
Published online 16 August 2018 Nucleic Acids Research, 2018, Vol. 46, No. 21 e125
doi: 10.1093/nar/gky724

Hercules: a profile HMM-based hybrid error correction
algorithm for long reads
Can Firtina 1, Ziv Bar-Joseph2, Can Alkan 1,* and A. Ercument Cicek 1,2,*

1Department of Computer Engineering, Bilkent University, Ankara 06800, Turkey and 2Computational Biology
Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA

Received January 24, 2018; Revised July 20, 2018; Editorial Decision July 28, 2018; Accepted August 07, 2018

ABSTRACT

Choosing whether to use second or third genera-
tion sequencing platforms can lead to trade-offs be-
tween accuracy and read length. Several types of
studies require long and accurate reads. In such
cases researchers often combine both technologies
and the erroneous long reads are corrected using
the short reads. Current approaches rely on various
graph or alignment based techniques and do not
take the error profile of the underlying technology
into account. Efficient machine learning algorithms
that address these shortcomings have the potential
to achieve more accurate integration of these two
technologies. We propose Hercules, the first machine
learning-based long read error correction algorithm.
Hercules models every long read as a profile Hidden
Markov Model with respect to the underlying plat-
form’s error profile. The algorithm learns a posterior
transition/emission probability distribution for each
long read to correct errors in these reads. We show
on two DNA-seq BAC clones (CH17-157L1 and CH17-
227A2) that Hercules-corrected reads have the high-
est mapping rate among all competing algorithms
and have the highest accuracy when the breadth of
coverage is high. On a large human CHM1 cell line
WGS data set, Hercules is one of the few scalable al-
gorithms; and among those, it achieves the highest
accuracy.

INTRODUCTION

High Throughput Sequencing (HTS) technologies have rev-
olutionized the field of genomics, and yet they suffer from
two fundamental limitations. First and foremost, no plat-
form is yet able to generate a chromosome-long read. Av-
erage read length ranges from 100 bp to 20 kb depending
on the platform. Second, reads are not error-free. The most
ubiquitous platform, Illumina, produces the most accurate

(∼0.1% error rate), yet the shortest (100–150 bp) reads (1).
Short read lengths present challenges in accurate and repro-
ducible analyses (2,3), as well as in building reliable assem-
blies (4–6). On the other hand, Pacific Biosciences Single
Molecule, Real-Time (SMRT) sequencing technology is ca-
pable of producing >10 kb-long reads on average, though
with a substantially higher (∼15%) error rate (7). Similarly,
the Oxford Nanopore Technologies (ONT) platform can
generate longer reads (up to ∼900 kb). However, their error
rate is also higher (>15%) (8). While one can still achieve
high basepair accuracy using PacBio or ONT reads, this re-
quires a very high coverage (9), which, given the relatively
higher costs associated with long read platforms make this
approach prohibitive.

The strengths and weaknesses of the platforms discussed
above makes it attractive to combine them. Such combina-
tion enables researchers to utilize the longer reads generated
by PacBio and ONT platforms while obtaining the same ac-
curacy as the Illumina reads provide. However, downside
is that this approach cannot correct regions of the genome
with little or no Illumina read coverage. Still, several hybrid
error correction methods have been developed that fall into
two major categories. The first approach starts with aligning
short reads onto long reads generated from the same sam-
ple, implemented by several tools such as PacBioToCA (10),
LSC (11), proovread (12) and Colormap (13). Leveraging
the relatively higher coverage and accuracy of short reads,
these algorithms fix the errors in long reads by calculating
a consensus of the short reads over the same segment of
the nucleic acid sequence. The second approach aligns long
reads over a de Bruijn graph constructed using short reads,
and the k-mers on the de Bruijn graph that are connected
with a long read are then merged into a new, corrected form
of the long read. Examples of this approach are LoRDEC
(14), Jabba (15) and HALC (16). Despite being a de Bruijn
graph-based algorithm, LoRMA (17) is not a hybrid tool as
it only uses long reads for correction.

While both approaches work well in some cases, they
also suffer from several drawbacks. Alignment based ap-
proaches are highly dependent on the performance of the
aligner. Therefore, accuracy, run time, and memory usage
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of the aligner will directly affect the performance of the
downstream correction tool. The use of de Bruijn graphs
by the second approach eliminates the dependence on exter-
nal aligners, and implicitly moves the consensus calculation
step into the graph construction. However, even with the
very low error rate in short reads and the use of shorter k-
mers when building the graph, the resulting de Bruijn graph
may contain bulges and tips, that are typically treated as
errors and removed (18). Accurate removal of such graph
elements relies on the availability of high coverage data to
be able to confidently discriminate real edges from the ones
caused by erroneous k-mers (19,20).

