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Perspectives

Attention: The Messy Reality
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The human capability to attend has been both considered as easy and as  impossible to understand by 
philosophers and scientists through the centuries. Much has been written by brain, cognitive, and 
philosophical scientists trying to explain attention as it applies to sensory and reasoning processes, let 
alone consciousness. It has been only in the last few decades that computational scientists have entered 
the picture adding a new language with which to express attentional behavior and function. This new 
perspective has produced some progress to the centuries-old goal, but there is still far to go. Although a 
central belief in many scientific disciplines has been to seek a unifying explanatory principle for natural 
observations, it may be that we need to put this aside as it applies to attention and accept the fact that 
attention is really an integrated set of mechanisms, too messy to cleanly and parsimoniously express with 
a single principle. These mechanisms are claimed to be critical to enable functional generalization of brain 
processes and thus an integrative perspective is important. Here we present first steps towards a theoretical 
and algorithmic view on how the many different attentional mechanisms may be deployed, coordinated, 
synchronized, and effectively utilized. A hierarchy of dynamically defined closed-loop control processes 
is proposed, each with its own optimization objective, which is extensible to multiple layers. Although 
mostly speculative, simulation and experimental work support important components.
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INTRODUCTION

It is almost universal to regard attention as the facil-
ity that permits an agent, human or machine, to give its 
resources priority for processing relevant stimuli while 
ignoring the irrelevant. The reality of how this might 
manifest itself throughout all the forms of perceptual 
and cognitive processes possessed by humans, howev-
er, is not as clear. Here we examine this reality in order 
to highlight the manner by which attentional processes 
may be controlled. Before proceeding, it is useful to be 
clear about how attention is defined here. Attention has 
the goal of matching current task to processing resourc-
es by manipulating the brain’s processing machinery to 

preferentially process expected stimuli while ignoring the 
irrelevant, yet monitoring all stimuli in order to deal with 
the unexpected. Specifically for vision, attentional mech-
anisms provide for a dynamic tuning of visual processing 
in reaction to the task, goals, and input of the moment 
[1,2]. Although the hope is to provide an attentional con-
trol framework that is general, most of this presentation 
will focus on vision.

There is a large literature on attentional control; here, 
only some highlights will be mentioned as they relate to 
our main point. Kahneman was very concerned with the 
optimality of attentional allocation [3]. He advocated 
that continuous, coherent, serially organized behavior 
is an important determinant of effective attentional con-
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trol. Allport [4] is much closer to our view, saying it is 
pointless to focus on the brain’s locus of selection and 
on which processes do and do not require attention. He 
claims that attentional functions are of very many differ-
ent kinds, serving a great range of computational func-
tions. Egeth and Yantis [5] suggest that the key issues 
are: control of attention by top-down (goal-directed) and 
bottom-up (stimulus-driven) processes; representational 
basis for visual selection, including how much attention 
can be said to be location or object based; time course of 
attention as it is directed to one stimulus after another. 
Corbetta and Shuman [6] consider the brain regions in-
volved and conclude that partially segregated networks 
carry out different attentional functions: the intraparietal 
and superior frontal cortex prepare and apply goal-direct-
ed selection for stimuli and responses; and, the tempo-
roparietal cortex and inferior frontal cortex specialized 
for detection of behaviorally relevant stimuli. Rossi and 
colleagues [7] claim that frontal and parietal cortices are 
involved in generating top-down control signals for at-
tentive switching, which may then be fed back to visual 
processing areas. The prefrontal cortex in particular plays 
a critical role in the ability to switch attentional control 
on the basis of changing task demands. For Miller and 
Buschman [8], visual attention may be focused via a 
frontoparietal network acting on the visual cortex. These 
network interactions may be regulated via rhythmic oscil-
lations. The brain may operate discretely with pulses of 
activity routing packets of information.

