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Abstract:

Glaucoma is the leading cause of irreversible blindness worldwide, with many individuals unaware of
their condition until advanced stages, resulting in significant visual field impairment. Despite effective
treatments, over 110 million people are projected to have glaucoma by 2040. Early detection and
reliable monitoring are crucial to prevent vision loss. With the rapid development of computational
technologies, artificial intelligence (Al) and deep learning (DL) algorithms are emerging as potential
tools for screening, diagnosing, and monitoring glaucoma progression. Leveraging vast data sources,
these technologies promise to enhance clinical practice and public health outcomes by enabling earlier
disease detection, progression forecasting, and deeper understanding of underlying mechanisms.
This review evaluates the use of Big Data and Al in glaucoma research, providing an overview of
most relevant topics and discussing various models for screening, diagnosis, monitoring disease
progression, correlating structural and functional changes, assessing image quality, and exploring

innovative technologies such as generative Al.
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Introduction

laucoma is the leading cause of

irreversible blindness worldwide.™
Most affected individuals are not aware
of their condition during its early phase,
primarily because symptoms only become
apparent in advanced stages.*® In fact,
roughly one-third of patients may experience
advanced visual field impairment in at least
one eye upon diagnosis.”®! Although there
are various effective treatment options
available, it is projected that over 110 million
people will have glaucoma by 2040.!" Thus,
itis crucial to develop tools for detecting the
disease in its early stages when treatment is
still effective and for reliably monitoring its
progression to prevent vision loss.

Extensive research is underway on screening
and disease monitoring tools, particularly
with the advancement of computational
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capabilities. Artificial intelligence (AI)
and deep learning (DL) algorithms,
leveraging vast and dynamic data sources,
have emerged as leading-edge research
methods for screening, diagnosing, and
tracking the progression of glaucoma. Thus,
understanding these technologies, combined
with well-curated big data, when applied in
appropriate clinical contexts, holds promise
for enhancing both clinical practice and
public health outcomes. Al models offer the
potential to detect diseases at earlier stages,
forecast their progression, and develop
models that deepen our comprehension of
their underlying mechanisms and treatment
options.

The objective of this review is to conduct
a comprehensive evaluation of the use of
large datasets and Alin glaucoma research.
We initially provide a brief overview of
big data and Al terminology, followed by
detailed discussions on different models
being developed for different aspects of
glaucoma research. These include screening
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and diagnosis, monitoring disease progression,
establishing correlations between structural and
functional changes, assessing image quality, and
exploring innovative technologies such as generative Al.

Big Data

Increasing technological power has created exciting
opportunities for the development of new technologies
and solutions within health care. For example,
advancements in data storage set the stage for the
“Big Data” era. This term involves many definitions,
primarily consisting of the three “Vs:” volume, velocity,
and variety.”! Volume emphasizes the sheer amount
of data, ranging from tens of terabytes to hundreds of
petabytes. Velocity highlights the rapid rate at which
data are received and acted upon, particularly crucial
for real-time evaluation and action (translating data
into research and real-world applications). Finally,
variety underscores the diverse types of data, including
unstructured types like text (medical annotations,
tabular epidemiological data, etc.), audio, video, and
images, requiring preprocessing for meaningful insights
and metadata support.

In the health-care industry, various sources continuously
generate data, such as hospital records, medical
examination results, and patient medical records. To
provide meaningful information and value, these data
must be stored, organized, and managed. One way to
store these continuously growing data is through “data
lakes.” The term refers to the symbolic representation
of a lake that receives all kinds of data, structured and
unstructured, from diverse sources, in a constant flow,
without prior filtering. This concept contrasts with
“data warehouses,” which contain preprocessed and
filtered data tailored for specific purposes. Data lakes
are beneficial for maintaining the raw data structure,
thus preserving the fidelity and origin of the data, albeit

requiring increased maintenance [Figure 1]. However,
medical data present an additional challenge for big
data assembly, primarily because it consists of sensitive
patient information. Each hospital, industry, or clinic
may construct its own data lake and warehouses,
depending on how they intend to manage and utilize
these data.

Big data in ophthalmology

Ophthalmology relies heavily on auxiliary imaging tests,
placing it in a unique position to integrate various types
of data for innovative solutions using new technologies.
However, ophthalmology is often practiced in numerous
clinics where data remain siloed and are not easily shared.
Even in large academic institutions, data collection
frequently involves different equipment without
proper standardization. This contrasts with radiology,
where the Digital Imaging and Communications in
Medicine (DICOM) format is widely used for consistent
data sharing.!"” This lack of interoperability hampers the
development of impactful research that could ultimately
improve patient outcomes.

