Pardes et al., 2007; Moisoi et al., 2009).

Among the four human HtrAs (HtrA1-4) that have been
identified to date, HtrA2 has been most widely studied due to
its enigmatic structural characteristics and profound functional
relevance. While HtrA2 is found in the mitochondrial
intermembrane space (IMS), its paralogs HtrA1, 3, and 4 are
mostly found in the secretory process. Despite similar overall
structural signature and conserved protease and PDZ domain
architecture, these enzymes show a significant divergence in their
N-terminal regions that might be essential for catering to their
distinct functional properties For example, the N-terminal
regions of HtrA1, 3, and 4 include secretory signals, along
with insulin-like growth factor binding motifs and Kazal-type
S protease inhibitor domains, while HtrA2 contains a
mitochondrial localization signal (Figures 1A,B).

HtrA2, with a pyramid-shaped trimeric ensemble, is unique
among its peers being the only known mitochondrial protease
with a PDZ domain that identifies exposed hydrophobic regions
of misfolded proteins (Li et al., 2002; Clausen et al., 2011; Singh
et al., 2011). Furthermore, with the triggering of apoptotic signal,
mature HtrA2 gets released from the mitochondrial IMS into the
cytosol at the expense of its first 133 amino acid residues
(Figure 1B). This series of events exposes an N-terminal
tetrapeptide motif (AVPS) that binds to the Inhibitor of
Apoptosis Proteins (IAPs) and abate their inhibition on
caspases thus promoting apoptosis. Furthermore, HtrA2 is
known to participate in apoptosis through both caspase-
dependent and independent pathways, the latter through its
serine protease activity (Hegde et al., 2002; Martins et al.,
2002; Verhagen et al., 2002). Apart from its prominent role as
a proapoptotic molecule, its involvement in neurodegenerative
disorders has also been established through a missense mutation
(Ser276Cys) in transgenic mice that exhibited motor neuron
degeneration 2 (mnd2) implicating a Parkinsonian phenotype
in humans (Jones et al., 2003). Further functional and clinical

studies established HtrA2’s involvement in several
neurodegenerative disorders (Inagaki et al., 2008; Kang et al.,
2013; Wagh and Bose, 2018; Bose et al., 2021).

STRUCTURAL FEATURES OF HtrA2

Several efforts over the past decade have been made to capture the
structural complexity of this proapoptotic enzyme from various
perspectives. Shi and co-workers first provided the snapshots of
the inactive (S306A) substrate-unbound form of mature HtrA2 in
three-dimensional space (Li et al., 2002). The structural data
showcased a trimeric pyramidal architecture with the short
N-terminal regions upholding the oligomeric ensemble
through van der Waals interactions, while three PDZ domains
at the base encapsulated the active-sites of the protease domains.
The protease domain that embeds a hydrophobic active-site
pocket with the catalytic triad (Ser306, His198, and Asp228)
forms a compact structural fold comprising seven α-helices and
19 β-strands. Surrounded by several regulatory and specificity
loops, this domain is positioned deep within the oligomer at 25 Å
above the base of the pyramid (Figure 1C) suggesting the
requirement of substantial conformational changes for
substrate binding and subsequent cleavage. The core of the
pyramid is flanked by the regulatory PDZ domains that
recognize and bind to the C-terminal region of their
interacting partners. This is achieved through the canonical
PDZ binding groove (YIGV) that is integrated into the PDZ-
protease domain interface. The structural study also
demonstrates that several non-covalent interactions in the
substrate-unbound state keep the protease domain in its
‘closed’ conformation, through inhibitory interference from the
surrounding PDZ domains.

Although, this structure provided an excellent overview of the
HtrA2 structure, this substrate-unbound form of the protease
failed to explain the underlying dynamics of its mode of
activation. Most importantly, the model’s inability to
enumerate the necessity to have a trimeric structure for its
enzymatic functions as well as the mode of its distal allosteric
regulation, impelled scientists to unravel the minutiae of its
interactions from a more physiological as well as quantitative
perspectives.