None of these works and most others do not, howev-
er, provide a mechanistic view of attention, in the sense of 
Brown [9]: “most ask what brain regions are active during 
attentive processes or what networks are active instead of 
what mechanisms are necessary to reproduce the essential 
functions and activity patterns in an attentive system.” On 
the other hand, cognitive architectures, reviewed in Ko-
tseruba & Tsotsos [10] do propose specific mechanisms. 
However, as that review demonstrates most take a very 
narrow view of attention and there is little agreement on 
how attentional control is accomplished. What follows, 
therefore, is a proposal of some steps towards how con-
trol may be mechanistically achieved. To begin, we need 
to be explicit about the attentional characteristics under 
consideration. The literature describes many phenomena 
connected to attention directly or indirectly. The follow-
ing list gives the basic attentional phenomena (adapted 
from [1] where pointers to groundbreaking papers for 
each can be found):

Alerting: The ability to process, identify, and move 
attention to priority signals.

Binding: The process that correctly combines visual 
features to provide a unified representation of an object.

Covert Attention: Attention to a stimulus in the vi-
sual field without eye movements.

Disengage Attention: The generation of signals that 
release attention from one focus and prepare for a shift.

Endogenous Influences: Endogenous influence is 
an internally generated signal used for directing attention, 
including domain knowledge or task instructions.

Engage Attention: The actions needed to fixate a 
stimulus whether covertly or overtly.

Executive Control: The system that coordinates the 
elements into a coherent unit that responds correctly to 
task and environmental demands including selecting, or-
dering, initiating, monitoring, and terminating functions.

Exogenous Influences: Exogenous influence is due 
to an external stimulus and contributes to control of gaze 
direction in a reflexive manner.

Inhibition of Return: A bias against returning atten-
tion to previously attended location or object.

Neural Modulation: Attention changes baseline 
firing rates and firing patterns of neurons for attended 
stimuli.

Overt Attention: Also known as Orienting, the 
action of orienting the body, head, and eyes to foveate a 
stimulus in the 3D world.

Preattentive Features: The extraction of visual 
features from stimulus patterns perhaps biased by task 
demands.

Priming: Priming is the general process by which 
task instructions or world knowledge prepares the visual 
system for input. Cueing is an instance of priming; per-
ception is speeded with a correct cue, whether by loca-
tion, feature, or complete stimulus.

Recognition: The process of interpreting an attend-
ed stimulus, facilitated by attention.

Salience/Conspicuity: The overall contrast of the 
stimulus at a particular location with respect to its sur-
round.

Search: The process that scans the candidate stimuli 
for detection or other tasks among the many possible lo-
cations and features in cluttered scenes.

Selection: The process of choosing one element of 
the stimulus over the remainder. Selection can be over 
locations, over features, for objects, over time, and for 
behavioral responses, or even combinations of these.

Shift Attention: The actions involved in moving an 
attentional fixation from its current to its new point of 
fixation.

Update Fixation History: The process by which the 
system keeps track of what has been seen and processed 
which are used in decisions of what to fixate and when.

Visual Working Memory: Attention seems neces-
sary to select the stimuli and level of their interpretation 
stored in visual working memory. Working memory may 
impact subsequent perceptual actions.

This list is likely incomplete and as likely, many 
readers will disagree with one or more of its elements. 
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Where there should be more agreement is that there are 
many different manifestations of visual attentive behav-
ior that have been reported (see [11-13]). Regardless of 
specific differences regarding this list, the reader should 
immediately be concerned about how it can be that these 
are connected and coordinated so that they lead to ob-
served human attentive behavior.

ATTENTIONAL MECHANISMS AND THEIR 
COORDINATION

There are a few basic realities that play a major role 
towards the key argument of this paper. Any brain or be-
havioral process takes time. Each computation takes time, 
each transfer of information from one representation to 
the next takes time because information must travel over 
some neural distance, each motor action takes time, and 
so on. Each behavior has a specific time course and dif-
ferent visual sub-tasks, each require different actions, dif-
ferent timings of actions, different durations, etc. It feels 
immediate to us when we look at a photo of a single face 
and detect that it is our mother, yet it will necessarily take 
much longer to find that same face in a crowd. The former 
task may not require eye movements yet the latter may 
need many, each requiring about 250ms to set up and ex-
ecute. The number of different kinds of visual behaviors 
humans can execute seems unbounded and the variability 
of both time and success of execution equally variable. It 
could be that exactly the same machinery is used in exact-
ly the same manner for all behaviors, and that for difficult 
cases, that machinery simply takes longer to “settle” on 
an answer, perhaps using some kind of slow information 
accumulation. This possibility can be rejected because, 
if true, we would not observe the changes seen in neu-
ral and brain imaging experiments (which motivated the 
perspectives in [3-10]). It is rather clear that there is a 
sequence of actions orchestrated to achieve a particular 
behavior as all the authors cited earlier agree.

