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Big data for imaging assessment in 
glaucoma
Douglas R. da Costa, Felipe A. Medeiros*

Abstract:
Glaucoma is the leading cause of irreversible blindness worldwide, with many individuals unaware of 
their condition until advanced stages, resulting in significant visual field impairment. Despite effective 
treatments, over 110 million people are projected to have glaucoma by 2040. Early detection and 
reliable monitoring are crucial to prevent vision loss. With the rapid development of computational 
technologies, artificial intelligence (AI) and deep learning (DL) algorithms are emerging as potential 
tools for screening, diagnosing, and monitoring glaucoma progression. Leveraging vast data sources, 
these technologies promise to enhance clinical practice and public health outcomes by enabling earlier 
disease detection, progression forecasting, and deeper understanding of underlying mechanisms. 
This review evaluates the use of Big Data and AI in glaucoma research, providing an overview of 
most relevant topics and discussing various models for screening, diagnosis, monitoring disease 
progression, correlating structural and functional changes, assessing image quality, and exploring 
innovative technologies such as generative AI.
Keywords:
Artificial intelligence, artificial intelligence model, big data, data lake, deep learning, generative artificial 
intelligence, glaucoma, machine learning

Introduction

Glaucoma is the leading cause of 
irreversible blindness worldwide.[1] 

Most affected individuals are not aware 
of their condition during its early phase, 
primarily because symptoms only become 
apparent in advanced stages.[2‑6] In fact, 
roughly one‑third of patients may experience 
advanced visual field impairment in at least 
one eye upon diagnosis.[7,8] Although there 
are various effective treatment options 
available, it is projected that over 110 million 
people will have glaucoma by 2040.[1] Thus, 
it is crucial to develop tools for detecting the 
disease in its early stages when treatment is 
still effective and for reliably monitoring its 
progression to prevent vision loss.

Extensive research is underway on screening 
and disease monitoring tools, particularly 
with the advancement of computational 

capabilities. Artificial intelligence (AI) 
and deep learning (DL) algorithms, 
leveraging vast and dynamic data sources, 
have emerged as leading‑edge research 
methods for screening, diagnosing, and 
tracking the progression of glaucoma. Thus, 
understanding these technologies, combined 
with well‑curated big data, when applied in 
appropriate clinical contexts, holds promise 
for enhancing both clinical practice and 
public health outcomes. AI models offer the 
potential to detect diseases at earlier stages, 
forecast their progression, and develop 
models that deepen our comprehension of 
their underlying mechanisms and treatment 
options.

The objective of this review is to conduct 
a comprehensive evaluation of the use of 
large datasets and AI in glaucoma research. 
We initially provide a brief overview of 
big data and AI terminology, followed by 
detailed discussions on different models 
being developed for different aspects of 
glaucoma research. These include screening 
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and diagnosis, monitoring disease progression, 
establishing correlations between structural and 
functional changes, assessing image quality, and 
exploring innovative technologies such as generative AI.

Big Data

Increasing technological power has created exciting 
opportunities for the development of new technologies 
and solutions within health care. For example, 
advancements in data storage set the stage for the 
“Big Data” era. This term involves many definitions, 
primarily consisting of the three “Vs:” volume, velocity, 
and variety.[9] Volume emphasizes the sheer amount 
of data, ranging from tens of terabytes to hundreds of 
petabytes. Velocity highlights the rapid rate at which 
data are received and acted upon, particularly crucial 
for real‑time evaluation and action (translating data 
into research and real‑world applications). Finally, 
variety underscores the diverse types of data, including 
unstructured types like text (medical annotations, 
tabular epidemiological data, etc.), audio, video, and 
images, requiring preprocessing for meaningful insights 
and metadata support.

In the health‑care industry, various sources continuously 
generate data, such as hospital records, medical 
examination results, and patient medical records. To 
provide meaningful information and value, these data 
must be stored, organized, and managed. One way to 
store these continuously growing data is through “data 
lakes.” The term refers to the symbolic representation 
of a lake that receives all kinds of data, structured and 
unstructured, from diverse sources, in a constant flow, 
without prior filtering. This concept contrasts with 
“data warehouses,” which contain preprocessed and 
filtered data tailored for specific purposes. Data lakes 
are beneficial for maintaining the raw data structure, 
thus preserving the fidelity and origin of the data, albeit 

requiring increased maintenance [Figure 1]. However, 
medical data present an additional challenge for big 
data assembly, primarily because it consists of sensitive 
patient information. Each hospital, industry, or clinic 
may construct its own data lake and warehouses, 
depending on how they intend to manage and utilize 
these data.

Big data in ophthalmology
Ophthalmology relies heavily on auxiliary imaging tests, 
placing it in a unique position to integrate various types 
of data for innovative solutions using new technologies. 
However, ophthalmology is often practiced in numerous 
clinics where data remain siloed and are not easily shared. 
Even in large academic institutions, data collection 
frequently involves different equipment without 
proper standardization. This contrasts with radiology, 
where the Digital Imaging and Communications in 
Medicine (DICOM) format is widely used for consistent 
data sharing.[10] This lack of interoperability hampers the 
development of impactful research that could ultimately 
improve patient outcomes.