Within this field, innovative solutions are being developed,
mainly utilizing cloud technology to enable interoperability
for connecting and exchanging data in the cloud rather
than usinglocal data lakes and warehouses. Big technology
companies, such as Microsoft, Amazon, Google, and
others, have developed application programming
interfaces to securely store and exchange medical data in
different formats, such as Fast Healthcare Interoperability
Resources, Health Level Seven International, DICOM, and
other structured and unstructured medical data. Some
of these applications already support diverse platforms
and multiple ecosystems, facilitating data management
and manipulation, hence development of new research
and tools. These new approaches facilitate data sharing
and interoperability; however, they are still not widely
adopted.

Diverse
source of
data

Diverse
_ source of
data

Diverse
source of
data

oo

Figure 1: A data lake continuously receives a variety of raw data from numerous sources. Data scientists and researchers analyze subsets of these data to generate insights
and ideas for new projects. The relevant data are then cleansed and organized into structured formats, which are subsequently migrated to data warehouses for easier access

and analysis
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One option for worldwide data sharing is the open-access
data model. According to Khan et al.,"! there are
94 open-access ophthalmology datasets containing
507,724 images and 125 videos from 122,364 patients.
The majority of these datasets originated from Asia,
North America, and Europe, with a disproportionate
representation of glaucoma, diabetic retinopathy, and
age-related macular degeneration over other diseases. In
addition, 27 open-access datasets had barriers preventing
direct download, and 19 had regulated access, requiring
licenses, payments, or approval from ethical committees
or institutions.!"!

Open-access datasets in ophthalmology offer
researchers easy accessibility to diverse imaging
data, facilitating innovative research and the
development of machine learning (ML) models.
However, challenges such as limited discoverability,
inadequate reporting of dataset information, and
issues with data representation can hinder the quality
and generalizability of research findings.!">'* Publicly
funded big data open-access datasets can address
some of these challenges. For instance, UK Biobank
and All of Us databases, with public investment from
the United Kingdom and United States, respectively,
have resulted in generation of important knowledge
within health care, including glaucoma research.!'>]
These approaches to data sharing and interoperability
serve as powerful enablers for research, particularly
for evolving DL and Al algorithms, which are highly
dependent on data.

Artificial Intelligence

Al is a subset of computer science that aims to mimic
human intelligence through sophisticated computational
resources and extensive data. ML, a broader field within
Al, employs mathematical and statistical algorithms

Artificial Intelligence
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Figure 2: Diagram of major divisions of artificial intelligence and examples within
each. CNN: Convolutional neural networks; RNN: Recurrent neural networks;
UNet: “U-shaped” neural network; LSTM: Long Short-Term Memory; GAN: Generative
adversarial network; LLMs: Large language models; PCA: Principal component
analysis; SVM: Support vector machine
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to recognize patterns and make predictions on data
without direct human programming. In the context of
glaucoma, some of the most significant Al applications
involve classifying images for diagnosis and predicting
disease prognosis and progression. ML has been used
for decades in its more traditional sense, with algorithms
such as support vector machines and decision trees,
among others [Figure 2]. These algorithms rely on
structured data (i.e., standardized tables), and despite
achieving satisfactory results for many tasks, they have
limitations in terms of the complexity of data that can
be handled.!

More sophisticated models have been developed
to overcome these challenges, such as neural
networks (NNs). The development of NNs was primarily
inspired by human biology, adopting the concept of
hidden layers with neurons. These networks consist of
interconnected neurons that adjust their weights through
numerous iterations, known as epochs in AI/ML. With
each epoch, the network learns and refines its ability to
achieve desired outcome [Figure 3]. These models are
also called DL models because they utilize several (deep)
hidden layers in addition to input and output layers.
DL models work by employing activation functions
within each neuron, which forward information through
the network. The model then receives a loss score
from backpropagation, which measures the difference
between the predicted output and the ground truth based
on predefined metrics. This iterative process allows the
network to adjust its weights, improving performance
in subsequent epochs. Despite their complexity, DL
models have gained popularity due to their ease of use,
with many being freely available through programming
language libraries.

Regardless of the model and training settings, NNs must
be instructed on how to achieve the desired outputs. In
general, we can separate the training methods according
to the learning approach, namely supervised learning,
unsupervised learning, and semisupervised learning.
Supervised learning requires a fully labeled dataset for
training. For instance, for the classification of fundus
photographs for glaucoma diagnosis, a supervised
DL model would receive as input an image paired
with a label indicating whether the photograph is of
a glaucomatous or normal eye. The model will then
learn the distinctions between the images, produce a
classification result, and refine its accuracy by comparing
its output with the ground truth given by the label.
Unsupervised learning, as the name suggests, does not
require labels; hence, this approach is mostly used to
find patterns within a given dataset. Semisupervised
learning consists of a combination of supervised and
unsupervised learning, where labeled and unlabeled
data can be used.!"”!