Here, we introduce a new alignment-based Hybrid ERror
Correction algorithm, Hercules, to improve basepair accu-
racy of long reads. Hercules is the first machine learning-
based long read error correction algorithm. Hercules mod-
els each long and erroneous read as a template profile hid-
den Markov model (dubbed profile HMM or pHMM). It
uses short reads as observations to train the model via
Forward-Backward algorithm (21), and learns posterior
transition and emission probabilities. Finally, Hercules de-
codes the most probable sequence for each profile HMM
using Viterbi algorithm (22). Although HMMs have been
used in short read error correction before (23,24), this is the
first use of HMMs in long read error correction.

The main advantage of Hercules over other alignment-
based tools is the novel use of pHMMs to (i) reduce depen-
dency on aligner performance, (ii) directly incorporate ex-
perimentally observed error profiles of long reads that can
be updated when the underlying sequencing technology im-
proves, or adapted to new long read sequencing platforms.
Alignment-based methods are dependent on the aligner’s
full CIGAR string for each basepair to correct. They per-
form majority voting to resolve discrepancies among short
reads with the assumption that all error types are equally
likely to happen during correction. Despite the fact that
aligners can take likelihoods of different error types into ac-
count, correction step is dependent on the aligner’s choice.
In contrast, while Hercules uses the starting positions ob-
tained from an aligner, it does not depend on any other in-
formation provided by the aligner. It sequentially and prob-
abilistically accounts for the evidence provided per short
read, instead of just independently using majority voting
per base-pair. In addition, using the HMM prior probabil-
ities for error types can be configured based on the error
profile of the platform to be processed. As prior probabil-
ities are not uniform, the algorithm is better positioned to
predict the posterior outcome. Thus, it can also be adapted
based on the long read technologies.

We compared Hercules with other methods on the fol-
lowing data sets: (i) two BAC clones of complex regions of
human chromosome 17, namely, CH17-157L1 and CH17-
227A2 (7), and (ii) a human hydatidiform mole cell line
(CHM1) (25) As the ground truth, (i) for BAC clones, we
used finished assemblies generated from Sanger sequencing
data from the same samples and (ii) for the human data we
used CHM1 1.1 assembly (25).

Results on BAC clones show that when the short read
coverage is high, Hercules produces reads with the high-
est mapping rate and, should long reads have high short
read breadth of coverage (i.e., 90%), Hercules outputs the

largest set of most accurate reads (i.e. >95% accuracy). Un-
like BAC clone data sets (short genome, high short read
coverage), CHM1 data reflects a more realistic scenario
(large genome, moderate short read coverage––639 673 210
paired-end short and 817 410 long reads). We compare the
performances of the tools on CHM1 data set that best per-
form with moderate short read coverage on BAC clones. We
show that Hercules is one of the two algorithms that can
scale to such a large problem size. Despite moderate short
read coverage (<40×), Hercules produces most accurate
reads (i.e. >95%) with 128% improvement over LoRDEC.

MATERIALS AND METHODS

Overview of Hercules

Hercules corrects errors (insertions, deletions, and substi-
tutions) present in long read sequencing platforms such as
PacBio SMRT (26) and Oxford Nanopore Technologies (8),
using reads from a more accurate orthogonal sequencing
platform, such as Illumina (27). We refer to reads from the
former as ‘long reads’ and the latter as ‘short reads’ in the re-
mainder of the paper. The algorithm starts with preprocess-
ing the data and obtains the short-to-long read alignment.
Then, for each long read, Hercules constructs a pHMM
template using the error profile of the underlying platform
as priors. It then uses the Forward–Backward algorithm to
learn the posterior transition/emission probabilities, and fi-
nally, uses the Viterbi algorithm to decode the pHMM to
output the corrected long read (Figure 1).

Preprocessing

Compression. Similar to the approach of LSC (11), Her-
cules starts with compressing both short and long reads
using a run-length encoding scheme. That is, it com-
presses repeating base-pairs to a single base-pair (e.g.,
AAACTGGGAC → ACTGAC). This is because PacBio
and ONT platforms are known to produce erroneous ho-
mopolymer runs, especially when the homopolymer lengths
are longer, i.e. consecutive bases may be erroneously re-
peated (28), which affects the short read alignment perfor-
mance drastically. Furthermore, when homopolymer com-
pression is enabled, overlapping quality of PacBio reads im-
proves (29). Hercules, then, recalculates the original posi-
tions based on the original long reads. Even though this
option is performed by default, it is still possible to skip the
compression phase.