Within this field, innovative solutions are being developed, 
mainly utilizing cloud technology to enable interoperability 
for connecting and exchanging data in the cloud rather 
than using local data lakes and warehouses. Big technology 
companies, such as Microsoft, Amazon, Google, and 
others, have developed application programming 
interfaces to securely store and exchange medical data in 
different formats, such as Fast Healthcare Interoperability 
Resources, Health Level Seven International, DICOM, and 
other structured and unstructured medical data. Some 
of these applications already support diverse platforms 
and multiple ecosystems, facilitating data management 
and manipulation, hence development of new research 
and tools. These new approaches facilitate data sharing 
and interoperability; however, they are still not widely 
adopted.

Figure 1: A data lake continuously receives a variety of raw data from numerous sources. Data scientists and researchers analyze subsets of these data to generate insights 
and ideas for new projects. The relevant data are then cleansed and organized into structured formats, which are subsequently migrated to data warehouses for easier access 
and analysis
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One option for worldwide data sharing is the open‑access 
data model. According to Khan et al.,[11] there are 
94 open‑access ophthalmology datasets containing 
507,724 images and 125 videos from 122,364 patients. 
The majority of these datasets originated from Asia, 
North America, and Europe, with a disproportionate 
representation of glaucoma, diabetic retinopathy, and 
age‑related macular degeneration over other diseases. In 
addition, 27 open‑access datasets had barriers preventing 
direct download, and 19 had regulated access, requiring 
licenses, payments, or approval from ethical committees 
or institutions.[11]

Open‑access datasets in ophthalmology offer 
researchers easy accessibility to diverse imaging 
data, facilitating innovative research and the 
development of machine learning (ML) models. 
However, challenges such as limited discoverability, 
inadequate reporting of dataset information, and 
issues with data representation can hinder the quality 
and generalizability of research findings.[12‑14] Publicly 
funded big data open‑access datasets can address 
some of these challenges. For instance, UK Biobank 
and All of Us databases, with public investment from 
the United Kingdom and United States, respectively, 
have resulted in generation of important knowledge 
within health care, including glaucoma research.[15‑17] 
These approaches to data sharing and interoperability 
serve as powerful enablers for research, particularly 
for evolving DL and AI algorithms, which are highly 
dependent on data.

Artificial Intelligence

AI is a subset of computer science that aims to mimic 
human intelligence through sophisticated computational 
resources and extensive data. ML, a broader field within 
AI, employs mathematical and statistical algorithms 

to recognize patterns and make predictions on data 
without direct human programming. In the context of 
glaucoma, some of the most significant AI applications 
involve classifying images for diagnosis and predicting 
disease prognosis and progression. ML has been used 
for decades in its more traditional sense, with algorithms 
such as support vector machines and decision trees, 
among others [Figure 2]. These algorithms rely on 
structured data (i.e., standardized tables), and despite 
achieving satisfactory results for many tasks, they have 
limitations in terms of the complexity of data that can 
be handled.[18]

More sophisticated models have been developed 
to overcome these challenges, such as neural 
networks (NNs). The development of NNs was primarily 
inspired by human biology, adopting the concept of 
hidden layers with neurons. These networks consist of 
interconnected neurons that adjust their weights through 
numerous iterations, known as epochs in AI/ML. With 
each epoch, the network learns and refines its ability to 
achieve desired outcome [Figure 3]. These models are 
also called DL models because they utilize several (deep) 
hidden layers in addition to input and output layers. 
DL models work by employing activation functions 
within each neuron, which forward information through 
the network. The model then receives a loss score 
from backpropagation, which measures the difference 
between the predicted output and the ground truth based 
on predefined metrics. This iterative process allows the 
network to adjust its weights, improving performance 
in subsequent epochs. Despite their complexity, DL 
models have gained popularity due to their ease of use, 
with many being freely available through programming 
language libraries.

Regardless of the model and training settings, NNs must 
be instructed on how to achieve the desired outputs. In 
general, we can separate the training methods according 
to the learning approach, namely supervised learning, 
unsupervised learning, and semisupervised learning. 
Supervised learning requires a fully labeled dataset for 
training. For instance, for the classification of fundus 
photographs for glaucoma diagnosis, a supervised 
DL model would receive as input an image paired 
with a label indicating whether the photograph is of 
a glaucomatous or normal eye. The model will then 
learn the distinctions between the images, produce a 
classification result, and refine its accuracy by comparing 
its output with the ground truth given by the label. 
Unsupervised learning, as the name suggests, does not 
require labels; hence, this approach is mostly used to 
find patterns within a given dataset. Semisupervised 
learning consists of a combination of supervised and 
unsupervised learning, where labeled and unlabeled 
data can be used.[19]