ACTIVE SITE CONFORMATION AND
MULTIPLE ACTIVATION MECHANISMS OF
HtrA2
The pre-defined conserved domains of HtrA2, along with its
regulatory (L1, L3, and LD) and specificity (L3-that
accommodates specificity pocket) loops contribute to the
activation mechanism of HtrA2 through multiple regulatory
nodes (Figure 1C). Since these dynamic loops were mostly
unresolved in the crystal structure, several efforts were made
to investigate the multimodal allosteric regulation of the protease
as well as understand the intricacies of HtrA2-mediated substrate
cleavage (Martins et al., 2003; Jarzab et al., 2016). Because the
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allosteric binding partners are also predominantly its substrates
(such as IAPS, GRIM-19, and Dusp-9), therefore the stepwise
concerted allosteric mechanism either individually or in
collaboration with different activation pathways could not be
unequivocally determined using discrete peptide libraries. To
circumvent the problem, Bose and co-workers utilized
enzymology and biophysical approaches to understand the
intricate coordination between the protease domain and other
regions of the protein using full-length binding partners and/or
substrates. Using β-casein, the generic substrate of serine
proteases, Chaganti et al., revisited the pre-existing model of
HtrA2 activation and propounded a new hypothesis that relies on
inter-molecular protease-PDZ crosstalk for initial substrate
binding at the PDZ domain and its subsequent cleavage
(Chaganti et al., 2013). This study identified interaction
between the PDZ domain of one monomer with the serine
protease domain of an adjacent one, which led to the
rearrangement of H65 of the catalytic triad in a way to form a
proper oxyanion hole. This series of inter-molecular making and
breaking of bonds unequivocally demonstrated the requirement

of the trimeric architecture for its allosteric propagation and
activation by capturing the dynamics of the PDZ- and
temperature-mediated activation process. Singh et al., built
upon the previous studies on N-terminal mediated activation
of HtrA2 (Verhagen et al., 2002) and described the global
conformational plasticity and subtle conformational
reorientations in the loop regions surrounding the active-site
to be involved in this process. Interestingly, using quantitative
enzyme kinetics studies, they further demonstrated that the
N-terminal mediated activation might also be regulated by
PDZ-bound allosteric modulators and vice-versa (Singh et al.,
2011; Singh et al., 2014) to bring the protease to the most
competent catalytic state.

Although these studies provided a holistic understanding of
HtrA’s mode of activation through three distinct yet non-exclusive
modes, they did not provide the stoichiometric contribution of the
PDZ-protease communication in a step-by-step manner. Using
molecular dynamics, protein engineering, structural and chemical
biology approaches, two different groups (Parui et al., 2021;
Toyama et al., 2021) distinctly established the trans-mediated

FIGURE 1 | Structural organization of HtrA2. (A)Comparison of domain organizations of the human HtrA family including HtrA1, HtrA2, HtrA3 andHtrA4. aa, amino
acid; SP, signal peptide; IGFBP, insulin growth factor binding domain; KI, Kazal-type S protease inhibitor domain; protease, protease domain; PDZ, PDZ domain; TM,
transmembrane regulatory domain. (B) Schematic representation of the full-length HtrA2 protein (1–458 aa) and its different components as shown in the figure. Upon
apoptotic trigger, the mitochondrial localization signal (133 residues) from the N-terminus gets cleaved exposing a tetrapeptide IAP-binding motif (IBM/AVPS), and
concomitantly releasing the protease into the cytosol. Subsequent substrate binding at N- and/or C-termini leads to allosteric protease activation and substrate cleavage
as described in the text. (C) The three-dimensional trimeric model adopted from the crystal structure (PDB ID: 1LCY) of HtrA2 highlighting the hidden catalytic triad
(rainbow spheres) 25 Å above base of the pyramid (left side) while a single monomer has been zoomed into for describing the loops (yellow) and domains (N-terminal
region: light purple, SPD: pink, PDZ: orange); the catalytic site has been shown in the inset (right side). L1, L2, L3 and LD are loops; SPD is serine protease domain and
Linker represents the flexible region between the SPD and PDZ domain.
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PDZ-protease collaboration that espouses a unique
reciprocative mechanism where the distal PDZ reorients the
active site of the adjacent monomer and attunes it for catalysis
through a precise synergistic relay of information. This multi-
tiered regulation of HtrA2 activation might be critical toward
prevention of untimely proteolysis as well as accurately
controlling its involvement in different pathophysiological
pathways such as apoptosis, protein quality-control, cancer,
arthritis, and neurodegeneration, where it cleaves a wide
spectrum of substrates in different subcellular locations. This
is substantiated by the identification and characterization of
protein-protein interactions involving HtrA2 and its substrates
such as Inhibitor of Apoptosis Proteins (IAPs), hematopoietic
cell-specific protein-1-(HS1)-associated protein X-1 (Hax-1),
Dual-specificity phosphatase-9 (DUSP-9), a gene associated
with retinoic and interferon-induced mortality-19 protein
(GRIM-19) and Phosphoprotein enriched in astrocytes-15

(Pea-15) (Chaganti et al., 2019; Acharya et al., 2020;
Kummari et al., 2021) that unlike other HtrAs are
interestingly not restricted to the C-terminal PDZ domains.
The holistic enumeration of HtrA2’s activation network has
been vividly illustrated in Figure 2 and the mechanism is
elaborated in the figure legend.