Short read filtering. After the step described above, the
nominal length of some compressed reads may be substan-
tially shortened. This would in turn cause such reads to
be ambiguously aligned to the long reads, which is already
a common problem in short read sequencing due to re-
peats (2,3). To overcome this problem, Hercules removes
any compressed short read, if its number of non-N charac-
ters is less than a specified threshold (set to 40 by default).
In addition to PCR and optical duplicates inherent in short
read data, it is also highly likely that compression step will
generate new duplicate sequences. If the multiple alignment
option is enabled by an aligner, these duplicates may cause
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Figure 1. Overview of the Hercules algorithm. Initially (1), short reads are
aligned to long reads using an external tool. Here, red bars on the reads
correspond to erroneous locations. Then (2), for each long read Hercules
creates a pHMM with priors set according to the underlying technology.
Using the starting positions of the aligned short reads, Forward-Backward
algorithm learns posterior transition and emission probabilities in (3). Fi-
nally (4), Viterbi algorithm finds the most likely path of transitions and
emissions as highlighted with red colors. The prefix and the suffix of the
input long read in this example is ‘AGAACC...GCCT’. After correction,
substring ‘AT’ inserted right after the first ‘A’. Third ‘A’ is changed to ‘T’
and following two base-pairs are deleted. Note that deletion transitions
are omitted other than this arrow, and only two insertion states are shown
for clarity of the figure. On the suffix, a ‘T’ is inserted and second to last
base-pair is changed from ‘C’ to ‘A’.

generating large number of identical alignments. Such iden-
tical alignments might be useful in better learning the pa-
rameters, but they may also increase the running time of an
aligner as well. Therefore, after compression, Hercules may
remove these duplicates using a Bloom filter with 0.0001
false positive rate, keeping only a single read as the repre-
sentative of the group. This may help the aligner to reduce
its running time if the short read input size is large. Dupli-
cate removal is an optional phase, and we do not remove
duplicates by default.

Alignment and decompression. Hercules is an alignment-
based error correction tool. It outsources the alignment
process to a third party aligner, and it is compatible with
any aligner that provides output in SAM/BAM format (30).
However, we suggest mappers that can report multiple pos-
sible alignments such as Bowtie2 (31) as we would prefer to
cover most of the long read with short reads. Even though
this might cause incorrect mappings, Hercules is able to
probabilistically downplay the importance of such reads

during the learning stage given sufficient short read depth.
Hercules also assumes that the resulting alignment file is
sorted. Thus, the file in SAM/BAM format must be coordi-
nate sorted in order to ensure a proper correction with Her-
cules. Alignments are calculated using either compressed or
original long and short reads (those that pass filtering step
for the latter) as described in previous sections. After re-
ceiving the alignment positions from the aligner, Hercules
decompresses both short and long reads and recalculates
alignment start locations.

All other alignment-based error correction methods in
the literature use the CIGAR string provided by the aligner.
CIGAR string specifies where each basepair of the short
read is mapped on the long read and where insertions and
deletions have occurred. Then, per base-pair on the long
read, they perform a majority vote among covering short
reads. Hence, learning of correct basepairs is actually per-
formed by the aligner, which makes the performance of such
tools fully dependent on the aligner choice. In contrast,
the only information Hercules receives from the aligner is
the starting position of the mapping. The Forward algo-
rithm learns posterior probabilities starting from that po-
sition and it can go beyond the covered region. Thus, de-
spite using the starting point information from the aligner,
the algorithm can decide that the short read is aligned be-
yond that point and also that the alignment is essentially
different than what is claimed by the aligner in the CIGAR
string. This minimizes the dependency of the algorithm on
the aligner and makes Hercules the first alignment-based
approach to reclaim the consensus learning procedure from
the aligner.