Consider the simple act of detecting a face in an 
image. Suppose you are a subject in a perceptual exper-
iment. You are told that you will be shown a series of 
pictures and in advance, will be asked a question about 
the picture to which you should answer as quickly as pos-
sible. The picture will be shown as long as you have not 
replied, but once you reply, it will be removed. What is 
the sequence of actions within your visual system that are 
in play for this task? First of all, the initial instructions 
you receive set you up to expect a picture and to receive 
a question. The question sets up your visual system to 
expect something; say it’s your mother’s face. Whatever 
might be irrelevant to this task might be suppressed or 
ignored by your visual system. From an efficiency point 
of view, the irrelevant should be ignored to conserve 
resources. Then the picture appears and you detect its 

location and move your gaze to fixate the picture, per-
haps in the center as a default. The resulting image is 
processed by your expectant visual system. It is a picture 
of a single face on a background depicting a dining room. 
Presumably, some decision process would realize that the 
neurons that represent your mother’s face are strongly 
firing and would then signal you to respond positively to 
the question posed. The picture is taken away and your 
gaze returns to perhaps something else in anticipation of 
the next picture. Another question is asked in advance of 
the next image; say it’s to detect your father’s face, and 
you re-tune your visual system to prepare for this. This 
re-tuning might instruct the system to no longer expect 
your mother’s face, either in terms of its size, features or 
location and impose the characteristics of your father’s 
face as the relevant ones, suppressing others. The next 
picture is shown and again you orient your gaze to it. 
This time, it is not a single face on a known background 
but a group of people in an outdoor scene where one of 
them might be your father. The same process, which has 
now been primed as the one to use for detection and de-
cision-making is no longer the right one. The face is now 
much smaller, and is present in a conflicting background 
because there are many faces and they all share some 
similarities simply by being faces. You decide to begin 
a search but this requires you first to re-tune your visual 
system to process the smaller faces. You locate a face and 
then move your eyes to it and scrutinize the small features 
to check if that face could be your father’s. You move 
from one to the next until you look at them all. If you 
cannot find your father, it is likely you might go back and 
check some of the faces just in case you made a mistake, 
perhaps the lighting or viewpoint led to mis-leading cues. 
Eventually you will decide whether or not you detect 
your father’s face. This is a much longer process and one 
that requires eye movements and all the processing they 
entail. Although this description is an abstract one, and 
certainly cannot be said to include all details, it suffices to 
argue for why some kind of controlling process is needed. 
The important questions are how are all these actions and 
decisions taken at the right time, in the right order, and 
monitored for their correctness?

It would not be unreasonable to suppose that you 
know how to search a picture for a target because over 
time you have learned the algorithm. Such an algorithm 
for a complex visual behavior has been termed a Cogni-
tive Program [14] or Visual Routine [15]. It might be that 
you have learned thousands of such cognitive programs 
(CP†) and you have them stored in memory, quickly 
deploying the right one at the right time, dynamically 
parameterized for the task. These CPs would provide an 
encoding of algorithms for visual behaviors, including 
attentional actions. Many elements from the list of atten-
tional mechanisms are easily evident in these examples: 
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cessing where the computations within each layer can be 
dynamically affected or attentively modulated by an ex-
ecutive. Examples of such modulations include priming 
for a preferred task stimulus in some spatial location as 
well as in feature dimension [16], top-down suppression 
of interfering contextual stimuli within a receptive field 
[17], suppression of irrelevant or already processed in-
puts [18], etc. (see also [1]). This is in stark contrast to 
vision proposals old (e.g., [19]) and new (e.g., [20,21]) 
that do not permit any attentive control. They typically 
provide no functionality even for eye movements.