Figure 2: Diagram of major divisions of artificial intelligence and examples within 
each. CNN: Convolutional neural networks; RNN: Recurrent neural networks; 
UNet: “U‑shaped” neural network; LSTM: Long Short‑Term Memory; GAN: Generative 
adversarial network; LLMs: Large language models; PCA: Principal component 
analysis; SVM: Support vector machine
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One of the most studied and widely used DL architectures 
in ophthalmology is the convolutional NN (CNN). These 
models have become widely popular to handle image 
data.[20] A convolution is a mathematical operation that 
combines two functions to produce a third. In CNNs, 
convolutions are essential for feature extraction. This 
process involves applying a filter (or kernel) to an input 
to create a feature map. For example, in CNNs trained 
for glaucoma detection on fundus photographs, multiple 
hidden convolutional layers apply different filters to the 
fundus image to extract key features. The neurons then 
adjust their weights based on the relationship between 
these features and the desired output. Because CNNs 
often require large datasets to accurately learn important 
features, a technique called transfer learning is commonly 
used to achieve higher accuracy with less data. Transfer 
learning leverages pretrained models on large datasets to 
improve performance on new, smaller datasets.

In transfer learning, a model developed for a particular 
task is reused as the starting point for a model on a 
different task. It involves the utilization of pretrained 
model weights, which are the learned parameters from 
training on a large dataset. The most used dataset for 
training such complex models is ImageNet, which 
contains millions of real‑world images of various 
objects and scenes.[21] Even though there are significant 
differences between medical images and the everyday 
images in ImageNet, the pretrained model can still be 
very useful. This is because the early layers of these 
models learn to detect general features, such as edges 
and textures, which can be relevant for many types of 
images, including medical ones. To adapt a pretrained 

model to a specific type of medical image, such as fundus 
photographs or optical coherence tomography (OCT) 
scans, we use a process called fine‑tuning. Fine‑tuning 
involves adjusting the model to better fit the new 
dataset by tweaking certain parameters, known as 
hyperparameters. Two important hyperparameters are 
the learning rate, which controls how much to change 
the model in response to each new piece of data, and 
the optimizer function, which is the algorithm used to 
update the model’s weights based on the learning rate. 
By fine‑tuning a pretrained model, we can leverage 
the extensive features learned from large datasets like 
ImageNet and apply them to more specific tasks in 
ophthalmology. This approach not only saves time and 
computational resources but also often results in better 
performance compared to training a model from scratch. 
Ultimately, this makes it easier to develop accurate and 
efficient models for analyzing ophthalmology images.

In glaucoma, given the diversity of data, many different 
approaches and architectures have been used to evaluate 
imaging and structured tabular data. Table 1 summarizes 
recent research literature using these technologies for 
various applications, including screening and diagnosing 
glaucoma, predicting disease progression, analyzing 
function–structure correlations, and addressing data 
challenges. It also highlights the use of generative AI, 
which will also be discussed further in this review.

Artificial intelligence for glaucoma screening and 
diagnosis
Detecting glaucoma before substantial vision loss 
occurs is crucial due to its asymptomatic nature in early 

Figure 3: Neural networks receive data through the input layer, which contains as many neurons as necessary, depending on the data format. Each neuron in the input layer 
passes information forward to the next hidden layer after being activated by a function “f.” This process, called forward propagation, continues through the hidden layers until the 
output layer is reached, where the prediction is made. A loss value is then calculated, and through backpropagation, the network updates the weights of the neurons iteratively 
to improve accuracy
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stages. However, current screening strategies are not 
sufficiently effective in identifying all patients with 
glaucoma in the population and case detection still 
mostly relies on opportunistic screening during routine 
visits to ophthalmologists. To address this challenge, 
numerous AI models have been developed to attempt 
to improve glaucoma detection;[22‑25] however, care must 
be taken when analyzing their results. When analyzing 
the results of these models, it is important to consider 
the differences between screening and clinical settings. 
Screening populations typically have a much lower 
pretest probability of having the disease compared to 
clinical populations. As a result, a highly sensitive tool 
validated in a clinical setting may produce a significant 
number of false positives when applied to a screening 
population. This could lead to unnecessary anxiety 
and additional testing for individuals who do not have 
glaucoma.[26] Distinguishing early‑stage glaucoma 
from normal variations in optic disc appearance can be 
challenging. Screening programs that aim to detect very 
early stages of the disease may face high failure rates 
due to these difficulties. Instead, focusing on identifying 
confirmed cases of glaucoma that are still asymptomatic 
can enhance the accuracy and effectiveness of screening 
programs.

