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Abstract: The aim of this study was to integrate multi omics data to characterize underlying functional
pathways and candidate genes for drip loss in pigs. The consideration of different omics levels allows
elucidating the black box of phenotype expression. Metabolite and protein profiling was applied
in Musculus longissimus dorsi samples of 97 Duroc × Pietrain pigs. In total, 126 and 35 annotated
metabolites and proteins were quantified, respectively. In addition, all animals were genotyped
with the porcine 60 k Illumina beadchip. An enrichment analysis resulted in 10 pathways, amongst
others, sphingolipid metabolism and glycolysis/gluconeogenesis, with significant influence on drip
loss. Drip loss and 22 metabolic components were analyzed as intermediate phenotypes within
a genome-wide association study (GWAS). We detected significantly associated genetic markers
and candidate genes for drip loss and for most of the metabolic components. On chromosome 18,
a region with promising candidate genes was identified based on SNPs associated with drip loss,
the protein “phosphoglycerate mutase 2” and the metabolite glycine. We hypothesize that association
studies based on intermediate phenotypes are able to provide comprehensive insights in the genetic
variation of genes directly involved in the metabolism of performance traits. In this way, the analyses
contribute to identify reliable candidate genes.

Keywords: drip loss; pork quality; metabolomics; proteomics; enrichment analysis; genome-wide
association study (GWAS); candidate genes

1. Introduction

Pork quality is the result of complex interactions between genetic and environmental effects like
rearing and slaughtering conditions, and carcass and meat processing. One important commercially
interesting pork quality parameter is the ability of meat to retain water, also known as water-holding
capacity (WHC). In order to characterize WHC in pork, drip loss is measured. This fluid, mainly
from muscle cells, resigns from the meat surface without any mechanical force other than gravity and
is influenced by shrinkage of the myofibrils, pH value, and temperature post mortem (p.m.) [1,2].
Average drip loss in Musculus longissimus dorsi (LD) is around 1% to 5% [3]. Heritability estimates of
WHC vary to a large extent between 0.01 and 0.31 [4]. This wide range could be explained by breed

Int. J. Mol. Sci. 2016, 17, 1426; doi:10.3390/ijms17091426 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2016, 17, 1426 2 of 24

effects and large measurement errors of drip loss due to the multifactorial environmental effects [5].
Structural causes of drip loss concerning the muscle fibers and the biological processes associated with
pork quality have been largely investigated and comprehended [6–8]. However, genetic mechanisms
and interactions between different levels of metabolic regulation underlying drip loss are not fully
understood [9–11].

Genetic studies, using standard approaches to identify candidate genes, already revealed several
quantitative trait loci (QTL) and candidate genes for drip loss in pigs [11–13]. However, it can be
expected that genome-wide association (GWA) studies based on functional, metabolic phenotypes
or metabotypes reduce the risk to detect false-positive associations [14,15]. Several studies have
demonstrated that the results of any single omics analysis, like an association analysis of SNPs
and phenotypic expression as implemented by GWAS, may not be sufficient to decode extremely
complex biological mechanisms [16]. In the case of multifactorial traits, metabotypes can be used in
order to improve the accuracy of the phenotypic measurement. The combined analysis of different
omics levels provides a promising tool to increase the information density between genome and
phenotype. Thereby, integrative approaches for overall analysis of the entire cascade of genome
and metabolic levels (transcriptome, metabolome and proteome) provide a potential prospective
to identify reliable bio markers (transcripts, proteins, metabolites) and genetic markers (SNP, QTL,
candidate genes) [17]. The knowledge of functional associated omic variables/markers including
interactions between genetic and environmental factors may provide a comprehensive new insight
into underlying biological processes in muscle growth and meat quality [16].

In recent years, the innovative technologies to record hundreds or thousands of omics profiles
simultaneously and to analyze their relation to different traits were extensively developed further and
established in many meat production sectors [18,19].

For meat scientists, the final objective is to identify meat quality genetic markers (like SNPs) or
bio markers which are quantifiable on live animals or early p.m. on the carcass in order to orientate
meat production towards the most adapted processes in meat processing or distribution circuits [16].
For this purpose, until now, a variety of genetic approaches was applied (see [11–13]). In the last
decade, several scientific groups investigated different omics levels or integrated two or more omics
levels to identify candidate transcripts or genes. For example, Te Pas et al. [20], Rohart et al. [21],
Muroya et al. [22] and Welzenbach et al. [23] investigated the suitability of metabolite profiles and
metabolic pathways in prediction of pork quality traits. Heidt et al. [24] applied a combined genomics
and transcriptomics approach to reveal candidate genes for drip loss. The investigation of metabolic
components, like metabolites and proteins, as new, more reliable phenotypes is a research focus
in enhancement of meat quality traits [25]. D’Alessandro et al. [26] used a combined metabolomic
and proteomic analysis to investigate the biochemical background of breed-specific meat quality
differences. Apart from a few exceptions (see [27]), there have been very few studies combining more
than two omics levels to identify candidate genes and QTL for pork quality, until now.

The aim of this study is the integration of omics levels genome, proteome and metabolome to
elucidate underlying functional pathways and corresponding candidate genes for drip loss. Based on
the increased information density due to the consideration of proteome and metabolome, we expect
that our GWAS approaches based on metabolic traits contribute to identify true candidate genes with
higher accuracy.

2. Results

In this study, metabolite and protein profiling, Enrichment analysis and GWAS were performed
on 97 F2 Duroc × Pietrain (DuPi) pigs. The mean drip loss was 1.97%, with a minimum of 0.4% and
a maximum of 5.3% (Table 1). In total, 1993 metabolites in each LD sample were quantified, using gas
chromatography mass spectrometry (GC-MS) and liquid chromatography-quadrupole time of flight
mass spectrometry (LC-QTOF/MS). However, out of these, only 128 metabolites were matched to
their related Kyoto Encyclopedia of Genes and Genomes (KEGG) identifiers (IDs). According to the
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results of Neuhoff et al. [28], 40 proteins with expected significance for drip loss were quantified in the
tissue samples. In the case of 35 proteins, we were able to annotate those with entrez gene identifiers.
See Table S1 for drip loss phenotypes and profiles of the annotated metabolites and proteins.

Table 1. Descriptive statistics and phenotypic correlations between drip loss and metabotypes.

Traits Mean ± SD 1 Min 2 Max 3 Correlation to Drip Loss 4

drip loss, % 1.97 ± 1.40 0.40 5.30 1
pH1 6.53 ± 0.22 5.89 6.94 −0.31 **

pH24 5.52 ± 1.12 5.32 6.06 −0.35 ***
PKM 26,454.10 ± 17,829.55 13.47 88,251.64 −0.20 *

PGAM2 5600.37 ± 4985.98 −10.77 32,935.16 −0.19
FBPase 27,407.08 ± 20,231.70 809.35 114,192.30 −0.11

TPI1 1754.68 ± 1526.65 32.13 7802.84 −0.21 *
pyruvic acid 4.32 × 10−2 ± 3.62 × 10−2 6.16 × 10−3 2.11 × 10−1 0.22 *

lactic acid 6.49 × 10−1 ± 3.28 × 10−1 1.88 × 10−1 1.64 0.08
glucose 9.02 × 10−3 ± 1.32 × 10−2 1.21 × 10−4 8.41 × 10−2 0.19

phosphoenol pyruvate 5.59 × 10−2 ± 8.95 × 10−2 1.80 × 10−3 0.53 0.13
glycerone-p 1.86 ± 1.10 2.48 × 10−1 5.85 0.07

DG3P 2.56 × 10−1 ± 4.09 × 10−1 2.61 × 10−3 2.61 0.14
fumaric acid 2.67 × 10−3 ± 1.25 × 10−3 5.50 × 10−4 7.23 × 10−3 0.12
succinic acid 1.38 × 10−2 ± 5.02 × 10−3 3.23 × 10−3 3.23 × 10−2 −0.02

malic acid 6.03 × 10−3 ± 2.92 × 10−3 8.85 × 10−4 1.64 × 10−2 0.11
methylglyoxal 9.62 × 10−3 ± 5.44 × 10−3 2.61 × 10−4 2.89 × 10−2 0.22 *

glycine 8.59 × 10−2 ± 2.39 × 10−2 4.84 × 10−2 1.62 × 10−1 0.11
hydroxypyruvic acid 1.06 × 10−2 ± 6.81 × 10−3 1.76 × 10−3 4.98 × 10−2 0.02

F6P 2.17 × 10−2 ± 3.43 × 10−2 2.91 × 10−4 2.25 × 10−1 0.12
serine 6.04 × 10−3 ± 2.99 × 10−3 1.76 × 10−3 2.15 × 10−2 −0.01

glycerone 1.41 × 10−1 ± 8.36 × 10−2 2.17 × 10−2 4.37 × 10−1 0.20
ceramide 1.68 × 10−4 ± 1.24 × 10−3 2.33 × 10−6 6.59 × 10−4 0.05

glucosylceramide 2.46 × 10−3 ± 4.72 × 10−3 1.69 × 10−4 2.72 × 10−2 0.21 *
phosphoethanolamine 8.57 × 10−4 ± 5.01 × 10−4 2.28 × 10−4 3.52 × 10−3 0.12

Drip loss measured in Musculus longissimus dorsi (LD) 24 h post-mortem (p.m.); pH measured 1 h post-mortem
(p.m.) (pH1) and 24 h p.m. (pH24) in LD; 1 mean and standard deviation (SD); 2 minimum (Min);
3 maximum (Max); 4 calculation of correlation coefficients based on residuals; Mean, SD, Min and
Max of proteins are based on signal dependent intensities of ion fragments (in mass) relative to time,
so-called selection reaction monitoring (SRM) intensities; The units of the metabolite profiles are based on
mass intensities, recorded by GC-MS and LC-QTOF/MS, normalized to an internal standard; * p ≤ 0.05,
** p ≤ 0.01, *** p ≤ 0.001; glycerone-p = dihydroxyacetone phosphate; PGAM2 = phosphoglycerate mutase 2
(muscle); PKM = pyruvate kinase (muscle); FBPase = fructose-1,6-bisphosphatase 2; TPI1 = triose phosphate
isomerase 1; DG3P = D-glycerate-3-phosphate; F6P = fructose-6-phosphate; bold: proteins.