Within ST, let us consider what sort of control 
STAR-AX might embody. Classical control methods 
can be considered either as open-loop or closed-loop. In 
open loop control, the control action from the controller 
is independent of the process output whereas in closed 
loop control, the control action from the controller is de-
pendent on feedback from the process in the form of the 
value of some process variable (think of the difference 
between heating a house without or with a thermostat). 
See Figure 1.

Feedback control seeks to maintain a prescribed rela-
tionship of one system variable to another by comparing 
functions of these variables and using the difference as a 
means of control. Open-loop control is what most current 
proposals for visual processing embody; but as the brief 
overview of attentional executive control above shows, 
this is not likely what is present in the brain. It remains 
then to determine what kind of process variable (or vari-
ables) our visual systems might be using and how control 
may be performed.

One thing that seems clear is that there might be 
more than one process variable. If one considers the 

covert attention, disengage attention, engage attention, 
inhibition of return, neural modulation, overt attention, 
priming, recognition, search, selection, shift attention, 
and visual working memory. Generally, the timings of 
these actions need synchronization and coordination. The 
CP algorithm for a particular visual behavior represents 
an ordered and parameterized sequence of actions com-
prised of these attentive elements, in addition to other 
computations.

STAR-AX

STAR is the cognitive architecture [14] based on 
the Selective Tuning (ST) model of visual attention [1] 
and AX is its Attentional Executive sub-component. 
The key element of STAR-AX is that it impacts a visu-
al processing architecture that permits control: the vast 
majority of proposals and systems for visual processing 
are fixed, rigid and unchanging. They have little or no 
dynamic character. Certainly in the era of deep learning 
as the dominant methodology for vision systems, the 
previous assertions may seem odd. However, it is import-
ant to note that the dynamic character required is of a 
particular type. It needs to enable significant changes of 
the visual processing hierarchy in a moment to moment 
basis that reflect the nature of the task being performed 
and the visual context in which it is being performed. It 
does not refer to learning the basic system nor to learning 
over a period of time by adjusting that basic system as 
more data is acquired. It refers to dynamic tuning for the 
current task. STAR is designed to execute the behavior 
algorithms represented by CPs in such a dynamic manner.

ST incorporates a layered architecture for visual pro-

Figure 1. Classic control models. a) Open-loop control includes no method for monitoring or altering the system’s 
output. b) The standard closed-loop control model where the controller provides signals to the system that will bring 
it closer to a reference state. The system’s state is sensed continually and compared to the reference in order to 
determine these adjustments.



Tsotsos: Attention: the messy reality 131

performed by an increasingly lower spatial resolution 
layer. All neurons have a limited region in an image from 
which they receive input (feedforward converging con-
nections in a many-to-one fashion) and a similarly sized 
region to which they provide input to the next processing 
layer (diverging feedforward connections in a one-to-ma-
ny fashion). Each similarly receives feedback and lateral 
connections. The reason such an architecture makes the 
task easier is that it reduces the size of representations 
that need to be processed, but in doing so, sacrifices, or 
trades off, spatial resolution. Pyramid feedforward struc-
ture is now almost universally part of modern machine 
vision methods. As useful as this architecture might be, it 
also presents a number of issues most of which have not 
been widely studied (but see [25]). Some of these pyra-
mid problems are depicted in Figure 2 (see also [1,2]).

There are three major problems that will be dis-
cussed here. The first, signal interference, can be seen in 
Figure 1a and b, in the former case due to local context 
impacting every neuron’s response while in the latter case 

many different flows of information and control in the 
brain (e.g., [6,8] or proposals in [10]) it seems unlikely 
that a single dimension of optimization would suffice for 
such complex networks. Consistent with our goal of a 
mechanistic approach for control, we begin with Marr’s 
computational level of analysis [19]: consider first what 
the nature of the problem might be and what might the 
nature of a solution look like.