This chain of ground-breaking revelations on the reciprocity
of its structural dynamism and multifarious physiological as well
as disease-associated functions as discussed below have opened
up avenues to regulate HtrA2 functions at various check-points
toward devising customized therapeutic strategies.

IS HtrA2 A CHAPERONE?

The neurodegenerative phenotype of mice lacking HtrA2 or
harboring the enzymatically inactive mnd2mutant (S276C)

FIGURE 2 | A schematic representation of the multimodal activationmechanism of HtrA2. (A) HtrA2 in the substrate-unbound state (I) exhibits negligible activity (Ebasal
state) since the active site it embedded within the trimeric ensemble, and encircled by the regulatory PDZ domains. In the second step (II), initial binding of one substrate
molecule at the distal PDZ domain (e.g., DUSP-9) reorients different domains and loops of HtrA2 making it conducive for catalysis (EIntC’

’ state or C-terminal mediated
intermediate state). In step (II), the dotted lines fromPDZ toward adjacent SPD domains highlight intermolecular crosstalk, which is shown to be absent within the same
molecule through a red ‘x’ sign. Therefore, this step underscores the importance of trans-mediated allostery where binding of substrate molecule to a PDZ activates protease
domains of the adjacent subunits of the trimer. Further binding of substrates to all the PDZ domains (III), activates the protease via conformational alterations throughout the
proteinmolecule leading to anoptimally active state (Eact* state). (B)On the other hand,with increase in temperature, the PDZs experience enhanced thermalmotion leading to
an open active-site conformation (EH’ state or heat-mediated active state) as shown in (IV). This conformation might be important in some scenarios for preparing the basal
protease to readily bind substrates of distinct cellular pathways either/both at the N-terminal or/and the PDZ domains (shownby arrows). (C)Represents N-terminal mediated
allosteric activation of HtrA2, where the basal state (I) binds to the N-terminal binding partners (such as IAPs) of HtrA2 that leads to favorable conformational alterations in the
distal protease and PDZ domains leading to an active state (EN’ state or N-terminal mediated activated state) as shown in step (V). This conformational state can further be
modulated through temperature and/or PDZ domains leading to the most active protease (Eact** state) as shown in (VI). This unique model shows intricate crosstalk among
distinct activation networks that might or might not be mutually exclusive depending upon specific cellular requirements.
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implies that HtrA2 protease activity protects neuronal
mitochondria (Jones et al., 2003; Martins et al., 2004). It was
earlier speculated that HtrA2 monitors and regulates protein
folding in the mitochondria in a way DegP does in the bacterial
periplasm. Further studies demonstrated that unfolded protein
response (UPR) induced by tunicamycin or heat shock (Gray
et al., 2000) as well as etoposide-activatedp53 stress pathway-
upregulated expression of HtrA2 protease (Jin et al., 2003). Alike
DegP, HtrA2 is also activated by elevated temperatures (Martins
et al., 2003). Moreover, both HtrA2 and DegP prefer aliphatic Val
or Ile in P1 position for substrate recognition and cleavage
(Kolmar et al., 1996). Despite these similarities, HtrA2 shares
strikingly higher structural and functional traits with DegS, which
argue against its DegP-like chaperoning function, and hints a
bearing closer to DegS. In particular, HtrA2 is protease-active at
room temperature (Savopoulos et al., 2000), while DegP is
activated only at elevated temperatures (Spiess et al., 1999). In
addition, while DegP with two PDZ domains, folds into a higher-
order hexagonal cage (Krojer et al., 2002), the trimeric HtrA2 and
DegS (sans the additional PDZ and the necessary longer LA loop)
are unable to prevent the entry of correctly folded proteins into
the proteolytic sites (Clausen et al., 2002; Kim et al., 2003; Kim
and Kim, 2005; Clausen et al., 2011) thus creating certain
equivocacies toward defining its role as a chaperone.
Interestingly, the identification of presenilin and amyloid
precursor protein as natural substrates of HtrA2 (Gray et al.,
2000; Gupta et al., 2004) necessitates further studies to resolve the
ambiguities surrounding HtrA’s role in unfolded protein
aggregation and quality control.