2.1. Biological Pathways Involved in the Metabolite and Protein Abundance

In total, 163 metabolic components (128 metabolites and 35 proteins) were assigned to 219 KEGG
pathways that potentially are involved in muscle to meat conversion and manifestation of meat
quality characteristics. Based on the Wilcoxon rank sum test in 10 out of 219 KEGG pathways,
the metabolites and proteins were significantly enriched (p ≤ 0.05) due to functional connectivity
(Table 2). These pathways comprised in total 18 metabolites and four proteins and can be roughly
distinguished into energy-relevant processes like “Glycolysis/gluconeogenesis” and “Pyruvate
metabolism” and into pathways associated with different metabolic diseases like “Type II diabetes
mellitus” and “NAFLD” (Non-alcoholic fatty liver disease). “Sphingolipid metabolism” (p = 0.014),
that comprised four metabolites, was the most significantly enriched composition of metabolic
components. Most metabolites and proteins were assigned to a single pathway. Of particular
importance were across pathway components that might be indicators of key regulators with a strong
impact on drip loss. As an example, the metabolites glucose and pyruvic acid are participants in six and
five different pathways, respectively. The strongest overlapping induced by the metabolites glucose
and pyruvic acid can be observed between glycolysis, methane and pyruvate metabolism showing that
these pathways are closely linked. In contrast, the most significant pathway sphingolipid metabolism
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has only one link to the methane metabolism due to overlapping metabolite serine, whereas the
remaining involved metabolites are exclusively members of sphingolipid metabolism.

Table 2. Significant KEGG pathways for drip loss.

Pathway KEGG-ID p-Value * Involved Metabolites and Proteins

Sphingolipid metabolism 00600 0.014 ceramide, glucosylceramide,
phosphoethanolamine, serine

Type II diabetes mellitus 04930 0.018 pyruvic acid, glucose, PKM

Methane metabolism 00680 0.020
glycine, pyruvic acid, hydroxypyruvic acid,
F6P, malic acid, serine, phosphoenol pyruvate,
glycerone-p, glycerone, DG3P

Renal cell carcinoma 05211 0.027 fumaric acid, malic acid

Insulin secretion 04911 0.043 pyruvic acid, glucose

Meiosis yeast 04113 0.045 glucose

NAFLD 04932 0.045 glucose

Glycolysis/Gluconeogenesis 00010 0.045
pyruvic acid, lactic acid, glucose,
phosphoenol pyruvate, glycerone-p, DG3P,
FBPase, TPI1, PKM, PGAM2

Pyruvate metabolism 00620 0.053
fumaric acid, pyruvic acid, succinic acid,
lactic acid, malic acid, phosphoenol pyruvate,
methylglyoxal, PKM

Steptomycin biosynthesis 00521 0.056 glucose, myo-inositol

The enrichment analysis was performed based on 129 metabolites and 35 proteins. Overrepresentation of
metabolic pathways defined by the KEGG database regarding to drip loss was tested using Wilcoxon’s
rank sum test; * The pathway was considered significant if p ≤ 0.05; Kyoto Encyclopaedia of Genes and
Genomes (KEGG)-ID = KEGG pathway ID; NAFLD = Non-alcoholic Fatty liver disease; glycerone-p =
dihydroxyacetone phosphate; PGAM2 = phosphoglycerate mutase 2 (muscle); PKM = pyruvate kinase (muscle);
FBPase = fructose-1,6-bisphosphatase 2; TPI1 = triosephosphate isomerase 1; DG3P = D-glycerate-3-phosphate;
F6P = fructose-6-phosphate; bold: proteins.

Regarding the target trait drip loss, five metabolic components were significantly (p ≤ 0.05)
correlated (Table 1). Metabolites pyruvic acid, methylglyoxal and glucosylceramide were significantly
positive correlated while the proteins pyruvate kinase (muscle) (PKM) and triose phosphate isomerase 1
(TPI1) were negative correlated with drip loss. However, the correlation coefficient was not above
a value of 0.22 in any case (Table 1).

2.2. Whole-Genome Association Analysis for Drip Loss and Metabolites and Proteins of Selected
Biological Pathways

Beneath the meat quality trait drip loss itself, 22 metabotypes (18 metabolites and four proteins)
were analyzed within a GWAS. In total, 44,844 SNPs were tested for association with at least
one of the 22 metabolic traits or meat quality trait drip loss itself. In order to ensure the statistical
power and accuracy of GWAS possible population stratification was considered [26]. In this
context, principal components (PCs), which condensed the genetic relationship between animals,
were considered in the statistical model as covariates. Depending on the investigated trait,
between two and ten PCs were considered in order to avoid negative effects of population stratification
on the validity of the GWAS analysis (Table 3). In most traits, the genomic inflation factor λ was close
to one with a range of 1 to 1.05. Accordingly to the λ-thresholds (1.05) suggested by Price et al. [29]
our correction was sufficient to remove disturbing population stratification. Only in the case of
phosphoethanolamine the λ value (1.08) was slightly too high (Table 3).
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Table 3. Results of association analyses.

Trait ID PC 1 λ 2 Number of Significant SNP/QTL per Porcine Chromosome 3
∑SNP 4 Min

p-Value 5
Min

q-Value 6
Max
œ2

y
7

1 2 3 4 6 7 8 10 13 14 16 17 18

drip loss - 10 1.007 4/4 74/20 78 # 6.58 6.26 8.8
PKM 100158154 10 1 33/13 33 # 10.7 7.84 14.3

PGAM2 100188980 10 1.06 18/7 18 # 19.9 8.67 13.9
FBPase 100134828 10 1 5/1 244/92 118 *, 131 # 1.98 2.27 16.6
glucose C00031 10 1 2/2 2 # 5.86 8.80 15.3

glycerone-p C00111 10 1.046 4/1 7/4 23/10 34 # 2.35 5.07 17.3
DG3P C00197 10 1 10/5 2 *, 8 # 1.50 2.19 17.3

succinic acid C00042 2 1.03 179/64 122 *, 57 # 29.3 5.07 13.3
glycine C00037 10 1.05 97/41 2/2 133/48 102 *, 130 # 3.39 4.67 17.1

hydroxyl-pyruvic acid C00168 10 1 104/28 76 *, 28 # 3.44 1.88 16.1
F6P C00085 10 1 12/9 12 # 8.00 7.69 14.8

glycerone C00184 10 1 7/4 7 # 7.95 8.56 14.8
ceramide C00195 4 1.006 20/8 20 # 11.8 8.02 14.4

glucosyl-ceramide C01190 10 1.012 3/3 1/1 4 # 1.59 6.64 17.4
phosphor-ethanolamine C00346 10 1.08 15/8 11 *, 4 # 15.4 3.81 14.5

∑SNP/QTL excluding double counting 7/4 97/41 1/1 33/13 15/8 13/10 27/12 2/2 5/1 195/80 4/4 275/100 197/54
∑overlapping SNP/QTL 8 1/1 95/16 2/7 28/21

Drip loss measured in Musculus longissimus dorsi (LD) 24 h post-mortem (p.m.) (%); 1 number of principal components (PCs) considered in genome-wide association
(GWA) studies; 2 λ = inflation factor; 3 number of chromosome-wide significant associated SNPs and QTL per traits and chromosome (at least q ≤ 0.1); 4 sum of significant
associated SNPs per traits (* q ≤ 0.05; # q ≤ 0.1); 5 minimal empirical p-value (times 10−5); 6 minimal q-value (times 10−5), based in the false discovery rate (FDR) concept;
7 maximal proportion of explained variance (%); 8 sum of overlapping SNP/QTL with meaning for two traits; ID = Entrez gene ID for proteins or KEGG compound ID for
metabolites; glycerone-p = dihydroxyacetone phosphate; PGAM2 = phosphoglycerate mutase 2 (muscle); PKM = pyruvate kinase (muscle); FBPase = fructose-1,6-bisphosphatase 2;
DG3P = D-glycerate-3-phosphate; F6P = fructose-6-phosphate; bold: proteins.
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Applying a moderate significance threshold with a false discovery rate (FDR) of q ≤ 0.10, the GWA
studies revealed 871 (without double counting) significant associations for 15 traits, including drip loss,
three proteins and 11 metabolites. These SNP were distributed over almost all porcine chromosomes.
Four hundred thirty one SNPs showed a chromosome-wide significance levels of q ≤ 0.05 but no SNP
was detected as genome-wide significant (q ≤ 0.01).