301



HIDDEN LAYERS

INPUT LAYER

oo

A
\/ 4

OUTPUT LAYER

Predictions

True values

[ FORWARD PROPAGATION >

< BACK PROPAGATION |

Figure 3: Neural networks receive data through the input layer, which contains as many neurons as necessary, depending on the data format. Each neuron in the input layer
passes information forward to the next hidden layer after being activated by a function “f.” This process, called forward propagation, continues through the hidden layers until the
output layer is reached, where the prediction is made. A loss value is then calculated, and through backpropagation, the network updates the weights of the neurons iteratively

to improve accuracy

One of the most studied and widely used DL architectures
in ophthalmology is the convolutional NN (CNN). These
models have become widely popular to handle image
data.” A convolution is a mathematical operation that
combines two functions to produce a third. In CNNs,
convolutions are essential for feature extraction. This
process involves applying a filter (or kernel) to an input
to create a feature map. For example, in CNNs trained
for glaucoma detection on fundus photographs, multiple
hidden convolutional layers apply different filters to the
fundus image to extract key features. The neurons then
adjust their weights based on the relationship between
these features and the desired output. Because CNNs
often require large datasets to accurately learn important
features, a technique called transfer learning is commonly
used to achieve higher accuracy with less data. Transfer
learning leverages pretrained models on large datasets to
improve performance on new, smaller datasets.

In transfer learning, a model developed for a particular
task is reused as the starting point for a model on a
different task. It involves the utilization of pretrained
model weights, which are the learned parameters from
training on a large dataset. The most used dataset for
training such complex models is ImageNet, which
contains millions of real-world images of various
objects and scenes.?!l Even though there are significant
differences between medical images and the everyday
images in ImageNet, the pretrained model can still be
very useful. This is because the early layers of these
models learn to detect general features, such as edges
and textures, which can be relevant for many types of
images, including medical ones. To adapt a pretrained
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model to a specific type of medical image, such as fundus
photographs or optical coherence tomography (OCT)
scans, we use a process called fine-tuning. Fine-tuning
involves adjusting the model to better fit the new
dataset by tweaking certain parameters, known as
hyperparameters. Two important hyperparameters are
the learning rate, which controls how much to change
the model in response to each new piece of data, and
the optimizer function, which is the algorithm used to
update the model’s weights based on the learning rate.
By fine-tuning a pretrained model, we can leverage
the extensive features learned from large datasets like
ImageNet and apply them to more specific tasks in
ophthalmology. This approach not only saves time and
computational resources but also often results in better
performance compared to training a model from scratch.
Ultimately, this makes it easier to develop accurate and
efficient models for analyzing ophthalmology images.

In glaucoma, given the diversity of data, many different
approaches and architectures have been used to evaluate
imaging and structured tabular data. Table 1 summarizes
recent research literature using these technologies for
various applications, including screening and diagnosing
glaucoma, predicting disease progression, analyzing
function-structure correlations, and addressing data
challenges. It also highlights the use of generative Al,
which will also be discussed further in this review.

Artificial intelligence for glaucoma screening and
diagnosis

Detecting glaucoma before substantial vision loss
occurs is crucial due to its asymptomatic nature in early
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stages. However, current screening strategies are not
sufficiently effective in identifying all patients with
glaucoma in the population and case detection still
mostly relies on opportunistic screening during routine
visits to ophthalmologists. To address this challenge,
numerous Al models have been developed to attempt
to improve glaucoma detection;**!however, care must
be taken when analyzing their results. When analyzing
the results of these models, it is important to consider
the differences between screening and clinical settings.
Screening populations typically have a much lower
pretest probability of having the disease compared to
clinical populations. As a result, a highly sensitive tool
validated in a clinical setting may produce a significant
number of false positives when applied to a screening
population. This could lead to unnecessary anxiety
and additional testing for individuals who do not have
glaucoma.?! Distinguishing early-stage glaucoma
from normal variations in optic disc appearance can be
challenging. Screening programs that aim to detect very
early stages of the disease may face high failure rates
due to these difficulties. Instead, focusing on identifying
confirmed cases of glaucoma that are still asymptomatic
can enhance the accuracy and effectiveness of screening
programs.

Fundus photographs

The fundus examination is a vital noninvasive test for
diagnosing ocular diseases, like glaucoma. One benefit
of using colored fundus images is their affordability
and accessibility for acquisition. This is facilitated by
the availability of numerous portable nonmydriatic
fundus cameras, some of which even allow the use of
smartphones for image capture.®!