Fundus photographs
The fundus examination is a vital noninvasive test for 
diagnosing ocular diseases, like glaucoma. One benefit 
of using colored fundus images is their affordability 
and accessibility for acquisition. This is facilitated by 
the availability of numerous portable nonmydriatic 
fundus cameras, some of which even allow the use of 
smartphones for image capture.[27]

In a recent study, Rao et al.[28] developed an offline AI 
system for detecting referable glaucoma in a screening 
setting, using a smartphone‑base fundus camera that 
captures monoscopic color fundus images. The study 
included 6674 images, of which 1813 (27.2%) were 
diagnosed with glaucoma, 1142 (17.1%) were considered 
suspects, and 3719 (55.7%) were normal eyes. These 
images were obtained from 243 subjects, used to train 
and evaluate the model’s performance. The primary 
outcome measure was the AI’s ability to detect referable 
glaucoma compared to diagnoses made by glaucoma 
specialists after a full glaucoma evaluation. Their DL 
model, consisting of segmentation and classification 
modules[29] based on a ResNet50 pretrained on ImageNet, 
achieved a sensitivity of 93.7% (95% confidence 
interval [CI]: 87.6%–96.9%) and specificity of 85.6% (95% 
CI: 78.6%–90.6%) in detecting referable glaucoma. 
Despite the advantages of this low‑cost and accessible 
offline system, it is important to note that 14.4% were 
false positives, which could pose a burden in large‑scale 
screening settings.

In a similar approach, using an online available big 
data called LabelMe (Healgoo Ltd., LabelMe dataset; 
http://www.labelme.org), Li et al.[30] developed a 
model to classify fundus photographs as “referable” 
for glaucoma based on human graders. They retrieved 
70,000 fundus photographs and selected a total of 48,116 
with visible optic discs which were labeled by 21 trained 
ophthalmologists. The training and validation sets 
consisted of 31,745 and 8,000 images, respectively. Using 
InceptionV3 architecture as backbone, a CNN with 
many layers, pretrained on ImageNet, they achieved 
an area under the receiver operating characteristic 
curve (AUROC) of 0.986, a sensitivity of 95.6%, and a 
specificity of 92%. Despite achieving a higher specificity 
than previous similar studies,[22] the methodology was 
unclear regarding whether the split was conducted at 
patient level, or if there was an external testing set. This 
lack of clarity may compromise the reported results due 
to potential data leakage and bias introduced during 
model training and evaluation.[31] A CNN model learns 
to discern both low‑level and high‑level features from 
input image data. If images from the same patient are 
used in both the training and testing phases, the model 
may appear to achieve high accuracy. However, this 
accuracy can be misleading due to the introduction of 
bias. This bias occurs because the model has already seen 
and learned specific features from the training images 
that are also present in the testing images, making 
the prediction of “unseen” data easier and not truly 
representative of its performance on entirely new data.[31] 
Therefore, when using CNN models in health‑care 
settings, it is crucial to curate an external testing dataset 
that is distinct from both the training and validation 
datasets. This separation should be implemented at 
the patient level to prevent data leakage and minimize 
bias, ensuring that the model’s performance is genuinely 
indicative of its ability to generalize to new, unseen 
patient data.

Saha et al.[32] achieved improved results with a less 
computationally demanding model. The authors trained 
DL based on a You Only Look Once (YOLO) CNN model 
with a MobileNet architecture pretrained on ImageNet 
using images from publicly available datasets.[33‑39] YOLO 
is an architecture designed for image detection; in this 
case, it was used to detect the optic nerve head and create 
a bounding box to focus on the area of interest. From 
there, features were extracted for binary classification by 
the MobileNet head. The authors reported an accuracy 
and F1 score of 97.4% and 97.3%, respectively, with 
sensitivity, specificity, and AUROC of 97.5%, 97.2%, and 
0.993, respectively. The model training was performed 
in a 10‑fold cross‑validation manner, and it was not clear 
if the reported accuracy metrics were from an external 
validation set. However, the authors demonstrated that 
a less computationally expensive architecture could 

http://www.labelme.org
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perform as well as, if not better than, more robust 
architectures on the given dataset.

Most existing models for glaucoma detection have been 
trained using supervised learning, relying on human 
gradings. However, subjective assessments by human 
graders can lead to variability and inconsistency. 
Studies have shown poor interrater reliability and 
limited reproducibility among human graders for 
glaucoma diagnosis.[40‑43] These limitations underscore 
the need for more objective and reproducible measures 
to serve as reference standards in developing diagnostic 
models. Medeiros et al.[44] applied this rationale to 
develop DL models capable of predicting objective 
measurements from spectral‑domain OCT (SDOCT) 
using simple fundus photographs. This approach, 
known as machine‑to‑machine (M2M), enables the 
model to take an optic disc color photograph as input 
and predict the retinal nerve fiber layer thickness 
(RNFLT) as output. By utilizing a Residual Deep Neural 
Network (ResNet34) as the backbone, pretrained on 
ImageNet, the M2M model achieved a mean absolute 
error (MAE) of just 7.39 μm on an independent test set 
[Figure 4]. By quantifying an objective measure, the 
M2M model could more reliably distinguish between 
glaucomatous and normal eyes. When compared to 
SDOCT RNFLT, defined based on visual loss, the model 
achieved an AUROC of 0.940, which was similar to that 
of SDOCT (P = 0.724). Activation maps[44,45] were used 

to visualize the features considered most important by 
the model [Figure 5].