The average number of significant SNPs per trait was 66, with a minimum of two SNPs
(for glucose) and a maximum of 249 SNPs for fructose-1,6-biphosphatase-2 (FBPase). The majority
of the SNPs was significant at a moderate chromosome-wide level (q ≤ 0.1). The highest proportion
of explained variance was observed for SNPs that affected glucosylceramide, dihydroxyacetone
phosphate (glycerone-p) and D-glycerate-3-phosphate (DG3P). The most significant SNPs were
detected for metabolite hydroxylpyruvic acid (q ≤ 2.19 × 10−2).

The average number of detected SNPs per chromosome is 67 and the highest numbers of
significant SNPs were detected on Sus scrofa chromosome (SSC) 14, 17 and 18. For drip loss, we detected
SNPs on SSC 16 and 18, which explain a maximum of variance proportion of 8.8%. Based on the
distance to neighboring significant SNPs on the chromosome (1 Mb), we condensed the SNPs into
330 important QTL regions with an average of 29 QTL per chromosome (Table 3).

On several chromosomes we identified 126 (45) SNPs (QTL) which were significant for more
than one trait. These SNPs are located on SSC 1, 7, 8, 14, 17 and 18. As presented in Figure 1 the most
overlapping exists between metabolites hydroxypyruvic acid and succinic acid on SSC 14. Moreover,
the overlapping on SSC 18 is of particular interest, because it indicates a metabolic process comprising
glycine and phosphoglycerate mutase 2 (PGAM2) that influences drip loss (Figure 1). On SSC 7,
there was only one overlapping SNP of glucose and fructose-6-phosphate (F6P). In contrast, on SSC
1 and 8, we indeed detected significant SNPs for two traits but the QTLs are located in distant
chromosomal regions.

Int. J. Mol. Sci. 2016, 17, 1426 6 of 23 

 

Applying a moderate significance threshold with a false discovery rate (FDR) of q ≤ 0.10, the 
GWA studies revealed 871 (without double counting) significant associations for 15 traits, including 
drip loss, three proteins and 11 metabolites. These SNP were distributed over almost all porcine 
chromosomes. Four hundred thirty one SNPs showed a chromosome-wide significance levels of q ≤ 
0.05 but no SNP was detected as genome-wide significant (q ≤ 0.01). 

The average number of significant SNPs per trait was 66, with a minimum of two SNPs (for 
glucose) and a maximum of 249 SNPs for fructose-1,6-biphosphatase-2 (FBPase). The majority of the 
SNPs was significant at a moderate chromosome-wide level (q ≤ 0.1). The highest proportion of 
explained variance was observed for SNPs that affected glucosylceramide, dihydroxyacetone 
phosphate (glycerone-p) and D-glycerate-3-phosphate (DG3P). The most significant SNPs were 
detected for metabolite hydroxylpyruvic acid (q ≤ 2.19 × 10−2). 

The average number of detected SNPs per chromosome is 67 and the highest numbers of 
significant SNPs were detected on Sus scrofa chromosome (SSC) 14, 17 and 18. For drip loss, we 
detected SNPs on SSC 16 and 18, which explain a maximum of variance proportion of 8.8%. Based 
on the distance to neighboring significant SNPs on the chromosome (1 Mb), we condensed the SNPs 
into 330 important QTL regions with an average of 29 QTL per chromosome (Table 3). 

On several chromosomes we identified 126 (45) SNPs (QTL) which were significant for more 
than one trait. These SNPs are located on SSC 1, 7, 8, 14, 17 and 18. As presented in Figure 1 the most 
overlapping exists between metabolites hydroxypyruvic acid and succinic acid on SSC 14. Moreover, 
the overlapping on SSC 18 is of particular interest, because it indicates a metabolic process comprising 
glycine and phosphoglycerate mutase 2 (PGAM2) that influences drip loss (Figure 1). On SSC 7, there 
was only one overlapping SNP of glucose and fructose-6-phosphate (F6P). In contrast, on SSC 1 and 
8, we indeed detected significant SNPs for two traits but the QTLs are located in distant chromosomal 
regions. 

 
Figure 1. Overlapping SNPs at Sus scrofa chromosomes (SSC) 14, 17 and 18. GWAS procedures 
resulted in varying numbers of significant SNP (q ≤ 0.1) per trait. On some chromosomes there are 
overlapping SNPs with meaning for two traits. Drip loss measured in Musculus longissimus dorsi (LD) 
24 h post-mortem (p.m.); Glycerone-p = dihydroxyacetone phosphate; PGAM2 = phosphoglycerate 
mutase 2 (muscle); FBPase = fructose-1,6-bisphosphatase 2; DG3P = D-glycerate-3-phosphate. 

The functional annotation of the 871 significantly associated SNPs revealed 1430 genes that are 
located in a distance of ≤1 Mb to the SNPs and thereby are in linkage disequilibrium to our significant 
SNPs (Table 4). 257 SNPs are localized in an intron region of a specific gene. These genes, which are 
mainly located on SSC 14, 17 and 18, might be important potential candidate genes for drip loss and 
associated metabolic traits and processes (Table 4). 

Table 4. Functional annotation of significant SNPs associated with drip loss and metabolic traits. 

SSC 1 1 2 3 4 6 7 8 10 13 14 16 17 18 ∑ 
Genes 2 30 148 4 65 31 48 70 15 12 375 13 367 252 1430 
SNP 3 2/7 30/97 -/1 15/33 2/15 -/13 2/27 1/2 5/5 83/195 -/4 54/275 63/197 257/871 

1 Sus scrofa chromosomes; 2 number of genes that are located in a distance of ≤1 Mb to the significant 
SNPs revealed by GWAS; 3 number of intronic SNPs in relation to the total number of significant SNPs 
per chromosome (without double counting of overlapping SNPs). 

Figure 1. Overlapping SNPs at Sus scrofa chromosomes (SSC) 14, 17 and 18. GWAS procedures
resulted in varying numbers of significant SNP (q ≤ 0.1) per trait. On some chromosomes there are
overlapping SNPs with meaning for two traits. Drip loss measured in Musculus longissimus dorsi (LD)
24 h post-mortem (p.m.); Glycerone-p = dihydroxyacetone phosphate; PGAM2 = phosphoglycerate
mutase 2 (muscle); FBPase = fructose-1,6-bisphosphatase 2; DG3P = D-glycerate-3-phosphate.

The functional annotation of the 871 significantly associated SNPs revealed 1430 genes that are
located in a distance of ≤1 Mb to the SNPs and thereby are in linkage disequilibrium to our significant
SNPs (Table 4). 257 SNPs are localized in an intron region of a specific gene. These genes, which are
mainly located on SSC 14, 17 and 18, might be important potential candidate genes for drip loss and
associated metabolic traits and processes (Table 4).

Table 4. Functional annotation of significant SNPs associated with drip loss and metabolic traits.

SSC 1 1 2 3 4 6 7 8 10 13 14 16 17 18 ∑
Genes 2 30 148 4 65 31 48 70 15 12 375 13 367 252 1430
SNP 3 2/7 30/97 -/1 15/33 2/15 -/13 2/27 1/2 5/5 83/195 -/4 54/275 63/197 257/871

1 Sus scrofa chromosomes; 2 number of genes that are located in a distance of ≤1 Mb to the significant SNPs
revealed by GWAS; 3 number of intronic SNPs in relation to the total number of significant SNPs per chromosome
(without double counting of overlapping SNPs).
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For the identification of potential candidate genes, we concentrated on the most important QTL
regions with a high density of significant SNPs for different traits. These SNPs were selected based on
the following three criteria: The SNPs had to be:

1. Chromosome-wide significant (at least q ≤ 0.1);
2. within the “Top 10” or “Top 25” of significant SNPs for metabolic traits or drip loss;
3. exonic or intronic.

Using these criteria we identified 23 potential candidate genes for drip loss and nine associated
metabolic components (Table 5). SSC 18 is of particular interest, because on this chromosome we
identified candidate genes for drip loss, glycine and PGAM2. The number of detected genes for a single
trait varied between one and six. On SSC 4 six genes in a range of 20 Mb were detected for protein PKM.
The importance of each candidate gene is indicated by one to five significant intronic SNPs. Five genes
(ZNHIT6, HLCS, ANK3, RASGEF1A and LRGUK) harbour more than one intronic SNPs. Based on the
QTL comprising five intronic SNPs in a small range of 0.29 Mb, it might be reasonably assumed that
HLCS is a very promising candidate gene for FBPase. Most significant intronic SNPs with highest
proportion of explained variance in a range of 15.28% to 17.44% were detected for glucosyl-ceramide,
glycerone-p and glycine (Table 5).

For drip loss, five candidate genes were identified on SSC 18 (Tables 5 and 6). The most significant
SNPs (Varmax = 8.82%; pmin ≤ 6.58 × 10−5) associated with drip loss were detected on SSC 16,
but these SNPs do not fulfill the previously described conditions to detect potential candidate genes
(Table 6). Distributed over four regions, SSC 18 harbors two genes for PGAM2, four genes for drip
loss and one gene (LRGUK) significantly associated with drip loss and glycine. Because LRGUK is in
linkage disequilibrium with EXOC4 that was associated with drip loss as well, this region ranging
from 15.9 Mb to 16.1 Mb is of particular interest. From 12.2 Mb to 12.9 Mb there is a second interesting
region with two candidate genes, for PGAM2 and drip loss, respectively. The Manhattan plot of SSC
18 is presented in Figure 2. Moreover, the Manhattan plots of SSC 1, 4, 6, 10, 13, 14 and 17 are shown in
Figure S1.
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Table 5. Annotation of most promising SNPs for drip loss and associated metabolic components.