ROLE OF HtrA2 IN APOPTOSIS

HtrA2 was the first to be identified as an IAP binding protein
(Hegde et al., 2002). Its functional similarity with second
mitochondria-derived activator of caspase (Smac)/direct IAP
binding protein with low pI (DIABLO) established its role as a
proapoptotic molecule (Martins et al., 2002; Suzuki et al., 2004).
HtrA2, which resides in the mitochondrial IMS is released into the
cytosol after the separation of its 133-residue mitochondrial
localization signal. This exposes an N-terminal IAP-binding motif
(IBM) comprising a tetrapeptide ‘AVPS’ that is recognized as a
binding site for IAPs. Unlike Smac, HtrA2 also cleaves IAPs and
hence irrevocably relieves their inhibition on caspases (caspases-3,-7,
and -9), thus promoting apoptosis (Srinivasula et al., 2003; Yang
et al., 2003). Conservation of the IBM motif is found across species,
where its Drosophila ortholog with two IBM motifs attracts DIAP1,
enabling its removal by the serine protease activity (Challa et al.,
2007). Likewise, the rhesus monkey and rodent orthologs of the
protease have maintained the IBM motif suggesting evolutionary
diversification of HtrA2 functions in higher organisms (Vande
Walle et al., 2008). Interestingly, the two IAP-related proteins in
C. elegans do not appear to be involved in apoptosis regulation
(Fraser et al., 1999; Speliotes et al., 2000), suggesting that IAP
proteins and the appearance of IAP antagonists like HtrA2 and
Drosophila Reaper, Hid, and Grim are recent additions to the
apoptotic molecular repertoire. Although human HtrA2 and its

evolutionary paralogs bind and degrade many IAP family members,
XIAP is found as the most effective amongst them as it engages a
second interaction surface that permits strong caspase inhibition
(Eckelman et al., 2006). However, to inhibit caspase activation,
cIAP1,cIAP2, and XIAP target bound caspases for ubiquitin-
mediated proteasomal degradation (Vaux and Silke, 2005) thus
necessitating HtrA2 to cleave all of them.

Apart from N-terminal mediated apoptosis, HtrA2 binds
important molecules of the apoptotic pathway through its
regulatory C-terminal PDZ domain. The binding of substrates
to the hydrophobic YIGV groove allosterically activates the
protease for substrate binding and subsequent catalysis.
Furthermore, binding to mitochondrial substrates at the early
apoptotic stage such as GRIM-19 and Hax-1 might be important
toward attuning the mature protease for its proapoptotic
functions before it enters the cytoplasm (Cilenti et al., 2004;
Ma et al., 2007; Chaganti et al., 2019; Kummari et al., 2021) where
it binds several antiapoptotic proteins including IAPs and death
effector domain (DED) containing Pea-15 (Trencia et al., 2004).
HtrA2 is also capable of inducing caspase-independent apoptosis
via its serine protease activity by cleaving several critical cellular
molecules such as cytoskeletal proteins (actin, α-/β-tubulin, and
vimentin) that are important for upholding cellular integrity
(Vande Walle et al., 2007). KIAA1967 and KIAA0251are two
newly identified proteins of the apoptotic pathway that have been
found to be substrates of HtrA2 (Vande Walle et al., 2007). A
caspase-generated cleavage fragment of KIAA1967 was
demonstrated to cause mitochondrial clustering and matrix
condensation in apoptotic HeLa cells (Sundararajan et al.,
2005), whereas KIAA0251 interacts with the endoplasmic
reticulum (ER) membrane protein Bap29, a component known
to be required for caspase-8 activation in the ER (Breckenridge
et al., 2002). Taken together, the substrates found and verified for
HtrA2, reveal that this protease is involved in the apoptotic
process at the cytoskeleton, translation initiation complex, and
organelle dismantling levels.

Multiple modes of activation and a variety of substrates in
different subcellular locations make HtrA2 omnipresent in the
apoptotic pathway. Furthermore, distal N-/C-termini and heat-
mediated positive allosteric modulation as well as negative
regulation of its proapoptotic functions through
phosphorylation at Ser212(Yang et al., 2016) re-instate its
enigmatic role in the cell death network. However, the lack of
definitive in vivo models of HtrA2’s contribution toward
apoptotic pathway might be limited by the number of
identified natural substrates to date as well as due to
redundancy in its functions in the cell, which requires further
investigations.