Thompson et al.[46] conducted a follow‑up study using 
a similar method, with the SDOCT Bruch’s membrane 
opening‑minimum rim width (BMO‑MRW) parameter 
as the reference standard for labeling optic disc 
photographs. This approach is particularly useful in 
challenging cases that can affect the peripapillary retinal 
nerve fiber layer (RNFL) measurements, such as high 
myopia and peripapillary atrophy. The DL model’s 
predictions showed a strong correlation with actual 
BMO‑MRW values (Pearson’s r = 0.88, P < 0.001), and 
an AUROC for discriminating glaucomatous from 
healthy eyes of 0.945, compared to 0.933 for actual OCT 
measurements (P = 0.587).

Optic coherence tomography images
SDOCT has become the predominant diagnostic 
instrument for identifying structural damage indicative 
of glaucoma.[47,48] It allows for the assessment of the optic 
nerve head, macula, and RNFL and is employed in clinical 
settings for diagnosing and monitoring progression of 
glaucoma.[49,50] SDOCT provides two‑dimensional (2D) 
B‑scans as well as volumetric two‑dimensional (3D) scans, 
which enable the development of diverse DL models.

One of the main structural pieces of information provided 
by SDOCTs is the RNFLT measurement. Traditional 

Figure 4: (a) Scatter plot showing a high correlation between original optical coherence tomography (OCT) retinal nerve fiber layer (RNFL) thickness versus predicted RNFL 
thickness obtained by the machine‑to‑machine model. Examples of a (b) normal and (c) glaucomatous optic disc photographs. The OCT thickness measurement, the model 
prediction, and the probability of abnormality estimated by the model are displayed above each photo (adapted from Medeiros et al.[44])
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assessment of RNFLT with OCT requires accurate 
segmentation of the RNFL layer. However, conventional 
segmentation algorithms are prone to errors, affecting 
the accuracy of RNFLT measurements, which are critical 
for detecting glaucomatous damage.[51] These errors 
can lead to misdiagnoses, such as false positives or 
“red disease.”[52] To bypass the need for segmentation, 
Thompson et al.[53] developed a segmentation‑free 
DL algorithm to assess glaucomatous damage by 
analyzing the entire 2D B‑scan image from SDOCT. 
Their model had greater accuracy for detecting structural 
glaucomatous damage compared to conventional RNFLT 
parameters (AUROC of 0.96 versus 0.87, respectively, 
P < 0.001). This approach also simplifies the diagnostic 
process by reducing the risk of errors associated with 
the interpretation of multiple summary parameters from 
conventional SD‑OCT.

In a similar way, Mariottoni et al.[54] demonstrated 
that a segmentation‑free DL algorithm could predict 
RNFLT when assessing a raw OCT B‑scan. The authors 
developed a model based on ResNet34 as backbone, 
pretrained on ImageNet. The predicted unsegmented 
RNFLT showed a strong correlation with conventional 

RNFLT (r = 0.983, P < 0.001), with a MAE of about 2 
µm. Notably, even in instances where conventional 
segmentation failed, the DL model reliably extracted 
RNFLT information [Figure 6].

Along those lines, Chiang et al.[55] employed 3D scans 
of both the optic nerve head and macula to investigate 
whether combining these regions enhances diagnostic 
accuracy compared to analyzing them separately. They 
implemented a UNet++ model for segmenting OCT scans 
and a 3D‑CNN classification algorithm, achieving high 
diagnostic accuracy (AUROCs of 0.99 for wide‑field scans, 
0.93 for ONH scans, and 0.91 for macula scans). However, 
their small dataset could lead to generalization errors. In 
addition, the segmentation task showed strong results (Dice 
coefficient of 0.94), but misclassifications occurred when the 
lamina cribrosa was not correctly segmented.

Thiéry et al.[56] employed geometric or graph NNs, 
which are computational models that adopt the 
conceptualization of data structure as graphs, 
characterized by nodes and edges. The authors utilized 
3D scans of the optic nerve head to build a geometric 
DL model for glaucoma diagnosis. First, they converted 
scans into a 3D point cloud with approximately 1000 
points, segmented into 7 layers, where the nodes 
contained information about the given layer. Afterward, 
their algorithm PointNet classified it as a glaucomatous 
optic disc or not. Their model achieved better AUROC 
than a 3D CNN (0.95 vs. 0.87, respectively).