SSC 1 Trait Gene 2 SNP 3 Position 4 Mut 5 MAF 6 eEff (se) 7 Chi2 Emp. p-Value 8 q-Value 9 Var 10

1
glycerone-p ENPP3 INRA0001633 35387799 G/A 0.47 −4.00 × 10−2 (1.00 × 10−2) 18.68 0.22 5.07 17.35

glucosylceramide SAMD4A ALGA0007238 204522804 C/A 0.47 −9.32 × 10−5 (2.15 × 10−5) 18.80 0.16 6.64 17.44

4 PKM

NTNG1 INRA0016801 123080603 G/A 0.27 −9.21 × 102 (2.57 × 102) 12.88 3.32 7.84 13.21

GBP4 ASGA0023322 139599066 G/A 0.38 −6.43 × 102 (1.77 × 102) 13.26 2.71 7.84 12.72

PKN2 M1GA0006779 139861416 C/A 0.43 6.76 × 102 (1.89 × 102) 12.88 3.32 7.84 12.40

ZNHIT6
ALGA0029718 142789911 A/G 0.46 8.52 × 102 (2.20 × 102) 15.01 1.07 7.84 14.29
ALGA0029732 142739989 G/A 0.39 9.23 × 102 (2.49 × 102) 13.70 2.14 7.84 13.09
ALGA0029741 142730172 G/A 0.46 8.13 × 102 (2.15 × 102) 14.20 1.64 7.84 13.50

DDAH1 ASGA0023626 143204232 A/G 0.40 9.05 × 102 (2.43 × 102) 13.86 1.97 7.84 13.21

WDR63 INRA0018033 143449789 A/G 0.40 9.05 × 102 (2.43 × 102) 13.86 1.97 7.84 10.77

6 phosphor-ethanolamine
PIK3C3 DRGA0006746 118055075 G/A 0.26 2.91 × 10−5 (7.54 × 10−6) 14.93 1.76 3.81 14.36

TTLL5 INRA0022204 120225026 C/A 0.26 2.91 × 10−5 (7.54 × 10−6) 14.93 1.76 3.81 14.36

10 glycine AKT3 MARC0098464 18065301 C/A 0.34 −1.55 × 10−3 (3.80 × 10−4) 16.56 0.69 5.11 15.69

13 FBPase HLCS

MARC0019610 210504370 G/A 0.49 6.54 × 102 (1.70 × 102) 14.71 1.25 8.64 13.92
MARC0005075 210516458 A/C 0.49 6.54 × 102 (1.70 × 102) 14.71 1.25 8.64 13.92
ASGA0089689 210516937 G/A 0.49 6.54 × 102 (1.70 × 102) 14.71 1.25 8.64 13.92
ASGA0089950 210531047 A/G 0.49 6.54 × 102 (1.70 × 102) 14.71 1.25 8.64 13.92
ASGA0097399 210534054 G/C 0.49 6.54 × 102 (1.70 × 102) 14.71 1.25 8.64 13.92

14 succinic acid

ANK3
MARC0033238 68550413 G/A 0.52 1.69 × 10−4 (4.59 × 10−5) 13.60 2.93 2.82 13.26
ASGA0064107 68604989 A/G 0.52 1.69 × 10−4 (4.59 × 10−5) 13.60 2.93 2.82 13.26

RASGEF1A
ALGA0078235 66284845 G/A 0.52 1.69 × 10−4 (4.59 × 10−4) 13.60 2.93 2.82 13.26
ALGA0078240 66320818 A/C 0.52 1.69 × 10−4 (4.59 × 10−5) 13.60 2.93 2.82 13.26
ALGA0078243 66332408 G/A 0.52 1.69 × 10−4 (4.59 × 10−5) 13.60 2.93 2.82 13.26

17 DG3P
PTPRT MARC0016232 50694545 A/G 0.41 −1.96 × 10−2 (5.27 × 10−3) 13.88 1.94 6.53 13.49

VAPB H3GA0049968 65818274 A/G 0.48 1.71 × 10−2 (4.79 × 10−3) 12.78 3.51 6.53 12.55
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Table 5. Cont.

SSC 1 Trait Gene 2 SNP 3 Position 4 Mut 5 MAF 6 eEff (se) 7 Chi2 Emp. p-Value 8 q-Value 9 Var 10

18

PGAM2 CREB3L2 ALGA0107449 12234417 G/A 0.41 1.88 × 102 (4.90 × 101) 14.79 1.99 8.67 13.98

drip loss PTN ALGA0097051 12921061 A/G 0.25 −7.81 × 10−2 (2.49 × 10−2) 9.87 17.6 6.26 5.61

glycine
LRGUK

ASGA0079000 15942579 A/G 0.31 −1.63 × 10−3 (4.07 × 10−4) 16.06 0.90 1.66 15.28

drip loss

ALGA0097170 15969549 G/A 0.45 −4.34 × 10−2 (1.38 × 10−2) 9.87 17.5 6.26 5.61

EXOC4 DIAS0001125 16179365 G/A 0.48 4.15 × 10−2 (1.31 × 10−2) 10.08 15.6 6.26 5.72

AHCYL2 H3GA0050495 20338092 A/G 0.28 −7.16 × 10−2 (2.14 × 10−2) 11.21 8.54 6.26 6.32

SMO ASGA0079098 20520014 G/A 0.30 −7.16 × 10−2 (2.14 × 10−2) 11.21 8.54 6.26 6.32

PGAM2 NFE2L3 ASGA0100894 51012467 C/A 0.42 1.89 × 102 (5.35 × 101) 12.53 6.18 8.67 12.10

The SNP order complies with number of chromosomes and position on the chromosome; Selection of promising SNPs based on the criteria, that they are (1) chromosome-wide
significant (at least p < 0.1); (2) within the “Top 10” significant SNPs per metabolic trait or “Top 25” for drip loss and (3) located within an annotated gene; 1 Sus scrofa chromosomes (SSC);
2 The declaration of gene symbols can be obtained from Ensembl or http://www.ncbi.nlm.nih.gov/gene; 3 None of the SNPs is located in an exon region of the regarding candidate gene;
4 position in BP (base pairs); 5 mutation (Mut); 6 minor allele frequency (MAF); 7 eEff = substitution effect and se = standard error; 8 empirical p-value, times 10−4; 9 q-value (based on
the false discovery rate (FDR) concept), times 10−2; 10 Var = proportion of the explained variation [%]; glycerone-p = dihydroxyacetone phosphate; PGAM2 = phosphoglycerate
mutase 2 (muscle); PKM = pyruvate kinase (muscle); FBPase = fructose-1,6-bisphosphatase 2; DG3P = D-glycerate-3-phosphate; bold: proteins.

http://www.ncbi.nlm.nih.gov/gene
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Table 6. “Top 25” significant SNPs identified for drip loss and potential candidate genes.

SNP SSC 1 Position 2 Mut 3 MAF 4 eEff (se) 5 Chi2 Emp. p-Value 6 q-Value 7 Var 8 Located within a Gene 9

1 ALGA0089069 16 11629284 C/A 0.08 2.26 × 10−1 (5.65 × 10−2) 16.05 6.58 × 10−5 7.02 × 10−2 8.82 ×
2 CASI0008411 16 23115634 G/A 0.10 1.89 × 10−1 (4.86 × 10−2) 15.03 1.12 × 10−4 7.02 × 10−2 8.30 ×
3 MARC0097282 16 10946289 G/A 0.33 7.45 × 10−2 (1.95 × 10−2) 14.65 1.38 × 10−4 7.02 × 10−2 8.15 ×
4 ASGA0072217 16 9183890 A/G 0.34 7.25 × 10−2 (1.93 × 10−2) 14.16 1.78 × 10−4 7.02 × 10−2 7.90 ×
5 ALGA0111681 18 6026724 G/A 0.15 1.35 × 10−1 (3.78 × 10−2) 12.71 3.83 × 10−4 6.26 × 10−2 7.11 ×
6 ASGA0104044 18 4388048 A/C 0.15 1.27 × 10−1 (3.61 × 10−2) 12.34 4.68 × 10−4 6.26 × 10−2 6.92 ×
7 MARC0003904 18 12368984 G/A 0.35 −6.37 × 10−2 (1.90 × 10−2) 11.23 8.45 × 10−4 6.26 × 10−2 6.33 ×
8 ASGA0078921 18 13751595 G/A 0.29 −7.46 × 10−2 (2.23 × 10−2) 11.21 8.53 × 10−4 6.26 × 10−2 6.33 ×
9 H3GA0050495 18 20338092 G/A 0.30 −7.16 × 10−2 (2.14 × 10−2) 11.21 8.54 × 10−4 6.26 × 10−2 6.33 AHCYL2