We begin with a computational foundation for visual 
attention. It has long been believed, and formally proved, 
that the computational difficulty of vision indicates pro-
cessing power much larger than what the brain provides 
[1,2,22,23]. One way by which the brain makes the com-
putational problem easier is to represent visual informa-
tion and its processing in a pyramid representation – a 
layered hierarchy of neuron arrays [22,24]. Each neuron 
has a receptive field centered at one location of the im-
age and each is tuned to be selective to some feature or 
feature combination. The pyramid has an input layer and 
then each layer of processing subsequent to the input is 

Figure 2. The breadth of problems inherent in pyramid representations. a) The Context Problem. A stimulus (black 
dot) within the receptive field of a top layer neuron, showing its spatial context defined by that receptive field. b). The 
Cross-Talk Problem. Two input stimuli activate feed-forward projections that overlap, showing the regions of overlap 
containing neurons that are affected by both. Those might exhibit unexpected responses with respect to their tuning 
profiles. c) The Routing Problem. Interacting top-down and bottom-up spatial search constraints are shown with the 
areas of overlap representing the viable search regions for best neural pathway. d) The Boundary Problem. The two 
units depicted in the second layer from the bottom illustrate how the extent of the magenta unit’s receptive field is 
entirely within the input layer while only half of the receptive field of the green unit is within the input layer. The bottom 
layer represents the input and higher layers the subsequent process representation. The boundary problem forces 
more and more of the periphery to not have a veridical representation in higher layers of the pyramid. (Adapted from 
[1]).
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search through the pyramid for the best interpretation. If 
the search is bottom-up — from stimulus to highest-layer 
neuron — then the search is constrained to the feed-for-
ward cone outlined by the magenta lines and ovals. If the 
decisions are based on locally maximal neural responses, 
then there is nothing to prevent a bottom-up search miss-
ing the globally maximum response at the top layer (the 
neuron in green). It is clear that to be successful, the correct 
path must always go through the overlap regions shown 
in dark ovals. But nothing guarantees that the local max-
imum must lie within those overlap regions. If the search 
is top-down — from the globally maximum responding 
neuron to the stimulus — the search is constrained by the 
dashed lines and green regions. Only top-down search is 
guaranteed to correctly connect the best responding neu-
ron at the top with its stimulus (theoretically proved in 
[1]). Even if the search direction is correct, there is still 
the possibility that its starting point, the neuron chosen 
at the top to which a decision process ascribes represen-
tative of the prediction S, might be incorrect. If correct, 
then as the search proceeds downwards, suppressing the 
irrelevant neurons, the response of that top neuron will 
monotonically increase, motivated by the observations of 
[28]. Thus, this determines the control process variable 
(successfully tested in [17,29]), whose measurements 
during the search process would satisfy the following. Let 
the response at time t of the neuron that represents S in 
network layer λ be given by ρλ(S,t). The search proceeds 
from the top layer λ = L to the earliest layer λ = 1. Then, 
if the search is proceeding successfully, for each network 
layer, ρλ(S, t+1) ≥ ρλ(S, t). This applies for S as a whole 
or any of its parts which would naturally be selected on a 
downwards network traversal. Comparing responses be-
tween layers is not appropriate since receptive field sizes 
differ and this would be orthogonal to the control goal.

Figure 2d shows the boundary problem, another 
of the issues with pyramid representations. Basically, 
the nature of spatially-limited convolution processing 
(and spatially-limited neural receptive fields) leads to 
a half-kernel width of undefined responses around the 
boundary of the visual field [1]. This effect is additive in 
a feedforward layered hierarchy and thus can represent a 
substantial portion of peripheral vision in higher layers. 
In current machine vision methods, the boundary problem 
is finessed by image padding. However, the brain does 
not have this luxury – there is no image padding. In fact, 
a more useful solution is used, namely eye movements 
[30,31]. This means that there must be some process to 
determine when the lack of veridical boundary represen-
tation is problematic and to define a new gaze fixation 
point that would remedy it. Moreover, there must be some 
process, ever vigilant to the full visual field, to determine 
when events within that non-veridical boundary must be 
attended (e.g., the flashing red light in your peripheral vi-