Detection of progression
Detecting glaucoma progression is crucial for effective 
treatment and preventing vision loss. However, 

Figure 5: Examples of class activation maps (CAM) to demonstrate how heatmaps 
can be used to visualize the regions on which models primarily depend to predict their 
outcomes. (a and b) Gradient‑weighted CAM from the machine‑to‑machine model 
highlights the optic nerve head and surrounding retinal nerve fiber layer (RNFL). The 
model ensemble could predict RNFL thickness from input fundus photographs, and 
using this technique allows us to see that the model is correctly learning from the most 
important regions for this task (adapted from Medeiros et al.[44]). (c) Spectral‑domain 
optical coherence tomography B‑scan with segmentation errors highlighted by the 
CAM heatmap (adapted from Jammal et al.[45])

c

b

a

Figure 6: Spectral‑domain optical coherence tomography B‑scans from the same eye, 
captured on the same day (a) depicts a clear segmentation error, resulting in a spurious 
global retinal nerve fiber layer (RNFL) thickness value of 162 µm. The segmentation‑free 
model predicted 66 µm for global RNFL thickness based on the same image. 
High‑quality images available on the same day (b and c), without segmentation error, 
revealed that the correct global RNFL thickness value was very close to the estimate 
from the segmentation‑free model (adapted from Mariottoni et al.[54])
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identifying progressing cases presents various 
challenges. The tests used to assess change over time, 
such as SDOCT and perimetry, show significant test–
retest variability, making it difficult to distinguish true 
change from variability.[57] Structural and functional 
changes associated with glaucoma can be subtle in early 
stages and pose technical challenges in later stages. For 
instance, capturing these changes through SDOCT may 
be impeded by a “floor effect,” and the reliability of 
visual field tests may be compromised in later stages. 
Moreover, a lack of consensus on specific criteria for 
diagnosing visual field or structural progression in 
glaucoma hinders progress in the field and complicates 
comparing results of different approaches.[26]

Unsupervised learning techniques have been employed 
in ophthalmology to predict glaucoma progression 
using imaging. Yousefi et al.[58] could classified 18 
visual field defects’ pattern in the Ocular Hypertension 
Treatment Study, with 13 resembling those identified 
by experts, and one associated with rapid progression. 
Similar to principal component analysis and archetypal 
analysis, where the machine learns the most important 
features of a standard automated perimetry (SAP) test, 
Berchuck et al.[59] employed a variational autoencoder 
(VAE) model to learn a low‑dimensional representation 
of SAP visual fields. By applying this technique to 29,161 
fields, they found that the model could identify 35% 
of eyes as progressors compared to 15% using mean 
deviation (MD) when predicting the rate of change.

Other DL techniques focused on time series events, such 
as recurrent NNs (RNN), have also been utilized.[60] By 
providing five consecutive visual fields, these models 
achieved better predictions of the sixth test compared 
to conventional pointwise ordinary linear regression. 
Similarly, long short‑term memory (LSTM) NNs were 
employed by Dixit et al.[61] The authors trained two 
networks: one using only visual field tests and another 
supplemented with basic clinical data from 11,242 
eyes. Using VFI slope, MD slope, and pointwise linear 
regression methods as benchmarks, they found that the 
model incorporating clinical data, especially intraocular 
pressure, performed best. They reported AUROC values 
between 0.89 and 0.93, and precision‑recall curves 
between 0.77 and 0.80, suitable for analyzing unbalanced 
data.

A more recent approach for evaluating and predicting 
time series sequences, like the progression of glaucoma, 
involves leveraging attention mechanisms within DL.[62] 
Unlike traditional methods like RNNs and LSTM 
networks, which aim to capture temporal dependencies 
by propagating information from one time step to the 
next, attention mechanisms have introduced significant 
advancements, particularly in handling long‑time series 

data. These mechanisms allow the model to focus on 
relevant parts of the input sequence, thereby enhancing 
its ability to understand complex patterns and improve 
predictions. For instance, in recent research, Hou et al.[63] 
applied a gated transformer network, which relies on 
attention mechanisms, to predict visual field worsening 
with longitudinal OCT data. Using clinical data and OCT 
metrics as input, they generated a worsening probability 
for a given eye with a time series of at least 5 SAP tests, 
employing 7 methods as reference standards (three 
trend based, three event based, and a seventh one that 
considered all the previous). The authors reported high 
AUROCs for the proposed methods. However, the 
precision‑recall curves evaluating the accuracy of the 
model were only fair, indicating that the model would 
likely face challenges in real‑world settings or external 
data.

Mandal et al.[64] developed a weakly supervised time 
series learning model to differentiate aging from real 
progression in glaucoma. By combining a 3D‑CNN, 
ResNet50 pretrained on ImageNet, with an LSTM, 
the authors addressed the challenge of distinguishing 
true glaucomatous changes from normal aging 
effects in SD‑OCT B‑scans. Their approach involved a 
noise‑positive unlabeled DL algorithm trained using 
two schemes: one to identify age‑related changes by 
differentiating test sequences from glaucoma versus 
healthy eyes and another to identify test–retest variability 
based on scrambled OCTs of glaucoma eyes. Their 
CNN‑LSTM model, integrating features from both 
schemes, achieved a hit ratio of 49.8%, significantly 
outperforming the OLS regression method’s 28.4% for 
global RNFLT and 22.1% for global or sector RNFLT, 
when specificities were equalized to 95% (P < 0.001).