In a recent study, Rao et al.®® developed an offline Al
system for detecting referable glaucoma in a screening
setting, using a smartphone-base fundus camera that
captures monoscopic color fundus images. The study
included 6674 images, of which 1813 (27.2%) were
diagnosed with glaucoma, 1142 (17.1%) were considered
suspects, and 3719 (55.7%) were normal eyes. These
images were obtained from 243 subjects, used to train
and evaluate the model’s performance. The primary
outcome measure was the Al’s ability to detect referable
glaucoma compared to diagnoses made by glaucoma
specialists after a full glaucoma evaluation. Their DL
model, consisting of segmentation and classification
modules®'based on a ResNet50 pretrained on ImageNet,
achieved a sensitivity of 93.7% (95% confidence
interval [CI]: 87.6%-96.9%) and specificity of 85.6% (95%
CI: 78.6%-90.6%) in detecting referable glaucoma.
Despite the advantages of this low-cost and accessible
offline system, it is important to note that 14.4% were
false positives, which could pose a burden in large-scale
screening settings.
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In a similar approach, using an online available big
data called LabelMe (Healgoo Ltd., LabelMe dataset;
http://www.labelme.org), Li et al.B’% developed a
model to classify fundus photographs as “referable”
for glaucoma based on human graders. They retrieved
70,000 fundus photographs and selected a total of 48,116
with visible optic discs which were labeled by 21 trained
ophthalmologists. The training and validation sets
consisted of 31,745 and 8,000 images, respectively. Using
InceptionV3 architecture as backbone, a CNN with
many layers, pretrained on ImageNet, they achieved
an area under the receiver operating characteristic
curve (AUROC) of 0.986, a sensitivity of 95.6%, and a
specificity of 92%. Despite achieving a higher specificity
than previous similar studies,””” the methodology was
unclear regarding whether the split was conducted at
patient level, or if there was an external testing set. This
lack of clarity may compromise the reported results due
to potential data leakage and bias introduced during
model training and evaluation.®? A CNN model learns
to discern both low-level and high-level features from
input image data. If images from the same patient are
used in both the training and testing phases, the model
may appear to achieve high accuracy. However, this
accuracy can be misleading due to the introduction of
bias. This bias occurs because the model has already seen
and learned specific features from the training images
that are also present in the testing images, making
the prediction of “unseen” data easier and not truly
representative of its performance on entirely new data.!l
Therefore, when using CNN models in health-care
settings, it is crucial to curate an external testing dataset
that is distinct from both the training and validation
datasets. This separation should be implemented at
the patient level to prevent data leakage and minimize
bias, ensuring that the model’s performance is genuinely
indicative of its ability to generalize to new, unseen
patient data.

Saha et al.®? achieved improved results with a less
computationally demanding model. The authors trained
DL based on a You Only Look Once (YOLO) CNN model
with a MobileNet architecture pretrained on ImageNet
using images from publicly available datasets.***' YOLO
is an architecture designed for image detection; in this
case, it was used to detect the optic nerve head and create
a bounding box to focus on the area of interest. From
there, features were extracted for binary classification by
the MobileNet head. The authors reported an accuracy
and F1 score of 97.4% and 97.3%, respectively, with
sensitivity, specificity, and AUROC of 97.5%, 97.2%, and
0.993, respectively. The model training was performed
in a 10-fold cross-validation manner, and it was not clear
if the reported accuracy metrics were from an external
validation set. However, the authors demonstrated that
a less computationally expensive architecture could
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perform as well as, if not better than, more robust
architectures on the given dataset.

Most existing models for glaucoma detection have been
trained using supervised learning, relying on human
gradings. However, subjective assessments by human
graders can lead to variability and inconsistency.
Studies have shown poor interrater reliability and
limited reproducibility among human graders for
glaucoma diagnosis.**l These limitations underscore
the need for more objective and reproducible measures
to serve as reference standards in developing diagnostic
models. Medeiros et al.* applied this rationale to
develop DL models capable of predicting objective
measurements from spectral-domain OCT (SDOCT)
using simple fundus photographs. This approach,
known as machine-to-machine (M2M), enables the
model to take an optic disc color photograph as input
and predict the retinal nerve fiber layer thickness
(RNFLT) as output. By utilizing a Residual Deep Neural
Network (ResNet34) as the backbone, pretrained on
ImageNet, the M2M model achieved a mean absolute
error (MAE) of just 7.39 pm on an independent test set
[Figure 4]. By quantifying an objective measure, the
M2M model could more reliably distinguish between
glaucomatous and normal eyes. When compared to
SDOCT RNFLT, defined based on visual loss, the model
achieved an AUROC of 0.940, which was similar to that
of SDOCT (P = 0.724). Activation maps!**°! were used

to visualize the features considered most important by
the model [Figure 5].