due to intersection of the feedforward diverging connec-
tivity patterns inherent in the architecture. The result is 
that although the visual hierarchy can see (encode) every-
thing, it might not always be able to distinguish one thing 
from another because of the interference (see effective 
demonstrations in [26]). This is a direct consequence of 
the pyramid architecture trading off spatial resolution for 
a reduction in representational size. This kind of inter-
ference is common in other domains and a well-known 
solution is available, namely, adaptive beamforming. An 
adaptive beamformer is a system that performs signal 
processing by dynamically manipulating the combination 
of signals (how they interfere with each other) so that the 
signal strength to/from a chosen direction is enhanced 
while those to/from other directions are degraded (this 
is commonly used in cellular communication). Adaptive 
beamforming seeks to maximize the signal-to-interfer-
ence-plus-noise ratio S/(I+N) [27]. In order to use this 
method – dynamic control of constructive and destruc-
tive interference – a localized representation is required. 
A distributed representation (such as one where all con-
cepts are represented using a code only recognizable by 
considering a population of responses) could not be so 
controlled. Generally, S, I, and N are not known in ad-
vance for our domain. S is dependent on input and goals 
and can only be hypothesized or predicted (e.g., expect 
to see your mother’s face). I is dependent on context but 
defined by network connectivity (e.g., context is what-
ever is in an image that is not the target of expectation, 
the room background in our example). N is dependent on 
context but defined by neural processes and their inher-
ent stochasticity. Noise cannot be controlled but I can be 
controlled because the way information flows through the 
processing network can be manipulated. Thus, the strat-
egy that will permit the system to maximize S/(I+N) is 
one where predictions are made as to what the signal of 
interest might be (is a particular patch of an image that of 
my mother’s face?) and actions are taken to manipulate 
I so as to achieve the largest increase in the strength of 
the network responses corresponding to the prediction 
S. These actions include: priming the network for S by 
suppressing portions of the network that are irrelevant 
(when looking for my mother’s face, the network units 
sensitive to image features related to office buildings are 
likely irrelevant, among others) or imposing a surround 
suppression within the network for candidate neurons in 
order to reduce any context effects. These attentional ac-
tions are basic elements of the CP for this task.

A different sort of closed-loop control process is 
required to solve the Routing Problem (Figure 2c). The 
problem arises when trying to decide which neurons 
and which pathways represent the best interpretation of 
the stimulus. The figure illustrates the extent of spatial 
constraints that may be used by a decision process in its 
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on objects centrally and modulates these depending on 
fixation history, task, and context to create a priority map 
upon which fixation decisions are made. The controlling 
loop is to move fixation through the ordered set of prior-
ity map maxima, i.e., the sequence of (xS, yS) of interest, 
which reflects this control objective.

By now it might be apparent that there is an element 
in this description that is not found in standard control 
theory methodologies. Classic methods do not include 
the ability to change the process variable dynamically, 
but this is exactly what is needed here. The variable S 
that represents the hypothesized item of interest changes 
dynamically as our tasks change. Moreover, because S 
is a hypothesis, it might be found incorrect and replaced 
with a different hypothesis. As is seen above, there are 
potentially many process variables, one for each of the 
separate attention mechanisms. As a result, STAR-AX 
proposes a re-formulation of classic closed-loop control 
by including a dynamic setting of reference points. The 
new control loop is depicted in Figure 3.

How is overall control achieved? The relevant con-
trol literature is that which pertains to multi-objective op-
timal control (e.g., [32]). First, optimization frameworks 
require some method of measuring the deviation between 

sion). A model with effective simulation performance has 
been previously presented within ST [18,30,31].

The point of an eye movement is to bring the region 
of highest acuity to the current location of interest in a 
scene. S is the hypothesized image element of interest. 
Since the fovea, and specifically its foveola, has the high-
est density of cones, it should always be placed at the 
location of maximum interest, or if there is no particular 
location of interest, then at the centroid of S as a default. 
Let the gaze position be (x, y) in retinal coordinates and 
the centroid of S be (xS, yS). The closer the point of gaze 
– or the center of the foveola – is to the object centroid, 
the more retinal cones will fall within the object, so a 
controller will seek the following objective,

at any time t. In previous work, we presented a con-
trol loop for gaze fixation prediction whose performance 
is within measurement error of human sequence predic-
tion [18,31]. A key computation used in determining the 
prediction is visual salience, but of a very specific kind 
and not simply local image conspicuity. Our model, 
termed STAR-FC (STAR’s fixation controller) computes 
salience separately based on features peripherally and 