10 ASGA0079098 18 20520014 A/G 0.30 −7.16 × 10−2 (2.14 × 10−2) 11.21 8.54 × 10−4 6.26 × 10−2 6.33 SMO
11 ALGA0105391 18 5935981 G/A 0.31 6.69 × 10−2 (2.07 × 10−2) 10.48 1.26 × 10−3 6.26 × 10−2 5.94 ×
12 INRA0055248 18 13959002 G/A 0.47 −4.24 × 10−2 (1.31 × 10−2) 10.40 1.32 × 10−3 6.26 × 10−2 5.90 ×
13 MARC0036783 18 16113241 A/G 0.47 −4.23 × 10−2 (1.32 × 10−2) 10.27 1.41 × 10−3 6.26 × 10−2 5.82 ×
14 ASGA0098607 18 3614625 A/G 0.38 −5.35 × 10−2 (1.68 × 10−2) 10.20 1.47 × 10−3 6.26 × 10−2 5.79 ×
15 ALGA0104874 18 3620895 A/G 0.38 −5.35 × 10−2 (1.68 × 10−2) 10.20 1.47 × 10−3 6.26 × 10−2 5.79 ×
16 ASGA0088995 18 3741888 G/G 0.38 −5.35 × 10−2 (1.68 × 10−2) 10.20 1.47 × 10−3 6.26 × 10−2 5.79 ×
17 H3GA0050278 18 3808173 A/G 0.38 −5.35 × 10−2 (1.68 × 10−2) 10.20 1.47 × 10−3 6.26 × 10−2 5.79 ×
18 ASGA0078689 18 3833808 G/A 0.38 −5.35 × 10−2 (1.68 × 10−2) 10.20 1.47 × 10−3 6.26 × 10−2 5.79 ×
19 DIAS0001125 18 16179365 G/A 0.48 4.15 × 10−2 (1.31 × 10−2) 10.08 1.56 × 10−3 6.26 × 10−2 5.72 EXOC4
20 ALGA0097186 18 16444813 G/A 0.47 4.20 × 10−2 (1.32 × 10−2) 10.06 1.58 × 10−3 6.26 × 10−2 5.71 ×
21 ALGA0096804 18 3907848 G/A 032 5.58 × 10−2 (1.77 × 10−2) 10.01 1.63 × 10−3 6.26 × 10−2 5.69 ×
22 ALGA0116114 18 15594213 A/G 0.46 −4.22 × 10−2 (1.34 × 10−2) 9.94 1.69 × 10−3 6.26 × 10−2 5.65 ×
23 ALGA0097170 18 15969549 G/A 0.45 −4.34 × 10−2 (1.38 × 10−2) 9.88 1.75 × 10−3 6.26 × 10−2 5.62 LRGUK
24 ALGA0097051 18 12921061 A/G 0.25 −7.81 × 10−2 (2.49 × 10−2) 9.87 1.76 × 10−3 6.26 × 10−2 5.61 PTN
25 ALGA0097067 18 13674866 A/G 0.25 −7.81 × 10−2 (2.49 × 10−2) 9.87 1.76 × 10−3 6.26 × 10−2 5.61 ×

The SNP order complies with raising p-value; 1 Sus scrofa chromosomes (SSC); 2 position in base pairs (BP); 3 mutation (Mut); 4 minor allele frequency (MAF); 5 substitution effect
and standard error (se); 6 empirical p-value and significant thresholds, 7 q-value (based in the false discovery rate (FDR) concept); 8 Var = proportion of the explained variation [%];
9 The declaration of gene symbols can be obtained from Ensembl or http://www.ncbi.nlm.nih.gov/gene, “×”, SNP is not located within a gene, none of the SNPs is located in an exon
region of the regarding gene.

http://www.ncbi.nlm.nih.gov/gene


Int. J. Mol. Sci. 2016, 17, 1426 11 of 24

3. Discussion

3.1. Systems Biological Approach or Integrated Analysis of Genome, Proteome and Metabolome to Elucidate the
“Muscle to Meat” Black Box

Based on the multitude of possible post-transcriptional events, the genetic information flow from
SNPs to phenotypic variations is not linearly dispersed in living organisms and samples collected
p.m. [30]. This situation describes the black box between genes and phenotypes that needs to be
opened to detect genetic variation influencing complex traits. Several studies have demonstrated
that the results of single omics analysis, like standard GWAS procedure, may not be sufficient to
decode extremely complex biological mechanisms [16]. A possible solution is to integrate different
omics levels in genetic analyses and to analyze the entire cascade of metabolic levels. The omic levels
proteome and metabolome were chosen for our analysis because we expected that these metabotypes
are the final products of specific pathways and thereby are closely connected with classical target
phenotypes routinely measured in animal production [20,21]. While the genome (SNP information)
contains the information on which allele variants exist, the other omics levels indicate which genes
are actually being expressed and which pathways are active. Therefore, metabolites and proteins
constitute essential links between genetic information and phenotypical expression of complex traits
and might be used in genetic association studies to improve the statistical power and to reveal less
false positive, redundant results [21]. The concentration of metabolites and proteins in muscle and
blood compared to drip loss is less influenced by environmental effects and thereby can be used as
more accurate phenotype to identify candidate genes. This means, intermediate phenotypes might be
more appropriate to estimate the genetic potential of the individuals than the performance trait itself.
For example, a pig with excellent genetic potential for high meat quality and low drip loss might show
high drip loss caused by bad environmental factors and management effects. In this case, drip loss is
a poor indicator for the effective genetic potential of the individual.

To elucidate biological pathways affecting a trait, the consideration of the proteome is
advantageous compared to the transcriptome. This can be assumed because the amount of proteins
is not only regulated by a constant level of transcript expression but also by many possible
genetic interacting mechanisms of protein regulation/modification and connected activation of other
pathways [31]. In a similar context, Ala-Koperla et al. [32], Kadarmideen [33] and Widmann et al. [31]
have stated that systems biological approaches are valuable and powerful in identifying key causal
and highly predictive genetic variants for complex traits as well as in building up complex genetic
regulatory networks.

3.2. Impact of Metabolic Pathways and Involved Metabolites and Proteins for Drip Loss

In this study, metabolite profiling was based on an untargeted metabolomics approach to uncover
the whole metabolome. Compared to that, proteins were profiled more specific by means of a targeted
proteomics approach using the absolute quantification of 40 proteins that have been shown as important
indicators for drip loss in previous investigations. For the final enrichment analysis 128 annotated
metabolites and 35 proteins were used. Five proteins were rejected because of missing entrez gene
identifier. The drastic reduction of the number of metabolites from 1865 to only 128 is a severe
bottleneck, so that it is highly probable that even metabolites with strong influence on drip loss
were excluded. This situation is caused by the fragmentary information of biochemical functions of
metabolites that is stored in metabolome databases. According to Chagoyen and Pazos [34], this lack of
scientific fundamentals and principles of physiological and biochemical processes of higher life forms is
a big challenge in systems biology studies. In a similar way, Chagoyen and Pazos [34] argued that there
is a need of more accurate profiling tools for omic phenotypes in order to get a more comprehensive
insight into the metabolic processes.

Our enrichment analysis considered all available annotated metabolome and proteome
information and revealed 10 functional KEGG pathways with significant (p ≤ 0.05) enriched components.
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The applied test mean-rank gene-set enrichment (MR-GSE) statistic is based on Pearson’s correlation
coefficients between metabotypes and drip loss and averages the ranks of the applied statistics instead
of the statistics themselves. This procedure makes the results less influenced by individual components
in the set of variables [35] and is the main difference to other usually applied testing procedures,
like the Tktest of Tian et al. [36]. Further details are given by Ackermann and Strimmer [37].

In summary, it can be expected that the underlying function of our applied enrichment test has
enough power to detect overrepresented groups of variables (e.g., genes or metabotypes), even if
the effects are very small or the amount of data is not sufficient to detect the important variables
individually [35]. This argument can be used to explain, why our enrichment analysis has resulted in
functional sets of metabotypes although correlation coefficients between individual metabotypes and
drip loss do not significantly deviate from zero (Table 1).

In our study, we observed particularly pathways and corresponding key regulators which affect
muscle metabolism related to meat quality traits. Glycolysis, pyruvate and methane metabolism are
strongly connected and belong to the most important energetic processes that influence the muscle to
meat conversion [38,39]. Because drip loss strongly depends on p.m. energetic processes in muscle,
the meaning of glycolysis and pyruvate metabolism is obvious. After slaughtering, in muscle tissues,
anaerobe metabolic processes predominate and, in glycolysis, glycogen is released via glucose to
pyruvic acid. Under aerobic conditions, pyruvic acid is metabolized in citrate cycle and oxidative
phosphorylation [39]. In the case of stress before slaughtering, in hypoxic tissues the rate of oxidative
processes like glycolysis is increased and pyruvic acid does not flow into glycolysis but is transferred
to lactic acid. Accumulation of lactic acid goes along with pH decrease to 5.6 [40]. The meaning of
metabolic processes associated with energy metabolism for drip loss is confirmed by a multitude of
studies. Among others, Binke [41], Scheffler and Gerrard [39] and D’Alessandro et al. [26] allocated
the relevance of glycolysis and pyruvate metabolism for meat quality. The coincidence of low early
pH values and high temperature in muscle lead to partial denaturation of proteins and reduction
of intercellular space. Thereby, lipids are dissolved from membranes, permeability of membranes is
increased and drip loss is the result [6]. In cell exudate dissolved lipids clarify the connection between
drip loss and activity of sphingolipid metabolism that includes the metabolization of ceramides,
phosphoethanolamine and serines. The relation between drip loss and associated lipids and acids has
been already described by Lambert et al. [42] and Poulsen et al. [43].

As a result of our enrichment analysis, the metabolite glycine is associated with drip loss.
In methane metabolism the enzyme glyoxylate transaminase catalyzes the metabolization of metabolite
glyoxylate into glycine or hydroxypyruvic acid (www.genome.jp). High glycine contents indicate
a higher rate of glycolytic processes. A high glycolytic potential is known to be related with high drip
loss. The link between drip loss and glycine was already described by Lim et al. [44], who observed
higher drip loss in the case of higher glycine level in porcine skeletal muscle cells.