Thompson ef al.*! conducted a follow-up study using
a similar method, with the SDOCT Bruch’s membrane
opening-minimum rim width (BMO-MRW) parameter
as the reference standard for labeling optic disc
photographs. This approach is particularly useful in
challenging cases that can affect the peripapillary retinal
nerve fiber layer (RNFL) measurements, such as high
myopia and peripapillary atrophy. The DL model’s
predictions showed a strong correlation with actual
BMO-MRW values (Pearson’s v = 0.88, P < 0.001), and
an AUROC for discriminating glaucomatous from
healthy eyes of 0.945, compared to 0.933 for actual OCT
measurements (P = 0.587).

Optic coherence tomography images

SDOCT has become the predominant diagnostic
instrument for identifying structural damage indicative
of glaucoma.* Tt allows for the assessment of the optic
nerve head, macula, and RNFL and is employed in clinical
settings for diagnosing and monitoring progression of
glaucoma.** SDOCT provides two-dimensional (2D)
B-scans as well as volumetric two-dimensional (3D) scans,
which enable the development of diverse DL models.

One of the main structural pieces of information provided
by SDOCTs is the RNFLT measurement. Traditional
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Figure 4: (a) Scatter plot showing a high correlation between original optical coherence tomography (OCT) retinal nerve fiber layer (RNFL) thickness versus predicted RNFL
thickness obtained by the machine-to-machine model. Examples of a (b) normal and (c) glaucomatous optic disc photographs. The OCT thickness measurement, the model
prediction, and the probability of abnormality estimated by the model are displayed above each photo (adapted from Medeiros et al.*))
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assessment of RNFLT with OCT requires accurate
segmentation of the RNFL layer. However, conventional
segmentation algorithms are prone to errors, affecting
the accuracy of RNFLT measurements, which are critical
for detecting glaucomatous damage.®!! These errors
can lead to misdiagnoses, such as false positives or
“red disease.” To bypass the need for segmentation,
Thompson et al.®¥ developed a segmentation-free
DL algorithm to assess glaucomatous damage by
analyzing the entire 2D B-scan image from SDOCT.
Their model had greater accuracy for detecting structural
glaucomatous damage compared to conventional RNFLT
parameters (AUROC of 0.96 versus 0.87, respectively,
P <0.001). This approach also simplifies the diagnostic
process by reducing the risk of errors associated with
the interpretation of multiple summary parameters from
conventional SD-OCT.

In a similar way, Mariottoni et al.5 demonstrated
that a segmentation-free DL algorithm could predict
RNFLT when assessing a raw OCT B-scan. The authors
developed a model based on ResNet34 as backbone,
pretrained on ImageNet. The predicted unsegmented
RNFLT showed a strong correlation with conventional

Figure 5: Examples of class activation maps (CAM) to demonstrate how heatmaps
can be used to visualize the regions on which models primarily depend to predict their
outcomes. (a and b) Gradient-weighted CAM from the machine-to-machine model
highlights the optic nerve head and surrounding retinal nerve fiber layer (RNFL). The
model ensemble could predict RNFL thickness from input fundus photographs, and
using this technique allows us to see that the model is correctly learning from the most
important regions for this task (adapted from Medeiros et al.*4). (c) Spectral-domain
optical coherence tomography B-scan with segmentation errors highlighted by the
CAM heatmap (adapted from Jammal et al.®)
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RNELT (r = 0.983, P < 0.001), with a MAE of about 2
um. Notably, even in instances where conventional
segmentation failed, the DL model reliably extracted
RNFLT information [Figure 6].

Along those lines, Chiang et al.*® employed 3D scans
of both the optic nerve head and macula to investigate
whether combining these regions enhances diagnostic
accuracy compared to analyzing them separately. They
implemented a UNet++ model for segmenting OCT scans
and a 3D-CNN classification algorithm, achieving high
diagnostic accuracy (AUROCs of 0.99 for wide-field scans,
0.93 for ONH scans, and 0.91 for macula scans). However,
their small dataset could lead to generalization errors. In
addition, the segmentation task showed strong results (Dice
coefficient of 0.94), but misclassifications occurred when the
lamina cribrosa was not correctly segmented.

Thiéry et al.’®! employed geometric or graph NNs,
which are computational models that adopt the
conceptualization of data structure as graphs,
characterized by nodes and edges. The authors utilized
3D scans of the optic nerve head to build a geometric
DL model for glaucoma diagnosis. First, they converted
scans into a 3D point cloud with approximately 1000
points, segmented into 7 layers, where the nodes
contained information about the given layer. Afterward,
their algorithm PointNet classified it as a glaucomatous
optic disc or not. Their model achieved better AUROC
than a 3D CNN (0.95 vs. 0.87, respectively).