HtrA2 IN NEURODEGENERATIVE
DISORDERS AND CANCER

The first report on HtrA2’s involvement in neurodegeneration
came into existence with the identification of its interaction with
Alzheimer’s disease-associated protein, presenilin-1 (Gupta et al.,
2004). This was later substantiated by a homozygous loss-of-
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function mutation (S276C) identified as motor
neurodegeneration 2 (mnd2) in mice (Jones et al., 2003),
which was further bolstered by the development of
homozygous HTRA2 knock-out mice exhibiting Parkinsonian
phenotype (Martins et al., 2004) thus assigning HTRA2 gene the
PARK13(Parkinson’s disease 13) locus (Strauss et al., 2005;
Abou-Sleiman et al., 2006). These critical inputs led to the
initiation of several clinical studies involving PD cohorts from
various populations across the globe to identify the involvement
ofHTRA2 and its mutations in PD progression and pathogenesis.
However, the data obtained were quite contrasting. For example,
a Germany-based clinical study that demonstrated heterozygous
G399S and A141S mutations (Strauss et al., 2005; Bogaerts et al.,
2008), was later impugned by another study from North America
(Simon-Sanchez and Singleton, 2008). However, in vivo studies in
transgenic mice harboring the G399S mutation (Casadei et al.,
2016) and several other independent clinical investigations on
non-overlapping rare HTRA2 mutations in Asian and European
populations, re-established the correlation between HTRA2 gene
and PD risk (Bogaerts et al., 2008; Lin et al., 2011; Wang et al.,
2011). Furthermore, to delve into the loss of enzymatic activity of
S276C mutation in human HtrA2 and correlate it with PD if any,
X-ray crystallographic studies of the mutant were performed to
understand the structural correlates of this functional
repercussion (Wagh and Bose, 2018). The study provided a
structural snapshot of the mutant at an atomic resolution
where the inactivity was found to be conferred by loss of
water-mediated H-bond between residues S276 and I270 on
regulatory L2 and LD loops respectively; however, no clinical
study could identify S276C mutation in any PD patient. Recently,
another patient-derived research in the Indian population
identified a rare likely-pathogenic mutation (T242M), which is
critical for altering mitochondrial homeostasis due to loss of
GSK-3β-mediated phosphorylation on HtrA2 leading to
uncontrolled cell death with PD phenotype (Bose et al., 2021).
Moreover, another contemporary study demonstrates a
connection between neuronal death and selective
downregulation revealing its link with Huntington’s disease
(Inagaki et al., 2008).

Despite these crucial discoveries, several contradictory reports
challenge the establishment of HtrA2’s role in
neurodegeneration. This apparent anomaly in these studies
might be due to a lack of focus on close interconnections
among several parameters that include alterations in HTRA2,
mitochondrial functional aberrations, and neurodegeneration.
Therefore, future research endeavors encompassing both
genetic and epigenetic interactions underlying the complex
pathophysiological network of neurodegenerative disorders
might provide a more comprehensive picture of HTRA2’s
association with these diseases.

While the involvement of HtrA1 in cancer is quite prevalent,
there have been only a few direct reports of HtrA2’s association
with oncogenesis. HtrA2 has been found to be widely expressed in
several cancer cell lines where over-expression triggered cell death
(Suzuki et al., 2001; Martins et al., 2002). Biopsy sample analyses

of specific cancers exhibited altered expression of HtrA2
suggesting its role in those cancers. For example, the level of
the protease was found to be substantially less in endometrial and
ovarian cancer tissues (Narkiewicz et al., 2008; Narkiewicz et al.,
2009). On the other hand, higher HtrA2 expression in prostate
tumors implicated its association with the differentiation of
prostate cancer cells (Hu et al., 2006). Furthermore, elevated
levels of HtrA2 in gastric cancers link it with this malignancy (Lee
et al., 2003). However, although, the contribution of HtrA2
toward cancer development or regression yet remains to be
conclusively elucidated, future studies using multidisciplinary
approaches for delineating the HtrA2-associated extensive
apoptotic network, and identifying its effect on tumorigenesis
might shed more light on this pathophysiological collaboration.

CONCLUDING REMARKS AND FUTURE
PERSPECTIVE

Recent progress in the structural and functional
characterization of HtrA2 has greatly enhanced our
understanding of this fascinating protein. Association of this
protease with critical cellular functions such as apoptosis,
protein quality control, cell growth, and unfolded protein
response implicate it in several diseases including
neurodegeneration, arthritis, and cancer. Unfortunately, the
complexity of its oligomeric structural constitution and
mechanism of activation makes it one of the most complex
molecules in the HtrA family of proteases. However, recent
advancements in deciphering the multi-layered allosteric
modulation of HtrA2 from both structural and functional
perspectives provide important cues toward targeting its
different functions with specific modulators having desired
characteristics.
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