The profile HMM structure

Hercules models each long read as a pHMM. In a tradi-
tional profile HMM (32), there are three types of states:
deletion, insertion and match (mismatch) states. The aim
is to represent a family of proteins (amino acid sequences)
and then to use it to decide if an unknown protein is likely
to be generated from this model (family). Our goal in rep-
resenting a long read as a template pHMM is different. We
use short reads that we know are generated from the source
(e.g., same section of RNA/DNA), to update the model
(not the topology but the transition and emission prob-
abilities). While the goal of the original application is to
calculate the likelihood of a given query sequence, in our
case there is no given sequence. Our goal is to calculate the
most likely (consensus) sequence the model would produce,
among all possible sequences that can be produced using the
letters in the alphabet �. While the consensus sequence gen-
erated by a traditional pHMM is only based on the match
states, in our case we would like to generate a different con-
sensus that takes insertions and deletions in to account after
the training. This requires us to impose some restrictions on
the standard pHMM concept for reasons detailed in later
sections. First, we remove the self loop over insertion states.
Instead, our model has multiple insertions states per posi-
tion (basepair) on the long read. The number of insertion
states is an input to the algorithm. Second, we substitute
deletion states with deletion transitions. The number of pos-
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Figure 2. A small portion of the profile HMM built by Hercules. Here,
two match states are shown, where the corresponding long read includes
G at location t, followed by nucleotide A at location t + 1. At state t, the
emission probability for G is set to �, and emission probabilities for A, C,
T are each set to the substitution error rate �. Match transition probability
between states t and t + 1 is initialized to �M.

sible consecutive basepairs that can be deleted is an input
parameter to the algorithm as well.

After we construct the model, we use the error profile of
the underlying technology to initialize the prior transition
and emission probabilities. Hercules first learns posterior
transition and emission probabilities of each ‘long read pro-
file HMM’ using short reads that align to the corresponding
long read (Supplementary Equations S1–S4). Then, it de-
codes the pHMM using the Viterbi algorithm (22) to gener-
ate the most probable (i.e. corrected, or consensus) version
of the long read (Supplementary Equation S7).

It should be noted that the meanings of insertion and
deletion is reversed in the context of the pHMM. That is,
an insertion state would insert a basepair into the erroneous
long read. However, this means that the original long read
did not have that nucleotide and had a deletion in that po-
sition. A similar principle applies to deletions.

Next, we first define the structure of the model (states and
transitions) and explain how we handle different types of
errors (i.e. substitutions, deletions, and insertions).

Match states. Similar to traditional pHMM, we represent
each basepair in the long read by a match state. There are
four emission possibilities in a match state (� = {A, C, G,
T}). The basepair that is observed in the uncorrected long
read for that position t is initialized with the highest emis-
sion probability (�), while the probabilities for emitting the
other three basepairs are set to the expected substitution er-
ror rate for the long read sequencing technology (�) (Note
that � � � and � + 3� = 1).

We then set transition probabilities between consecutive
match states t and t + 1 as ‘match transitions’ with proba-
bility �M. Figure 2 exemplifies a small portion of the profile
HMM that shows only the match states and match transi-
tions. From a match state at position t, there are also tran-
sitions to (i) the first insertion state at position t (I1

t ), and
(ii) to all match states at positions t + 1 + x where 1 ≤ x ≤
k and k determines the number of possible deletions.

Insertion states. Insertion states have self-loop transitions
in standard profile HMMs to allow for multiple insertions
at the same site, which creates ambiguity for error correction
for two reasons. First, self-loops do not explicitly specify the
maximum number of insertions. Thus, it is not possible pre-
determine how many times that a particular self-loop will
be followed while decoding. Second, each iteration over the

Figure 3. Insertion states for position t. Here, we show two match states (Ct
and Tt + 1) and l insertion states (I1

t . . . Il
t ). The number of insertion states

limit the insertion length to at most l after basepair t of the corresponding
long read. We also incorporate equal emission probabilities for all base-
pairs, except for the basepair represented by the corresponding match state
t + 1 (T in this example).

loop has to emit the same basepair. Since decoding phase
prefers most probable basepair at each state, it is not pos-
sible for a standard profile HMM to choose different nu-
cleotides from the same insertion state.

Instead of a single insertion state with a self loop per
basepair in the long read, we construct l multiple insertion
states for every match state at position t (e.g., I1

t . . . Il
t ). We

replace self-loops with transitions between consecutive in-
sertion states (I j

t . . . I j+1
t ) for position t (see Figure 3). The

probability for each of such transitions is �I and the number
of insertion states per position l determines the maximum
number of allowed insertions between two match states,
which are set through user-specified parameters. All inser-
tion states at position t have transitions to the match state
at positions t + 1 (the end state is also considered as a match
state). For I1

t . . . Il−1
t the probability of those transitions are

�M, and for Il
t , it is �M + �I. All those states also have tran-

sitions to all match states at positions t + 1 + x where 1 ≤ x
≤ k and k determines the number of possible deletions.