Figure 3. The closed-loop control of STAR-AX. The intent is the same as the standard closed-loop model except 
now there are several closed-loop controllers (horizontal loops) all tied to a higher level controller (vertical loop); it 
is hierarchical (with perhaps yet a higher level controller at the task level driven by a CP [14]). The color coding of 
the elements has similar meaning to that of Figure 1b. The reference can be dynamically set depending on task 
goals shown as an input to the central control loop (corresponding to the reference variable of Figure 1b, but now 
being dynamically set). The “orange” elements are the processes that are controlled. The “green” elements denote the 
measured or observed values for each of the control variables. The “blue” element corresponds to the computation of 
the sum of deviations from the goals; the system priorities are an input to this. The “red” element determines the values 
process control γ(i, t) based on system goals.
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to parse this figure, in addition to reading the caption, 
follows. The time axis shown at the bottom applies to 
all levels of the figure. Part A is intended to show that 
control signals depend on the task of the moment. Each 
of the tasks considered are grouped by what combination 
of processing cycles on the visual hierarchy (shown in 
Part C) are needed for their solution (as is more fully de-
scribed in [1,33]). The color code matches the signals in 
the middle portion of the figure. The full temporal extent 
of the visual search task, for example, is the entire red 
line, while for the discrimination task it is the magenta 
line. The dashed portion of the task lines represent the 
pre-stimulus-onset period (where cueing might take 
place) and the solid part is the period when the stimulus 
is seen. The various components of Part B in the figure 
– priming, disengage, attention, etc. – are the specific sig-
nals that a control system must generate, with “on” and 
“off” shown at the appropriate times. These are strictly 
representative only. Part D shows a series of directed 
loops. Suppose you are conducting an experiment, say 
for an identification task. A subject would be given an 
instruction, then an image. The visual hierarchy would 
be utilized for cueing, then feedforward processing, 
then partial feedback processing, and then the trial ends 
and the sequence repeats. The sequence of trials could 
be represented by these loops, and the loop with extent 
from 0 to 215ms would be the loop of sub-processes that 
together form what the identification task requires. A sim-
ilar explanation applies for the other loops. Experimental 
justification for such a task decomposition is seen in [33-
38] where observations showing differing tasks leading 
to different completion durations are documented. There 
is no use here for open-loop control even though some 
signals in the figure might seem to imply it. The reason 
is that due to noise the actual time when one action ends 
is uncertain and thus setting the start of the next action 
without monitoring the end point of the previous would 
not lead to coordinated actions.

Let us return to the example mentioned earlier, that 
of detecting a parent’s face in a single image. In the case 
of your mother’s face in a portrait-like image, it would 
be an instance of a detection task in Figure 4 involving 
the first 150ms of the timeline of processing shown. In 
the case of finding your father’s face in a crowd scene 
this would be an instance of the visual search task which 
involves the whole time line shown and perhaps several 
repetitions of it. The structure proposed here is claimed 
to be rich enough to represent a broad variety of visual 
behaviors [1,33].

CONCLUSIONS

This paper began with the premise that attentional 
control is critical for human vision. In contrast to previous 

observed and reference (or desired) variables. Several 
such variables have been presented but there certainly are 
more. We can thus specify this deviation as,

where Δ is an appropriate norm over the i-th control 
variable. 	 is the reference value of the i-th control 
variable at time t. 	 is the observed value of the 
i-th control variable under the control signal γ(i, t). The 
set of control signals is given by Γ={γ(1, t), γ(2, t)..... γ(N, 
t)}, for N control processes at time t. Second, we note 
that each control variable will not necessarily have the 
same importance at a given point in time. Each needs to 
be weighted by w(i, t), where 0.0 ≤ w(i, t) ≤ 1.0, for the 
i-th variable at time t. Finally, the overall control strategy 
seeks to minimize the deviations between observed and 
desired outcomes and does this by generating the appro-
priate control signals to each individual attentional mech-
anism. This global objective is to seek the set of control 
signals that satisfies:

The “goals” in Figure 3 provide the information on 
context, task and knowledge needed to dynamically set 	
	 , whereas the “priorities” provide information 
for w(i, t). See the figure caption for further detail.