Detection of progression
Detecting glaucoma progression is crucial for effective
treatment and preventing vision loss. However,

RNFL: 162 ym

Best available estimate : 68 ym

Best available estimate : 68 ym

Figure 6: Spectral-domain optical coherence tomography B-scans from the same eye,
captured on the same day (a) depicts a clear segmentation error, resulting in a spurious
global retinal nerve fiber layer (RNFL) thickness value of 162 um. The segmentation-free
model predicted 66 um for global RNFL thickness based on the same image.
High-quality images available on the same day (b and c), without segmentation error,
revealed that the correct global RNFL thickness value was very close to the estimate
from the segmentation-free model (adapted from Mariottoni et al.>)
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identifying progressing cases presents various
challenges. The tests used to assess change over time,
such as SDOCT and perimetry, show significant test—
retest variability, making it difficult to distinguish true
change from variability.5”} Structural and functional
changes associated with glaucoma can be subtle in early
stages and pose technical challenges in later stages. For
instance, capturing these changes through SDOCT may
be impeded by a “floor effect,” and the reliability of
visual field tests may be compromised in later stages.
Moreover, a lack of consensus on specific criteria for
diagnosing visual field or structural progression in
glaucoma hinders progress in the field and complicates
comparing results of different approaches.?!

Unsupervised learning techniques have been employed
in ophthalmology to predict glaucoma progression
using imaging. Yousefi et al.’®® could classified 18
visual field defects” pattern in the Ocular Hypertension
Treatment Study, with 13 resembling those identified
by experts, and one associated with rapid progression.
Similar to principal component analysis and archetypal
analysis, where the machine learns the most important
features of a standard automated perimetry (SAP) test,
Berchuck et al.® employed a variational autoencoder
(VAE) model to learn a low-dimensional representation
of SAP visual fields. By applying this technique to 29,161
fields, they found that the model could identify 35%
of eyes as progressors compared to 15% using mean
deviation (MD) when predicting the rate of change.

Other DL techniques focused on time series events, such
as recurrent NNs (RNN), have also been utilized.[®! By
providing five consecutive visual fields, these models
achieved better predictions of the sixth test compared
to conventional pointwise ordinary linear regression.
Similarly, long short-term memory (LSTM) NNs were
employed by Dixit et al.l'l The authors trained two
networks: one using only visual field tests and another
supplemented with basic clinical data from 11,242
eyes. Using VFI slope, MD slope, and pointwise linear
regression methods as benchmarks, they found that the
model incorporating clinical data, especially intraocular
pressure, performed best. They reported AUROC values
between 0.89 and 0.93, and precision-recall curves
between 0.77 and 0.80, suitable for analyzing unbalanced
data.

A more recent approach for evaluating and predicting
time series sequences, like the progression of glaucoma,
involves leveraging attention mechanisms within DL.[¢?!
Unlike traditional methods like RNNs and LSTM
networks, which aim to capture temporal dependencies
by propagating information from one time step to the
next, attention mechanisms have introduced significant
advancements, particularly in handling long-time series
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data. These mechanisms allow the model to focus on
relevant parts of the input sequence, thereby enhancing
its ability to understand complex patterns and improve
predictions. For instance, in recent research, Hou et al.1%!
applied a gated transformer network, which relies on
attention mechanisms, to predict visual field worsening
with longitudinal OCT data. Using clinical data and OCT
metrics as input, they generated a worsening probability
for a given eye with a time series of at least 5 SAP tests,
employing 7 methods as reference standards (three
trend based, three event based, and a seventh one that
considered all the previous). The authors reported high
AUROC:s for the proposed methods. However, the
precision-recall curves evaluating the accuracy of the
model were only fair, indicating that the model would
likely face challenges in real-world settings or external
data.

Mandal et al.® developed a weakly supervised time
series learning model to differentiate aging from real
progression in glaucoma. By combining a 3D-CNN,
ResNet50 pretrained on ImageNet, with an LSTM,
the authors addressed the challenge of distinguishing
true glaucomatous changes from normal aging
effects in SD-OCT B-scans. Their approach involved a
noise-positive unlabeled DL algorithm trained using
two schemes: one to identify age-related changes by
differentiating test sequences from glaucoma versus
healthy eyes and another to identify test-retest variability
based on scrambled OCTs of glaucoma eyes. Their
CNN-LSTM model, integrating features from both
schemes, achieved a hit ratio of 49.8%, significantly
outperforming the OLS regression method’s 28.4% for
global RNFLT and 22.1% for global or sector RNFLT,
when specificities were equalized to 95% (P < 0.001).