The meaning of PKM that is involved in pathways glycolysis/gluconeogenesis, pyruvate metabolism
and type II diabetes mellitus (Table 2) was already clarified by several studies. For example,
D’Alessandro et al. [26] confirmed that the PKM level appeared to be highly related to many
meat quality criteria (WHC, meat color). Beneath PKM, PGAM2 and DG3P are also involved in
glycolysis/gluconeogenesis and pyruvate metabolism. Under anaerobic conditions PGAM2 catalyzed
the degradation of DG3P to 2-phosphoglycerates (Figure S2). Because high levels of glycolytic enzymes
like phosphoglycerates are associated with increased drip loss [45], PGAM2 might be considered
as an appropriate indicator for drip loss [46]. In addition, Davoli et al. [47] appreciated that the
corresponding gene PGAM2, is a potential candidate gene for drip loss. The non-essential α-amino
acid glycine is also product of catabolism of DG3P and is thus part of the same metabolic process
as PGAM2.

Another section of glycolysis/gluconeogenesis illustrates the interactions of the enzymes
FBPase and TPI1 and the metabolite dihydroxyacetone phosphate (glycerone-p). In gluconeogenesis
FBPase converts fructose-1,6-biphosphate to F6P and in glycolysis phosphofructokinase catalyzes the

www.genome.jp
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metabolisation of F6P to fructose-1,6-bisphophate. In the following process of glycolysis, the enzyme
fructose-bisphosphate aldolase converts fructose-1,6-bisphophate to glycerone-p. In the next step,
glycerone-p is metabolized to glyceraldehyde-3-phosphate catalyzed by TPI1 (see Figure S2).
Laville et al. [48] revealed a significant correlation between high TPI1 and tender meat with low drip
loss. The meaning of FBPase for meat quality in pigs was described by Nam et al. [49]. They detected
a lower FBPase expression in pigs with high drip loss and weak pH decrease p.m. [49].

Beneath metabolic processes whose activity directly depends on the individual energy resources,
also sphingolipid metabolism is significantly associated with drip loss. With a p-value of 0.014,
metabolic compounds in sphingolipid metabolism are the most strongly enriched metabolites and
proteins in our study and thereby have an obvious effect on drip loss. According to Heidt et al. [24]
there is a negative correlation between drip loss in DuPi pigs and transcripts associated with
sphingolipid metabolism. According to our analysis, the metabolites ceramide, glucosylceramide,
phosphoethanolamine and serine are involved in sphingolipid metabolism. Ceramides are lipid
signaling molecules that activate proliferative or apoptotic pathways. They are products of the
metabolism of free fatty acids to long-chain fatty acyl-CoAs (LCACoAs). LCACoAs can either be used
for energy production through β-oxidation or undergo conversion to various signaling molecules,
such as ceramide and diacylglycerol [50]. In the analysis of differentially expressed transcripts in
DuPi pigs, Ponsuksili et al. [10] concluded that low drip loss is associated with ceramide pathways.
Especially, drip loss is associated with ceramides as lipid signaling molecules that can activate
proliferative or apoptotic pathways. The ceramide biosynthesis is part of the sphingolipid metabolism
and ceramides arise from the conversion of complex sphingolipids such as glucosylceramides.
According to Dobrowsky and Kolesnick [51], the levels of ceramides and glucosylceramides and the
enzymes regulating their metabolism are associated with the cells response to stress. The degradation
of membranes accompanies with cell stress and as a consequence drip loss has a relation to metabolites
that indicate cell stress. This connection explains the relationship between drip loss and transformation
products of sphingolipid metabolism.

The metabolic processes and their involved components and overlapping are presented in
Figures S2–S5. Several metabolic components, such as glucose and pyruvic acid are involved in
five of ten pathways relevant for drip loss. The connective position of these metabolites confirms their
specific role as metabolic key players in the regulation of meat quality. The meaning of the disease
related pathways (e.g., type II diabetes mellitus) and other processes (meiosis in yeast) for drip loss
(Table 2) are based on the strong influence of specific involved metabolic components like glucose and
pyruvic acid. It is not to be expected that there is in fact a physiological connection between meiosis in
yeast and meat quality in pigs.

3.3. Significant Markers and Candidate Genes for Drip Loss and Associated Metabolic Traits

Drip loss is a complex trait that is genetically controlled by a variety of different genes [10] and is
influenced by interaction of metabolic processes and participants like genes, transcripts, proteins and
metabolites [6]. Against this background, it is problematic to identify genes with a strong influence on
drip loss using classical GWAS approaches. Moreover, statistical problems like stratification within
the investigated population increase the risk of false positive results. In order to adjust for population
stratification we included PCs as fixed effects into the model of the GWAS procedures as suggested
by Aulchenko et al. [52] and applied among others by Becker et al. [53] and Utsunomiya et al. [54].
Depending on the investigated trait (drip loss, protein, metabolite) the models contain 2 to 10 PCs,
which lead to λ-values close to one. From these results we conclude a sufficient elimination of
population stratification without unacceptable reduction of the genetic variation.

Instead of a Bonferroni correction, that favors the occurrence of false negative associations [55],
we used the q-value which based on the FDR to correct for multiple testing. Storey and Tibshirani [56]
suggested including the FDR in GWAS to provide a better balance between statistical significance and
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power to detect true effects. As it has been recommended by Benjamini and Hochberg [57], we set
a relaxed significant threshold of q ≤ 0.10.

The performed GWAS procedures resulted in a varying number of significant SNPs for drip,
11 metabolites and three proteins. The total of 871 significant SNPs are spread across the entire porcine
genome, but concentrated on SSC 14, 17 and 18. For drip loss itself, promising candidate genes are
located on SSC 18. This region has been earlier described by Jennen et al. [58] and Liu et al. [11]. In the
region around 12 Mb, the meaning of “Sus scrofa pleiotropic factor beta” (PTN) (q ≤ 6.26 × 10−2) is
highlighted by the direct neighborhood of gene “cAMP responsive element binding protein” (CREB3L2).
CREB3L2 was identified by the GWAS of the protein PGAM2, which revealed an intronic SNP
(ALGA0107449) as one of the most significant marker (Table 5). The family of cAMP response element
binding proteins is crucial for a variety of cellular processes including cell proliferation, differentiation,
apoptosis, extra-stimuli and stress response [59]. Although the meaning of CREB3L2 so far was
not precisely described for meat quality, our results suggest that this gene seems to have a relevant
influence in energy metabolism in skeletal muscle that is indicated by its interacting effect on PGAM2,
glycine and drip loss (Figure 3).
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frizzled class receptor” (SMO) are located and significantly associated with drip loss. Just like the 
polymorphism between EXOC4 and LRGUK, AHCYL2 is associated with type 2 diabetes [62]. Until 
now, there is no further evidence that this chromosomal region has an influence on meat quality. The 
effect of gene “Nuclear factor, erythroid 2-like 3” (NFE2L3) at 51 Mb, associated with protein PGAM2, 
fits into the same metabolic background like the previously described genes [63]. In summary, the 
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Figure 3. Region on Sus scrofa chromosome (SSC) 18 with potential candidate genes for drip loss
and associated metabolic traits phosphoglycerate mutase 2 and glycine. Drip loss measured in
Musculus longissimus dorsi (LD) 24 h post-mortem (p.m.); PGAM2 = phosphoglycerate mutase 2;
fat solid arrows = direct relation between SNPs and drip loss; thin solid arrows = indirect relation
between SNPs and drip loss via metabolite glycine; dotted arrow = indirect relation between SNPs
and drip loss via protein PGAM2; genes in boxes: CREB3L2 = cAMP responsive element binding protein 3
like 2; PTN = Sus scrofa pleiotropic factor beta; LRGUK = leucine-rich repeats and guanylate kinase domain
containing; EXOC4 = exocyst complex component 4.

In the second interesting region on SSC 18 from 15.9 to 16.1 Mb, two intronic SNPs located in the
gene “Leucine-rich repeats and guanylate kinase domain containing” (LRGUK) were found. These SNPs are
ranked in the Top 10 list for drip loss as well as for glycine. The nearby gene “Exocyst complex component 4”
(EXOC4) is also significantly associated with drip loss. EXOC4 is part of the exocyst complex (Exo70),
which is involved in insulin-stimulated glucose transport. Due to Laramie et al. [60], in humans
polymorphisms near EXOC4 and LRGUK on chromosome 7 are associated with type 2 diabetes and
fasting glucose. The metabolic pathway that is regulated by the polymorphisms near EXOC4 and
LRGUK potentially is also relevant for drip loss in pork, because fasting glucose also effectsthe pH
decrease in muscle p.m. and drip loss. The investigations of Leheska et al. [61] demonstrated that
fasting before slaughtering yielded in a significant lower glucose level and weaker pH decrease in
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muscle p.m. and in less drip loss. In the third interesting region on SSC 18 around 20 Mb, directly next
to each other genes “Adenosylhomocysteinase-like 2” (AHCYL2) and “Smoothened, frizzled class receptor”
(SMO) are located and significantly associated with drip loss. Just like the polymorphism between
EXOC4 and LRGUK, AHCYL2 is associated with type 2 diabetes [62]. Until now, there is no further
evidence that this chromosomal region has an influence on meat quality. The effect of gene “Nuclear
factor, erythroid 2-like 3” (NFE2L3) at 51 Mb, associated with protein PGAM2, fits into the same metabolic
background like the previously described genes [63]. In summary, the multitude of significant SNPs
detected for drip loss and associated metabotypes gives an ambiguous indication that in the described
regions on SSC 18 promising candidate genes for drip loss can be expected.