We also set emission probabilities for the insertion states
and assume they are equally likely. However, for the inser-
tion states at position t, we set the probability of emitting the
nucleotide X ∈ � to zero, if X is the most likely nucleotide
at the match state of position t + 1. This makes the insertion
more likely to happen at the last basepair of the homopoly-
mer run. Otherwise, the likelihood of inserting a basepair
is shared among all insertions states of the run, and it is
less likely for any them to be selected during the decoding
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Figure 4. Deletion transitions (red) in Hercules pHMM. Insertion states
of position t have the same deletion transitions with the match state of
the same position, t. Any transition from position t to t + 1 + x removes
x characters, skipping the match states between t and t + 1 + x, with αx

D
probability, where 1 ≤ x ≤ k

phase. All other basepairs have their emission probabilities
set to 0.33 (i.e. 1

|�|−1 )––see Figure 3. Note that these values
are prior values and the posterior values would be different
after training.

Deletion transitions. In standard pHMM, a deletion state
needs to be visited to skip (delete) a basepair, which does
not emit any characters. However, as described in the sup-
plementary sections, calculation of the forward and back-
ward probabilities for each state is based on the basepair of
the short read considered at that time. This means at each
step, the Forward-Backward algorithm consumes a base-
pair of the short read to account for the evidence the short
read provides for that state. As deletion states do not con-
sume any basepairs of the short read, this in turn results
in an inflation on the number of possibilities to consider
and substantially increases the computation time. In an ex-
treme case, the mapped region of the short read on the long
read may be completely deleted. Since we are using an exter-
nal aligner, such extreme cases are unlikely. Thus, we model
deletions as transitions, instead of having deletion states. In
our model, a transitions to (1 + x)-step away match states
is established to delete x basepairs. As shown in Figure 4,
match and insertion states at tth position have a transition
to all match states at positions t + 1 + x, where 1 ≤ x ≤ k
and k is an input parameter determining maximum number
of deletions per transition. We calculate the probability of a
deletion of x basepairs, αx

D, as shown in Equation (1).

αx
D = f k−xαdel

k−1∑

j=0
f j

1 ≤ x ≤ k (1)

Equation (1) is a normalized version of a polynomial dis-
tribution where �del is the overall deletion probability (i.e.

Figure 5. Hercules profile HMM in full. Here we show the overall look at
the complete graph that might be produced for a long read M where its tth
character is Mt and Mt ∈ {A, T, G, C} 1 ≤ t ≤ n and n is the length of the
long read M (i.e. |M| = n). In this example, there are n many match states
and two insertion states for each match state. Only one character deletion
is allowed at one transition because transitions may only skip one match
state.

�del = 1 − �M − �I), and f ∈ [1, ∞). As f value increases,
probabilities of further deletions decrease accordingly.

Training and decoding. An overall illustration of a com-
plete pHMM for a long read of length n is shown in Figure 5
where (i) match states are labeled with Mt where M ∈ �, (ii)
insertion states are labeled with I1

t and I2
t , and (iii) dele-

tion transitions for k = 1 are shown. Note that tth basepair
of a long read has one match state and two insertion states
where 1 ≤ t ≤ n. There are also deletion transitions from
every state at tth position to (t + 2)th match state where (t
+ 2) ≤ n. This example structure allows only one character
deletion at one transition since it is only capable of skipping
one match state.

Let the complete pHMM for a long read be the graph
G(V, E). Per each mapped short read s, we extract a sub-
graph Gs(Vs, Es). Here, Gs corresponds to the covered re-
gion of the long read with that short read. Hercules may not
consider some of the short reads that align to same position
in a long read to reduce computational burden. We provide
max coverage, mc, option to only consider mc many number
of short reads for a position during a correction, where mc
= 1 by default. Short reads are selected based on their edit
distance.

States that will be included in Vs are determined by sev-
eral factors. Assume that s is aligned to start from the qth
character of the long read. First, all match and insertion
states between positions [q − 1, q + m) are included, where
m is the length of the short read. If there are insertion er-
rors, deletion transitions might be followed which may re-
quire the training phase to consider r more positions where
r is a parameter to the algorithm, which is fixed to 	m/3
.
Thus all match and insertion states between [q + m, q + m
+ r) are also added. Finally, the match state at position q
+ m + r is also included (end state), and Mq − 1 acts as the
start state. Every transition Eij ∈ E connecting state i and
state j are included in Es if i ∈ Vs and j ∈ Vs. Each Eij ∈ Es
is associated with a transition probability �ij as described in
previous subsections. For every pair of states, i ∈ Vs and j ∈
Vs, �ij = 0 if Ei j �∈ Es .