Structure—function

Several eloped to assess the relationship between
different structural and functional measures in glaucoma.
Mariottoni et al.[®l used 26,499 pairs of SAP and SDOCT
to train and evaluate a model that could map visual field
defects from RNFL damage. With a customized CNN,
they assembled a model that predicted SAP sensitivity
from RNFLT and generated a structure—function map
from simulated defects. This algorithm could assist
in interpreting SDOCT and SAP findings in clinical
settings, as well as in evaluating prognostic implications
of RNFL abnormalities in glaucoma. In another work,
Hemelings et al.!l used unsegmented circumpapillary
OCT scans and scanning laser en face images to estimate
the MD value and the 52 threshold points from SAP
tests, employing an Xception architecture pretrained
on ImageNet. Macular and optic nerve head OCT
scans paired with SAP tests, ! OCT circle scans,®! and
multimodal architectures!®” have also been employed
for such tasks; however, they achieve similar results
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and are yet to be optimized for clinical and research
implementation, especially due to lower correlations
observed in initial and advanced disease stages across
these studies.

In a different approach, Montesano et al.”! developed a
DL model focused on enhancing SAP acquisition through
structure-function predictions, particularly targeting the
perimetric strategy. Their stacked model integrated CNNs,
VAEs, and XGBoost™ utilizing SDOCT B-scan images and
corresponding RNFLT profiles as inputs. The ensembled
predictions from XGBoost were applied to simulate variants
of the sequential testing (ZEST) strategy, a Bayesian
approach for determining sensitivity at specific locations
through iterative updating of prior probabilities. The
enhanced ZEST strategy incorporating spatial relationships
demonstrated improved test speed and accuracy compared
to the standard approach. Despite promising simulated
results for enhancing SAP test efficacy and speed, further
validation in real-world clinical settings is necessary.

Deep learning for image quality assessment
CNNs have been extensively used for many tasks in
glaucoma research, as discussed. This technique offers
the advantage of addressing the “black box” issue often
associated with DL, especially through techniques like
activation maps. As previously stated, these maps allow
visualization of the regions where the models are most
focused, which could aid in the detection of artifacts and
other features that may affect image quality and reliability.
An illustrative example of this approach in clinical
and research settings was demonstrated by Jammal
et al ®! [Figure 4]. The authors employed 25,250 SDOCT
B-scans, which were reviewed for segmentation errors
by human grades, to fine-tune a pretrained ResNet34 on
ImageNet for detecting RNFL segmentation errors. They
reported an AUROC of 0.979 (95% CI: 0.974-0.984) with
an overall accuracy of 92.4%, and a sensitivity of 98.9% for
severe segmentations errors. Despite being trained only
on circle B-scans from a single SDOCT model, it might
be a helpful tool to aid researchers to automate quality
assessment of large datasets, for instance.

With similar approach, Shi et al.”>7 developed a novel
application using RNFLT maps. They employed a
UNet-like architecture, with an encoder for feature
extraction and dimensionality reduction and a decoder
for generating corrected images from encoded data.
By introducing artificial artifacts to 27,319 high-quality
RNFLT maps, the model achieved a MAE of 9.89 um and
a Pearson’s correlation of 0.90 (P < 0.001). The authors
evaluated clinical utility using a trained VGG-16 model
to predict MD and total deviation values from both
uncorrected RNFLT maps and predicted-corrected
maps. Artifact correction improved R-squared (R2)
values for visual field prediction in RNFLT maps with
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artifact ratios >10% and >20% by up to 0.03 and 0.04,
respectively, indicating enhanced predictive accuracy
in these subsets. However, despite stronger correlations,
their approach did not improve progression forecasting
for other evaluated groups.

Generative artificial intelligence

Generative Al represents a significant shift in Al, distinct
from traditional methods. While conventional Al
focuses on predicting predefined outcomes from given
prompts or existing data, generative Al is designed to
autonomously create synthetic data. It does this using
large-scale datasets to learn features, which are then
distilled into vectors within a multidimensional space.
By introducing random variations, generative Al can
produce new outputs that mimic the characteristics of
the training data, providing a different approach to data
generation and analysis. One of the earliest and most
popular generative Al architectures in glaucoma research
are the generative adversarial networks (GANs). GANs
consist of two NNs: the generator and the discriminator,
engaged in an adversarial training process. The
generator aims to produce synthetic data samples
resembling the training data, while the discriminator
endeavors to distinguish between real and synthetic
data. Through iterative training, the generator refines
its ability to generate increasingly realistic outputs,
while the discriminator enhances its capacity to discern
between real and synthetic. These architectures might
be used to enhance models’ development, by generating
good-quality synthetic data that can be input for
training, as well as to overcome the challenge for data
interoperability between different instruments. As an
example, He ef al." tried to improve the use of different
cameras to diagnose primary open-angle glaucoma
from fundus photographs by testing a DL model (an
InceptionV3 pretrained on ImageNet) on synthetic
images generated from two different devices. Their
GAN model reduced false positive results for glaucoma
diagnosis when compared to real data only and increased
Pearson’s correlation coefficients for cup-to-disc area.