In this study, the most significant SNPs were detected on SSC 1. Two SNPs (p ≤ 2.23 × 10−5

and p ≤ 1.59 × 10−5) associated with glycerone-p and glucosylceramide, are located within the genes
“Ectonucleotidepyrophosphatase/phosphodiesterase 3” (ENPP3) and “Sterile alpha motif domain containing 4a”
(SAMD4A). ENPP3 is associated with lipid and fatty acid metabolism and it has been reported by to
Liu et al. [64] that this gene affects fat deposition and skeletal muscle growth in pigs. SAMD4A is also
associated with lipid metabolism [65] and influences the metabolisation of glucosylceramides that is
part of sphingolipid metabolism. Combining biological knowledge found in literature and the highly
significant results of our enrichment analysis leads to the conclusion that the sphingolipid metabolism
is one of the most important metabolic pathways associated with drip loss.

Beneath glucosylceramides, phosphoethanolamines are also key players in sphingolipid
metabolism. Two genes significantly associated with this metabolite were detected on SSC 6 (Table 5).
“Phosphatidylinositol 3-kinase, catalytic subunit type 3” (PIK3C3) is involved in the regulation of hepatic
glucose output, glycogen synthase, and antilipolysis in typical insulin target cells such as those in the
liver, muscle and fat tissue [66]. Among others, PIK3C3 influences the cellular response to glucose
starvation (GO term: 0042149). This biological process describes the change in state or activity of a cell
(in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of deprivation
of glucose. According to Kim et al. [66] and Hirose et al. [67] a polymorphism in PIK3C3 is associated
with body weight and carcass fat in Landrace and Duroc pigs.

Moreover, we identified potential candidate genes for several metabolic components involved
in glycolysis/gluconeogenesis. The protein PKM is one of the most prominent members of these
pathways. The activity of PKM is decreased in the case of low glucose availability in muscle that
is positive correlated with anabolic cellular processes. During the conversion of muscle to meat,
the metabolic processes change into the catabolic range and if glucose is used up very early, the PKM
level is significantly associated with the aberrant glycolysis leading to PSE development [39]. In our
analysis, it was shown that PKM is influenced by six candidate genes on SSC 4. In the chromosomal
region of 139 Mb, genes “Guanylate-binding protein 4” (GBP4) and “Protein kinase N2” (PKN2) are located.
Zhao et al. [68] have identified GBP4 as a significant QTL for lean meat content of pigs by comparing
two divergent pig breeds with respect to carcass composition traits. Fontanesi et al. [69] have reported
markers close to PKN2 that were associated with back fat thickness. SSC 4 harbors two genes (ZNHIT6,
DDAH1) within a region of 142–143 Mb which were significantly associated with average daily gain in
Large White pigs [69]. These polymorphisms seem to have a strong impact on the metabolic rate and
the deposition of skeletal muscle mass.

Two SNPs on SSC 17 give evidence that “Protein tyrosine phosphatase, receptor type” (PTPRT) and
“VAMP (vesicle-associated membrane protein)—associated protein B and C” (VAPB) are candidate genes
that affect the metabolite DG3P. The protein encoded by PTPRT is a signaling molecule that regulates
a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic
transformation. In humans, PTPRT is strongly associated with high-fat diet-induced obesity and
insulin resistance [70,71]. Moreover, in beef cattle, Tiziato et al. [72] identified PTPRT as candidate
gene for shear force. With respect to the negative correlation between intramuscular fat content and
shear force both studies came to homogeneous results. The importance of PTPRT is additionally
indicated by the fact that the most important intronic SNP of PTPRT is an overlapping SNP that is
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also significantly associated with protein FBPase (Figure 1). DG3P and FBPase are strongly connected
in glycolysis/gluconeogenesis and PTPRT might be a key player in regulation of glycolysis and thus
a promising candidate gene for several meat quality traits.

3.4. Challenges and Perspectives

As it has been postulated by Fiehn et al. [73] and Krastanov [74], the development and
performance of omics approaches have revolutionized the collection of biological data. Detection,
quantification and annotation of hundreds of thousands of variables in tissue or blood samples
presupposes enormous progress in chip technology, technical profiling/screening method, expansion of
biological databases and handling of high dimensional data sets. From the statistical point of view,
there are some unsolved questions, how to weight or to integrate the different omic levels in a statistical
model. Genomic selection tools provide solution to weight large amount of SNP information in the
case of a limited number of animals [75]. In a similar way “omics based selection” (OBS) methods
try to weight genetic, transcriptional and metabolic information in an optimal manner. Under the
condition of a successful weighting of metabotypes and the correct consideration of exogenous
factors and the time point of profiling, OBS has the perspective to be an effective strategy in animal
breeding, monitoring of state of health and supply status (e.g., nutritional metabolomics) and early
disease detection (e.g., molecular epidemiology). Finally it should be mentioned that the profiling of
metabotypes is non-invasive and may be performed in living organisms [76]. However, because of the
complex interaction of genes, transcripts, proteins and metabolites these methods are conceptually
very demanding and generally accepted methods are still missing. Moreover, beneath not standardized
statistical methods to integrate omics data, the possibilities of metabolite and protein annotation are
limited due to the fragmentary information of regarding databases. As a solution, network analyses
might be valuable for the integration of multi omics data and the indirect annotation of unknown
omics components based on the functional connectivity within a module of the network. A further
difficulty is the dynamics of metabotypes in dependence of environmental effects and processing
conditions. Biochemical processes response very quickly and dynamic to changes in exogenous factors.
While the genetic information remains constant during the lifetime of an individual, the expression
of transcripts, proteins and metabolites is very dynamic and regulated by a large number of factors.
Thus, proteomic and metabolomic approaches can be viewed as recording of the metabolic status at
a specific time point in a system of steady dynamic nature. Consequently, in estimation of performance
traits the time point of metabolite and protein profiling has to take into account precisely.

4. Materials and Methods

4.1. Animals, Tissue Collection, Phenotyping

This study is based on 97 animals of a reciprocal DuPi crossbreed. The animals were selected
from F2 families and based on their extreme high or low values of drip loss [24]. The animals
were kept and performance tested under standardized conditions at the Frankenforst experimental
farm of the University of Bonn from 2002 until 2007. Data recording and sample collection
were conducted strictly in line with the German law on animal welfare. The entire experiment,
including applied standard operating procedures, was approved by the veterinary and food inspection,
Siegburg, Germany (No. 39600305-547/15). All animals were slaughtered at an average of 180.5 days
(range 151–223 days) and average carcass weight of 86.5 kg (range 73.0–101.8 kg). The phenotypes were
recorded in a commercial slaughterhouse according to the rules of German performance stations [77].
Further information can be found in Liu et al. [11] and Heidt et al. [24].

Sample collection was performed about 10 min p.m., immediately after exsanguination.
Tissue samples were rapidly dissected, snap-frozen in liquid nitrogen and stored at −80 ◦C. Drip loss
was measured in LD using the bag method of Honikel and Kim [40]. The samples from LD between
13th/14th rib (one chop per individual) with a thickness of 2.5–3.0 cm were collected 24 h p.m.,
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weighed, and suspended in a plastic bag. After storage for 48 h at 4 ◦C, the samples were reweighed
and drip loss were calculated as a percentage of weight loss based on the initial weight of a sample.
In the tested animals drip loss ranged between 0.4% and 5.3%, whereby 49 pigs have drip loss values
of lower 1.5% and the remaining 48 pigs show drip loss values of ≥1.5%.

4.2. Untargeted Metabolite Profiling

For metabolite profiling we choose an untargeted approach to screen the entire metabolome.
The metabolite spectra in the LD samples of 97 DuPi pigs were measured by Metabolomic Discoveries
GmbH (Potsdam, Germany; www.metabolomicdiscoveries.com) via gas GC-MS and LC-QTOF/MS.
GC-MS and LC-QTOF/MS facilitate the identification and quantification of a few hundred metabolites
in a single tissue sample. Chromatography followed by mass spectrometry has a relatively
broad coverage of compound classes, including organic and amino acids, sugars, sugar alcohols,
phosphorylated intermediates and lipophilic compounds. With the combination of both methods it is
possible to detect metabolites in a range of 50–1700 Dalton, with a precision of 1–2 part per minute
(ppm) and a solution of mass/∆mass = 40.000 (Report METABOLOMIC DISCOVERIES GmbH).
For details on the LC-QTOF/MS method see Lisec et al. [78]. Metabolites were identified and annotated
in comparison to Metabolomic Discoveries’ databases, which resort to Human Metabolome Database
(HMDB, www.hmdb.ca), METLIN (www.metlin.scripps.edu/) and Lipid Maps (www.lipidmaps.org/).
Annotation of metabolites was based on mass assignment, retention behavior and structure information.
Metabolites, which could not be annotated, are characterized by their accurate mass and retention time.
For details in metabolite quantification and annotation see Welzenbach et al. [22]. Only metabolites
with known KEGG-ID were used for further analysis. Table S2 contains a list of all KEGG-annotated
metabolites we used for further analysis. KEGG-IDs were obtained using R packages KEGGREST,
biomaRt and AnnotationDbi of Bioconductor (https://www.bioconductor.org) based on HMDB-IDs.