We train each Gs using the Forward-Backward algorithm
(21). As we explain above, updates of emission and tran-
sition probabilities are exclusive for each sub-graph Gs.
Details of the Forward-Backward algorithm can be found
in Supplementary Text 1.1. Thus, there can be overlap-
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ping states and transitions that are updated within multi-
ple sub-graphs, independently using the prior probabilities.
For such cases, updated values are averaged with respect to
posterior probabilities from each subgraph. Details of join-
ing the posterior probabilities can be found in Supplemen-
tary Text 1.2. Uncovered regions keep prior transition and
emission probabilities, and G is updated with the posterior
emission and transmission probabilities.

Finally, we use the Viterbi algorithm (22) to decode the
consensus sequence. We define the consensus sequence as
the most likely sequence the pHMM produces after learn-
ing new parameters. The algorithm takes G for each long
read and finds a path from the start state to the end state,
which yields the most likely transitions and emissions using
a dynamic programming approach. Details of the Viterbi
algorithm can be found in Supplementary Text 1.3.

RESULTS

Experimental setup

We implemented Hercules in C++ using the SeqAn library
(33). The source code is available under the BSD 3-clause
license https://github.com/BilkentCompGen/Hercules. We
compared Hercules to prior methods proposed for the
integration of short and long reads: HALC, LoRDEC
(de Bruijn graph-based) and LSC, proovread, Colormap
(aligner-based). We ran all tools on a server with four
processors with a total of 56 cores (Intel Xeon E7-4850
2.20 GHz), and 1TB of main memory. We assigned 60
threads to all programs including Hercules.

We used Bowtie2 for BAC clones and Minimap2 (29) for
the human CHM1 data set to align the reads, and then we
sorted resulting alignment files using SAMtools (30) (Sup-
plementary Table S6). For Hercules, we set our parameters
as follows: max insertion length (l = 3), max deletion length
(k = 10), match transition probability (aM = 0.75), insertion
transition probability (aI = 0.20), deletion transition prob-
ability (adel = 0.05), deletion transition probability distribu-
tion factor (f = 2.5), match emission probability (� = 0.97),
max coverage (mc = 1), max filter size (mf = 100). We ran all
other programs with their default settings. We demonstrate
that Hercules is robust to parameter choices (Supplemen-
tary Tables S4 and S5) with up to 8.3% accuracy loss in the
most extreme settings for initial transition probabilities.

In our benchmarks we did not include the self-error cor-
rection tool, LoRMA, as it does not use short reads, which
makes it not comparable to rest of the hybrid error correc-
tion tools. Furthermore, HALC uses LoRDEC to further
refine its corrected reads (ordinary mode). We would like
to note that if short read coverage is not low (i.e. >30×),
HALC runs LoRDEC using almost all of the corrected
reads for further correction for the second time (Supple-
mentary Table S2). Thus, corrected reads do not only reflect
HALC’s error correction performance but also LoRDEC’s
performance on HALC-corrected reads as this is the final
output of HALC. To compare the benefit of this behavior,
an ideal experiment would be providing LoRDEC with the
outputs of each correction tool so that these reads are also
further corrected by LoRDEC. However, it is possible to
turn off this option as well (repeat-free mode), therefore we
benchmarked HALC with and without LoRDEC. We also

exclude Jabba in our comparisons because it only provides
corrected fragments of long reads and clips the uncorrected
prefix and suffixes, which results in shorter reads. All other
methods consider the entire long read. Additionally, sev-
eral error correction tools such as LSC and proovread do
not report such reads that they could not correct. Others,
however, such as Hercules, LoRDEC, and Colormap report
both corrected and uncorrected reads, preserving the origi-
nal number of reads. In order to make the results of all cor-
rection tools comparable, we re-insert the original versions
of the discarded reads to LSC and proovread output. We
ran Colormap with its additional option (OEA) that incor-
porates more refinements on a corrected read. We observed
that there was no difference between running OEA option
or not in terms of the accuracy of its resulting reads (Supple-
mentary Table S1), although Colormap with OEA option
required substantially higher run time. Last, we tested the
performance of three leading algorithms on a large genome
data set given a moderate short read coverage (i.e. 42×).
Our choices included Hercules, LSC, and LoRDEC as these
tools performed well with a moderate short read coverage.
However, LSC failed to finish its job even after running for
2 months. The reason was the use of default aligner that
comes with LSC as it only produced nearly 50 million align-
ments in two months and prevented LSC to make its correc-
tion in a reasonable time limit. Thus, we subsampled human
CHM1 long reads and run LSC with the small data.