Structure–function
Several eloped to assess the relationship between 
different structural and functional measures in glaucoma. 
Mariottoni et al.[65] used 26,499 pairs of SAP and SDOCT 
to train and evaluate a model that could map visual field 
defects from RNFL damage. With a customized CNN, 
they assembled a model that predicted SAP sensitivity 
from RNFLT and generated a structure–function map 
from simulated defects. This algorithm could assist 
in interpreting SDOCT and SAP findings in clinical 
settings, as well as in evaluating prognostic implications 
of RNFL abnormalities in glaucoma. In another work, 
Hemelings et al.[66] used unsegmented circumpapillary 
OCT scans and scanning laser en face images to estimate 
the MD value and the 52 threshold points from SAP 
tests, employing an Xception architecture pretrained 
on ImageNet. Macular and optic nerve head OCT 
scans paired with SAP tests,[67] OCT circle scans,[68] and 
multimodal architectures[69] have also been employed 
for such tasks; however, they achieve similar results 
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and are yet to be optimized for clinical and research 
implementation, especially due to lower correlations 
observed in initial and advanced disease stages across 
these studies.

In a different approach, Montesano et al.[70] developed a 
DL model focused on enhancing SAP acquisition through 
structure–function predictions, particularly targeting the 
perimetric strategy. Their stacked model integrated CNNs, 
VAEs, and XGBoost[71] utilizing SDOCT B‑scan images and 
corresponding RNFLT profiles as inputs. The ensembled 
predictions from XGBoost were applied to simulate variants 
of the sequential testing (ZEST) strategy, a Bayesian 
approach for determining sensitivity at specific locations 
through iterative updating of prior probabilities. The 
enhanced ZEST strategy incorporating spatial relationships 
demonstrated improved test speed and accuracy compared 
to the standard approach. Despite promising simulated 
results for enhancing SAP test efficacy and speed, further 
validation in real‑world clinical settings is necessary.

Deep learning for image quality assessment
CNNs have been extensively used for many tasks in 
glaucoma research, as discussed. This technique offers 
the advantage of addressing the “black box” issue often 
associated with DL, especially through techniques like 
activation maps. As previously stated, these maps allow 
visualization of the regions where the models are most 
focused, which could aid in the detection of artifacts and 
other features that may affect image quality and reliability. 
An illustrative example of this approach in clinical 
and research settings was demonstrated by Jammal 
et al.[45] [Figure 4]. The authors employed 25,250 SDOCT 
B‑scans, which were reviewed for segmentation errors 
by human grades, to fine‑tune a pretrained ResNet34 on 
ImageNet for detecting RNFL segmentation errors. They 
reported an AUROC of 0.979 (95% CI: 0.974–0.984) with 
an overall accuracy of 92.4%, and a sensitivity of 98.9% for 
severe segmentations errors. Despite being trained only 
on circle B‑scans from a single SDOCT model, it might 
be a helpful tool to aid researchers to automate quality 
assessment of large datasets, for instance.

With similar approach, Shi et al.[72,73] developed a novel 
application using RNFLT maps. They employed a 
UNet‑like architecture, with an encoder for feature 
extraction and dimensionality reduction and a decoder 
for generating corrected images from encoded data. 
By introducing artificial artifacts to 27,319 high‑quality 
RNFLT maps, the model achieved a MAE of 9.89 µm and 
a Pearson’s correlation of 0.90 (P < 0.001). The authors 
evaluated clinical utility using a trained VGG‑16 model 
to predict MD and total deviation values from both 
uncorrected RNFLT maps and predicted‑corrected 
maps. Artifact correction improved R‑squared (R2) 
values for visual field prediction in RNFLT maps with 

artifact ratios >10% and >20% by up to 0.03 and 0.04, 
respectively, indicating enhanced predictive accuracy 
in these subsets. However, despite stronger correlations, 
their approach did not improve progression forecasting 
for other evaluated groups.

Generative artificial intelligence
Generative AI represents a significant shift in AI, distinct 
from traditional methods. While conventional AI 
focuses on predicting predefined outcomes from given 
prompts or existing data, generative AI is designed to 
autonomously create synthetic data. It does this using 
large‑scale datasets to learn features, which are then 
distilled into vectors within a multidimensional space. 
By introducing random variations, generative AI can 
produce new outputs that mimic the characteristics of 
the training data, providing a different approach to data 
generation and analysis. One of the earliest and most 
popular generative AI architectures in glaucoma research 
are the generative adversarial networks (GANs). GANs 
consist of two NNs: the generator and the discriminator, 
engaged in an adversarial training process. The 
generator aims to produce synthetic data samples 
resembling the training data, while the discriminator 
endeavors to distinguish between real and synthetic 
data. Through iterative training, the generator refines 
its ability to generate increasingly realistic outputs, 
while the discriminator enhances its capacity to discern 
between real and synthetic. These architectures might 
be used to enhance models’ development, by generating 
good‑quality synthetic data that can be input for 
training, as well as to overcome the challenge for data 
interoperability between different instruments. As an 
example, He et al.[74] tried to improve the use of different 
cameras to diagnose primary open‑angle glaucoma 
from fundus photographs by testing a DL model (an 
InceptionV3 pretrained on ImageNet) on synthetic 
images generated from two different devices. Their 
GAN model reduced false positive results for glaucoma 
diagnosis when compared to real data only and increased 
Pearson’s correlation coefficients for cup‑to‑disc area.