In an effort to remove artifacts from RNFLT, Cheong
et al.” developed DeshadowGAN, a customized GAN
aimed at eliminating blood vessel shadows from OCT
B-scans. They trained and evaluated their model using
2328 optic nerve head B-scans, assessing performance by
measuring intralayer contrast, a metric where 0 indicates
absence of shadows and 1 indicates their full presence.
The model reduced intralayer contrast by approximately
33.7% +6.81% for the RNFL, 28.8% +10.4% for the inner
plexiform layer, 35.9% +13.0% for the photoreceptor
layer, and 43.0% +19.5% for the retinal pigment
epithelium layer. However, it was exclusively tested on
healthy eyes and has not been validated on pathological
conditions. Moreover, as the images were sourced solely

Taiwan J Ophthalmol - Volume 14, Issue 3, July-September 2024



from a single OCT device, potential limitations may
arise when applying the model to images from different
devices, highlighting a challenge in deploying diverse
DL models across varied datasets.”!

GAN architectures were also employed to generate
synthetic images to improve training for diagnosis
of angle-closure with anterior chamber OCT/”!
and to generate circumpapillary OCT to diagnose
glaucomatous damage.” Both models achieved higher
AUROC when synthetic data was utilized. Despite being
a promising path to overcome data unbalance for model
training and interoperability, synthetic data of this kind
might propagate biases from the original data. Caution
must be taken, requiring more robust validation tests,
such as external sets, to assess the performance of these
models.

More recent techniques have surpassed GAN
architectures for image synthesis, such as diffusion
models.” Diffusion models for image synthesis leverage
stochastic processes to iteratively refine an image by
diffusing noise through it, resulting in realistic and
high-quality outputs. By updating pixels progressively
based on nearby information, these models achieve
natural-looking textures and structures, offering a
powerful framework for diverse image generation
tasks. While these models have achieved state-of-the-art
performance in many computer vision challenges,”! they
have not yet been explored within glaucoma research.
In the domain of generative Al, large language models,
most notably represented by the impressive exponential
growth of ChatGPT, have also received extensive study.
Although this is beyond the scope of this review, it is
important to acknowledge this method, as it is expected
to have a significant impact within glaucoma® and
ophthalmology overall® in a near future.

Challenges and limitations of artificial intelligence
in glaucoma image assessment

While AI shows great promise in glaucoma image
assessment, there are notable limitations that need to
be addressed. One significant challenge is ensuring
the training, validation, and testing datasets are split
at the patient level to prevent data leakage and overly
optimistic performance estimates. When images from the
same patient appear in both training and testing sets, the
model may simply memorize patient-specific features
rather than learning generalizable patterns.® This can
lead to inflated accuracy metrics that do not translate
to real-world scenarios. In addition, the quality of the
images used for training Al models can significantly
impact their performance.®? Variations in image quality,
including differences in resolution, lighting, and focus,
can cause models to misinterpret data, leading to reduced
accuracy and reliability in clinical settings.
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Another limitation is the generalizability of Al models
across diverse imaging devices and patient populations.
Many Al algorithms are trained on datasets from
specific devices and may not perform well when
applied to images from different sources. This lack
of interoperability can lead to reduced accuracy and
reliability, as demonstrated by studies using GANs to
address these issues.” Models trained on homogeneous
datasets may not adequately capture the variability seenin
broader patient populations, leading to biases and reduced
performance in underrepresented groups. Thus, there is
a need for extensive validation across various devices
and demographic groups to ensure robust performance.

Furthermore, the “black box” nature of many Al
models, particularly DL algorithms, poses challenges
for transparency and clinical acceptance. Techniques
such as activation maps provide some insight but
are not sufficient to fully elucidate the complex inner
workings of these algorithms."! In addition, while
Al models can achieve high accuracy, they may still
produce false positives and negatives, potentially
leading to unnecessary follow-up procedures or missed
diagnoses. Balancing sensitivity and specificity are
crucial, especially in screening settings where the pretest
probability of disease is lower."! Ongoing research and
development are essential to address these limitations
and enhance the integration of Al in glaucoma care.

Conclusion

The current era presents an exciting opportunity for
the application of DL technologies in both research and
clinical practice. There are numerous publicly available
large datasets in ophthalmology that can be utilized to
train custom models and gain insights into eye diseases,
such as glaucoma. However, while Al technologies
offer promise, ensuring the clinical relevance of models
requires rigorous validation. Different clinical settings
may demand different standards, necessitating careful
consideration. Despite the progress made, there is still
much work ahead in harnessing Al for the management
of glaucoma.
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