Data sets

To compare Hercules’ performance with other tools we
used three DNA-seq data sets. First two DNA-seq data
sets were generated from two bacterial artificial chromo-
some (BAC) clones, previously sequenced to resolve com-
plex regions in human chromosome 17 (7). These clones
are sequenced with two different HTS technologies: CH17-
157L1 (231 kb) data set includes 93,785 PacBio long reads
filtered by a minimum length of 200 (average 2576 bp;
1047× coverage, SRA SRR1171743) and 372 272 Illumina
paired-end reads (76 bp each, 245× coverage); and CH17-
227A2 (200 kb) data set includes 100 729 PacBio long reads
filtered by a minimum length of 200 (average 2663 bp;
1338× coverage, SRA SRR1171785) and 342 528 Illumina
paired-end reads (76 bp each, 260× coverage). Illumina
paired-end reads of the BAC clones are available at http://
eichlerlab.gs.washington.edu/pacbio-complex-regions. Ad-
ditionally, sequences and finished assemblies generated with
the Sanger platform are also available for the same BAC
clones (GenBanks AC243627.3 and AC243685.2), which we
use as the gold standard to test the correction accuracy. We
also randomly subsampled the short read inputs of these
BAC clones into 10×, 20× and 30× coverage to test the
performance of the tools under such circumstances. Hu-
man CHM1 cell line WGS data includes 817 410 PacBio
long reads (SRA SRR1304331–SRR1304335, 7.89 Gbp,
2.6×) and 639 673 210 Illumina paired-end short reads
(101 bp each, 129.2 Gbp, 42× coverage, SRA SRX652547).
We measured error correction accuracy using the assem-
bly of human CHM1 genome (25) (NCBI AssemblyDB
GCA 000306695.2) as the gold standard.

https://github.com/BilkentCompGen/Hercules
http://eichlerlab.gs.washington.edu/pacbio-complex-regions
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Table 1. Error correction with multiple short read coverages

CH17-157L1 BAC clone – number of aligned reads

10× 20× 30×
Tool Mapped 80–90% 90–95% >95% Mapped 80–90% 90–95% >95% Mapped 80–90% 90–95% >95%

Uncorrected 33 842 17 582 1 974 461 33 842 17 582 1 974 461 33 842 17 582 1 974 461
Colormap 34 215 15 622 4 979 1 579 34 515 14 882 5 989 2 585 34 710 14 428 6 528 3 263
HALC (w/ LoRDEC) 33 933 17 656 1 870 569 35 287 13 250 5 708 5 390 37 217 12 040 6 948 8 845
HALC (w/o LoRDEC) 33 908 17 662 1 867 537 34 242 17 919 1 627 816 34 908 18 360 1 986 1 360
Hercules 36 585 14 539 6 675 3 917 40 863 14 165 7 067 8 498 41 549 13 880 7 162 9 631
LoRDEC 36 604 13 752 7 050 6 270 37 098 11 249 7 302 10 953 36 965 10 597 7 157 12 118
LSC 35 991 14 465 6 234 3 939 40 368 13 939 6 901 8 571 41 254 13 774 6 957 9 788
proovread 34 191 16 881 3 301 1 013 34 361 16 534 3 851 1 380 34 604 16 324 4 223 1 821

CH17-227A2 BAC clone - Number of aligned reads

Uncorrected 45 625 25 356 7 385 219 45 625 25 356 7 385 219 45 625 25 356 7 385 219
Colormap 45 679 22 878 9 295 1 223 45 712 21 701 9 897 2 072 45 758 21 019 10 269 2 590
HALC (w/ LoRDEC) 45 772 25 460 7 058 627 46 929 14 570 8 843 14 061 48 682 13 118 9 207 18 122
HALC (w/o LoRDEC) 45 679 22 878 9 295 1 223 45 943 26 399 6 414 656 47 038 25 223 8 453 1 833
Hercules 50 090 15 883 11 007 13 256 54 551 14 800 10 546 19 741 54 666 14 421 10 329 20 645
LoRDEC 46 467 14 787 10 010 13 053 46 893 11 422 8 301 20 332 46 956 10 329 7 719 22 597
LSC 50 162 16 206 11 727 12 385 53 762 15 071 10 805 18 568 53 887 14 624 10 578 19 501
proovread 45 700 23 444 8 869 1 139 45 797 22 612 9 289 1 833 45 919 22 044 9 467 2 489

We applied Hercules to correct PacBio reads generated from two BAC clones (CH17-157L1 and CH17-227A2) using Illumina reads from the same resource. We subsampled the
Illumina reads into 10×, 20× and 30× to test the performance of the tools for both low and moderate short read coverage. We report the accuracy as the alignment identity as
calculated by the BLASR (34) aligner. Mapped refers to the number of any reads aligned to the Sanger-assembled reference for these clones with any identity, where the other
columns show the number of alignments within respective identity brackets.