In an effort to remove artifacts from RNFLT, Cheong 
et al.[75] developed DeshadowGAN, a customized GAN 
aimed at eliminating blood vessel shadows from OCT 
B‑scans. They trained and evaluated their model using 
2328 optic nerve head B‑scans, assessing performance by 
measuring intralayer contrast, a metric where 0 indicates 
absence of shadows and 1 indicates their full presence. 
The model reduced intralayer contrast by approximately 
33.7% ±6.81% for the RNFL, 28.8% ±10.4% for the inner 
plexiform layer, 35.9% ±13.0% for the photoreceptor 
layer, and 43.0% ±19.5% for the retinal pigment 
epithelium layer. However, it was exclusively tested on 
healthy eyes and has not been validated on pathological 
conditions. Moreover, as the images were sourced solely 
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from a single OCT device, potential limitations may 
arise when applying the model to images from different 
devices, highlighting a challenge in deploying diverse 
DL models across varied datasets.[76]

GAN architectures were also employed to generate 
synthetic images to improve training for diagnosis 
of angle‑closure with anterior chamber OCT[77] 
and to generate circumpapillary OCT to diagnose 
glaucomatous damage.[78] Both models achieved higher 
AUROC when synthetic data was utilized. Despite being 
a promising path to overcome data unbalance for model 
training and interoperability, synthetic data of this kind 
might propagate biases from the original data. Caution 
must be taken, requiring more robust validation tests, 
such as external sets, to assess the performance of these 
models.

More recent techniques have surpassed GAN 
architectures for image synthesis, such as diffusion 
models.[79] Diffusion models for image synthesis leverage 
stochastic processes to iteratively refine an image by 
diffusing noise through it, resulting in realistic and 
high‑quality outputs. By updating pixels progressively 
based on nearby information, these models achieve 
natural‑looking textures and structures, offering a 
powerful framework for diverse image generation 
tasks. While these models have achieved state‑of‑the‑art 
performance in many computer vision challenges,[79] they 
have not yet been explored within glaucoma research. 
In the domain of generative AI, large language models, 
most notably represented by the impressive exponential 
growth of ChatGPT, have also received extensive study. 
Although this is beyond the scope of this review, it is 
important to acknowledge this method, as it is expected 
to have a significant impact within glaucoma[80] and 
ophthalmology overall[81] in a near future.

Challenges and limitations of artificial intelligence 
in glaucoma image assessment
While AI shows great promise in glaucoma image 
assessment, there are notable limitations that need to 
be addressed. One significant challenge is ensuring 
the training, validation, and testing datasets are split 
at the patient level to prevent data leakage and overly 
optimistic performance estimates. When images from the 
same patient appear in both training and testing sets, the 
model may simply memorize patient‑specific features 
rather than learning generalizable patterns.[31] This can 
lead to inflated accuracy metrics that do not translate 
to real‑world scenarios. In addition, the quality of the 
images used for training AI models can significantly 
impact their performance.[82] Variations in image quality, 
including differences in resolution, lighting, and focus, 
can cause models to misinterpret data, leading to reduced 
accuracy and reliability in clinical settings.

Another limitation is the generalizability of AI models 
across diverse imaging devices and patient populations. 
Many AI algorithms are trained on datasets from 
specific devices and may not perform well when 
applied to images from different sources. This lack 
of interoperability can lead to reduced accuracy and 
reliability, as demonstrated by studies using GANs to 
address these issues.[74] Models trained on homogeneous 
datasets may not adequately capture the variability seen in 
broader patient populations, leading to biases and reduced 
performance in underrepresented groups. Thus, there is 
a need for extensive validation across various devices 
and demographic groups to ensure robust performance.

Furthermore, the “black box” nature of many AI 
models, particularly DL algorithms, poses challenges 
for transparency and clinical acceptance. Techniques 
such as activation maps provide some insight but 
are not sufficient to fully elucidate the complex inner 
workings of these algorithms.[76] In addition, while 
AI models can achieve high accuracy, they may still 
produce false positives and negatives, potentially 
leading to unnecessary follow‑up procedures or missed 
diagnoses. Balancing sensitivity and specificity are 
crucial, especially in screening settings where the pretest 
probability of disease is lower.[26] Ongoing research and 
development are essential to address these limitations 
and enhance the integration of AI in glaucoma care.

Conclusion

The current era presents an exciting opportunity for 
the application of DL technologies in both research and 
clinical practice. There are numerous publicly available 
large datasets in ophthalmology that can be utilized to 
train custom models and gain insights into eye diseases, 
such as glaucoma. However, while AI technologies 
offer promise, ensuring the clinical relevance of models 
requires rigorous validation. Different clinical settings 
may demand different standards, necessitating careful 
consideration. Despite the progress made, there is still 
much work ahead in harnessing AI for the management 
of glaucoma.
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