4.3. Targeted Protein Profiling

For the protein quantification and annotation we applied a two-step procedure. In the first step,
an untargeted proteome profiling approach via isotope-coded protein labeling (ICPL) was used to
determine the whole proteome (holistic approach) in LD samples of 42 DuPi pigs selected based on
their extreme phenotypes of drip loss. In the second step (validation step), a set of 40 selected proteins
was quantified in the 97 DuPi pigs of this study (targeted protein profiling approach).

The ICPL procedure, which based on stable isotope labeling, combined with mass spectrometry
has emerged as a powerful tool to identify and relatively quantify thousands of proteins within complex
protein mixtures [79]. In contrast to traditional proteomics approaches e.g., by 2D-gel electrophoresis,
ICPL technology shows highly accurate and reproducible quantification of proteins [80]. The ICPL
approach resulted in 825 quantified proteins. The identification (annotation) of the quantified proteins
was based on mass spectra and database query amongst others with the ICPL-Quant software.

Based on the holistic ICPL approach and literature research, 40 proteins with expected meaning
for drip loss were selected. These proteins were validated via selected reaction monitoring (SRM) in
the 97 DuPi pigs of this study. Using a triple quadrupole mass spectrometer, targeted SRM offers high
selectivity, sensitivity and a wide dynamic range in the quantitative analysis of small molecules [81].
The ICPL and SRM analyses were performed by TOPLAP GmbH (Munich, Germany). For a more
detailed description of the ICPL and SRM application in our samples, see Kellermann [79] and
Gallien et al. [81].

Based on the available entrez gene ID or ensemble peptide ID, R packages KEGGREST,
biomaRt and AnnotationDbi of Bioconductor (https://www.bioconductor.org) were used to identify
the corresponding KEGG-IDs of the proteins. In Table S3, a list of all entrez gene ID- and peptide
ID-annotated proteins is presented.

www.metabolomicdiscoveries.com
www.hmdb.ca
www.metlin.scripps.edu/
www.lipidmaps.org/
https://www.bioconductor.org
https://www.bioconductor.org
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4.4. Genome Profiling

DNA was extracted from LD using a Genomic DNA Purification Kit (Fermentas Life Science,
Thermo Fisher Scientific, Waltham, MA, USA). DNA concentration was measured using a NanoDrop
8000 spectrophotometer (Thermo Scientific, Wilmington, DE, USA) and concentration was adjusted to
100 ng/µL by using double-distilled RNase and DNase free water. Illumina bead array technology
(Porcine SNP 60 K Bead Chip) was used for genotyping the samples (Illumina, Inc., San Diego, CA,
USA) in accordance with the protocol for SNP Infinium HD assay (http://Illumina.com). DNA (200 ng)
was used for genome-wide amplification and fragmentation. A quality score for each genotype was
generated. Sample preparation and genotyping has been described by Heidt et al. [24].

4.5. Statistical Analysis

4.5.1. Quality Control and Annotation of Genetic Data

Quality control was performed as implemented in R package GenABEL [52]. SNPs were excluded
from further analysis under the following conditions: (a) Minor allele frequency (MAF) < 1%; (b) Call
rate < 95% and (c) strong deviation from the Hardy-Weinberg-Equilibrium (p < 10−3). After checking
the quality of the data, 97 animals and 44,844 SNPs remained in the data set.

Pig Sscrofa 10.2 (International Swine Genome Sequencing Consortium) [82] was used to annotate
all investigated SNPs. In order to detect biologically relevant genes being in linkage disequilibrium
with significant associated SNPs, the R package biomaRt [83] was used. This procedure of functional
annotation filtered genes in a distance of up to 1 Mb around the significant SNP regions. We chose this
window, because in our assumption there is an association between SNP and potential candidate gene
if the distance is ≤1 Mb.

4.5.2. Metabolite and Protein Enrichment and Pathway Analysis

In order to investigate the overrepresentation of specific metabolite and protein sets in different
KEGG pathways, an enrichment analysis was performed based on corresponding annotated
metabolites and proteins and the target trait drip loss. For assignment of metabolites and proteins to
relevant metabolic pathways, R package biomaRt was applied [83].

The enrichment analysis was performed as implemented in R package limma [76]. The underlying
test procedure of limma, called MR-GSE, was developed by Michaud et al. [35] and refers to a Wilcoxon
rank-sum test. The test statistic ranks the sets of metabolic components based on Pearson’s correlation
coefficients between paired samples of metabolites/proteins and drip loss. The result is a list of
ranked compositions containing a varying number of metabolites and proteins. It was assumed that
significantly (p ≤ 0.05) enriched sets of metabolic components represent specific functional pathways
that might be associated with muscle metabolism and meat quality traits. The procedure computes
a p-value to test the hypothesis that a set of variables (metabolites and proteins) tends to be more
highly ranked in terms of a given test statistic compared to randomly chosen variables. The calculated
p-value indicates whether a set of variables is statistically independent that means that the variables
are on average less or equally correlated than randomly chosen variables (H0 hypothesis), or whether
a set of metabolites and proteins is enriched because of functional connectivity (H1 hypothesis). In the
following step, metabolites and proteins of significant enriched functional pathways were analyzed in
a GWAS.

4.5.3. Genome-Wide Association (GWA) Analysis

The GWAS for pork quality parameter drip loss and metabolites/proteins of significant pathways
was applied using the R package GenABEL [52]. The phenotypic traits (drip loss, metabolite/protein
expression values) were corrected for “slaughter date” (SD) and “slaughter weight” (SW):

yijk = µ+ SDj + βsSWi + βggik + eijk (1)

http://Illumina.com
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where yij is the phenotype of the i-th individual. Fixed effect SD and as covariable SW with regression
coefficient βs are implemented in the model. Genetic effects were estimated via a fixed covariable
“genotype” (gik) and corresponding regression coefficient (βg). The significance of each SNP was tested
using a fast score test. In order to verify potential stratification in our F2 DuPi population, the inflation
factor λ, which depends on the squared original test statistic of the i-th SNP (T2

i ) was calculated as

λ =
Median

(
T2

i
)

0.4549
(2)

Aulchenko et al. [52] and Price et al. [29] showed that an inflation factor λ in the range of
1.0 to 1.05 is an indicator of a sufficiently corrected population stratification which can be analyzed
with an acceptable risk of false positive results. Preliminary results of our analysis showed that λ
deviates slightly from this optimum. This implies that some population stratification exist within
our F2 DuPi pigs. In order to correct for this problem, within the fast score test, PCs estimated
from the genomic kinship (EIGENSTRAT) [29,52], were included as fixed covariables. The genomic
kinship matrix was used to reveal the PCs reflecting the axes of genetic variation and describing the
stratification of the populations involved in this study. The number of PCs used in this step is variable
and depends on the ability to correct different levels of population stratifications. The number of PCs
was increased stepwise from one to 10 PCs and the final number of PCs was chosen so that the inflation
factor λ was nearest to 1.

The correction of phenotypes, the estimation of the PCs and the association analysis was
performed with the function “egscore” as implemented in the R-package GenABEL. In order to
reduce the risk of false-positive associations, the SNP significance tests were corrected for multiple
testing based on the q-value calculation. This approach is a significance measurement based on the
false discovery rate (FDR) concept [56]. We chose a significance threshold of q ≤ 0.1. The variance
explained by the respective SNP was calculated using following formula:

Var (%) =
χ2

1d f(
n − 2 + χ2

1d f

) (3)

where χ2 is the result of the score test as implemented in GenABEL and n the number of individuals.
This formula resulted from the transformation of a Student’s t-distribution into a z-distribution [84].
Based on a similar MAF, a similar allele substitution effect and a similar proportion of explained
variance we assumed that SNPs within a distance of <1 Mb to each other belong to one QTL.

5. Conclusions

Systems biological approaches utilize the information content of all available omic variables
(SNPs, transcripts, proteins, and metabolites) in order to clarify the physiological, biochemical and
genetic background of complex traits. Theoretically, across omics utilization is advantageous in
comparison to classical genetic approaches, which merely investigate associations between SNPs
and phenotype.

In this context, Picard et al. [16] and van der Sijde et al. [85] have stated that there is an increasing
interest to combine all the omic levels in a holistic omics approach to investigate the complexity of
the molecular events beyond expected biological functions and to identify important genes. It can
be expected that meat quality traits are influenced by a high number of interacting genes that are
unknown or involved in unexpected functions, so that the across omics level approach used in our
study is particularly useful. Based on the described integrated analysis of the omic levels genome,
proteome, metabolome and phenotype, we increased the information density between genes and
trait of interest to decode the complex biological mechanisms influencing drip loss and to reveal
promising candidate genes. At least some of these genes have not been detected based on a standard
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GWAS procedure. The most promising candidate genes were located on SSC 18 where we detected
several, partly overlapping QTL for drip loss itself and the intermediate phenotypes PGAM2 and
glycine. These candidate genes need further investigations to identify underlying functional mutations
affecting drip loss and the related metabolic processes.

Based on the results of this study, it was possible to confirm the already known findings about the
importance of energy related metabolic processes influencing meat quality and particularly drip loss.
On the other hand, this study also provides novel insights into the underlying biochemical pathways
of drip loss. According to our findings, the sphingolipid metabolism is of particular importance for
drip loss manifestation. The involved metabolites glucosylceramide and phosphoethanolamine are
promising intermediate phenotypes for drip loss and revealed promising candidate genes on SSC 1.
It can be expected that such integrated omics approaches might be successfully applied to clarify
the biochemical and genetic background also in more complex traits than meat quality. Against this
background, our study may be considered as a model investigation to test one possible procedure to
combine different omic levels.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/17/9/1426/s1.
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