Figure 3 depicts a 2-level control regimen, but there 
is nothing to limit this to two levels only. It is easily ex-
tended to more levels to create a control hierarchy. More-
over, this need not be a strict hierarchy but can take a 
lattice form if needed. For example, STAR requires both 
an attention and a task controller [14]. This could be a 
third level in an extension of the figure. Since the task 
controller would also oversee memory structures, motor 
structures and other sensory processing in addition to 
vision, a branching of control loops would arise. Further 
development of this is future work but this shows how 
one might approach this problem.

The control schemes just described represent first 
steps towards an overall attentional executive for vi-
sion. They are more than speculative proposals but still 
far from being fully proved. There is clearly much to be 
done before all of the attentional mechanisms listed at 
the beginning of this paper can be orchestrated to provide 
observed human behavior. However, we now provide a 
small look into what the goal might be.

Figure 4 depicts an example of how the various con-
trol signals required for some visual tasks might appear. 
The only part of each signal that is shown is its “on” and 
“off” point, not magnitudes or any other detail, which 
have clear importance and need to be properly specified. 
The signals themselves appear in the middle portion of 
the figure, with the x-axis representing time. The way 
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shown in Figure 4, the visual task of the moment plays 
the role of that directive via its representation as a CP. 
The CP determines how the visual hierarchy is tuned and 
deployed, how long the task takes to complete, what sub-
tasks are required for its completion, and their ordering.

A key assumption here is that the start and end of 
each of the behavior elements listed for our toy example 

proposals for an attention executive, the one presented is 
not based on brain connectivity, brain areas or other par-
ticular behaviors. Instead, its foundation begins with the 
computational characteristics of the structures involved 
in vision. Based on these, we define several different con-
trol goals, each for a specific attentional mechanism. To 
tie these together, the executive needs a directive, and as 

Figure 4. The cyclic control signals required for each of a number of different kinds of visual tasks. A. The set of 
tasks considered appear at the top, with the temporal extent of each shown in a different color. B. The set of control 
signals shown by the blues line to the right of the labels. These blue lines are intended to represent the timing of 
when the controller must generate an instruction appropriate to the indicated label. For example, in order to select the 
cFOA (central focus of attention), two actions are required at the end of the first feedforward pass through the visual 
hierarchy, namely, a selection of the strongest response followed by a matching function to compare what that strongest 
response represents to the goals of the task. Note how some signals (for example, “null blackboard”) have multiple 
and different colored pulses, one pulse for each layer of the visual hierarchy. C. ST has different temporally ordered 
stages of visual processing [33], beginning with top-down priming due to task instructions or knowledge and context, 
feedforward processing of visual signal, decision-making to confirm if a task is complete, recurrent processes to reduce 
network signal interference and permit identification of features or location, search of an image that would entail cycling 
through various parameterization of the previously listed tasks, and so on. Several experimental results support this 
conceptualization [1,34]. D. These oval circuits are intended to show the different kinds of attention cycles that this 
sequence of processing stages is capable of representing. Namely, a single attentive processing cycle may or may not 
include a priming stage, it would end at 150ms if the task was a simple categorization (no attention is needed), or it may 
require precise localization, etc. This degree of flexibility is a unique feature of STAR.
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pirical verification is required to be sure, but at least here 
this is possible, whereas with the other models it is not.

Of course, there are open problems with the overall 
solution we have sketched. What are all the control vari-
ables? We have presented three possible ones, but these 
are neither the full set nor are we sure they reflect single 
processes in the brain. We have not specified any of the 
weighting factors nor how they might be determined. 
Finally, it is uncertain what the best way to represent sys-
tem goals and knowledge in such a control regimen. It is 
likely that specific learning paradigms would be relevant 
here, and useful directions are highlighted in Kumaran et 
al. [44]. Much remains for future work.

The messy reality of attention is that it has many 
facets and their orchestration is complicated. It might 
be that with better understanding of how humans attend 
and behave, the story will become neater. What has been 
presented here can at least present new hypotheses to test 
whose conclusions might help tidy things up.
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