Correction accuracy

After correction, we align the corrected reads to the cor-
responding ground truth using BLASR (34) with the
bestn=1 and noSplitSubreads options, which forces
entire read to align, if possible or otherwise outputs the best
local alignment. Then, we denote the accuracy of a read as
the alignment identity reported by BLASR. We report the
number of reads that align to the gold standard, and the
alignment accuracy in four different accuracy brackets.

We observe that the number of mappable reads were the
highest (or tightly close to LSC) in both Hercules-corrected
BAC clones, given any level of short read coverage (Tables 1
and 3). LoRDEC returned the largest set of reads with the
highest accuracy (>95%), when the short read coverage is
low (i.e. 10×–30×) in five out of six tests (see Table 1). Her-
cules was the best in one setting and always ranked in top
three. Whereas, when the short read coverage is extremely
high, HALC produced largest set of most accurate reads
(Table 3). We investigated the reason why HALC’s ordinary
mode produced similar results with the repeat-free mode
when the short read coverage is low (10×) and why the dif-
ference gap increased given high short read coverage. We
found that HALC sends 0.2–2% of long reads for further
correction by LoRDEC when the coverage is low. However,
as the coverage starts increasing, the number of the HALC-
corrected reads sent for further correction reaches 99.8%,
if coverage is greater than 30× (Supplementary Table S2).
Therefore, we claim that if short read coverage is moder-
ate, HALC corrects almost all reads twice in ordinary mode
whereas a repeat-free mode cannot attempt to correct them
well. We conclude that HALC requires high short read cov-
erage, and its accuracy is lower than its competitors for low
short read coverage.

We investigated the reasons for lower Hercules perfor-
mance for the BAC clones, and we found that only ∼10%
of the reads had >90% short read breadth of coverage. This
low percentage of well-covered reads is due to higher error
rate in this data set than expected (Supplementary Figure
S1). With better short read coverage, LSC and Hercules per-
formed better than all other correction tools and Hercules
edged LSC out (Table2 and Supplementary Table S1). This
result shows that our HMM-based algorithm performs bet-
ter given high short read breadth of coverage. Finally, for
the human CHM1 data set, Hercules produced the largest
set of most accurate reads (i.e. >95% accuracy) even though
LoRDEC produced slightly more mappable reads (Table 3).

Run time and memory requirements

Finally, we benchmarked computational requirements for
each tool for BAC clones with their original data set. Fur-
thermore, we assessed the scalability of the three leading
methods (Hercules, LoRDEC, and LSC) and compared
their performance on whole genome-sized problem using
the human CHM1 cell line WGS data. A highly accurate
aligner, Bowtie2, was not able to scale for such a large data
set. Therefore, we used Minimap2 to be able to make the
corrections even though it is less accurate than Bowtie2.
This also prevented LSC to make its corrections in its de-
fault mode. Our attempts to modify LSC to provide it with
Minimap2 alignment results were also unsuccessful as a sin-
gle batch only ran in single thread. Therefore, for only ac-
curacy comparison purposes, we subsampled the long read
data to successfully run LSC and Hercules with Bowtie2
aligner (Supplementary Table S3). We found that LSC pro-
duces slightly more most accurate reads even though Her-
cules produced reads with a highest mapping rate.
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Table 2. Correction accuracy given high breadth of coverage (>90%) in CH17-227A2

No. of aligned reads

Tool Mapped 80-90% 90-95% >95%

Uncorrected 4 429 2 135 2 093 26
Colormap 4 432 668 2 345 1 271
HALC (w/ LoRDEC) 4 438 168 219 3 994
HALC (w/o LoRDEC) 4 441 267 897 3 246
LoRDEC 4 425 124 224 4 006
LSC 4 473 45 149 4 264
Hercules 4 476 43 142 4 273
proovread 4 434 1 722 1 665 880

The input included 9449 PacBio reads which had at least 90% of their length covered by short reads. We report the accuracy as the alignment identity as
calculated by the BLASR (34) aligner. Mapped column refers to the number of any reads aligned to the Sanger-assembled reference for this clone, where
the other columns show the number of alignments within respective identity brackets.

Table 3. Error correction with original short read coverages

Number of aligned reads

CH17-157L1 BAC clone CH17-227A2 BAC clone Homo Sapiens (CHM1)

Tool Mapped 80–90% 90–95% >95% Mapped 80–90% 90–95% >95% Mapped 80–90% 90–95% >95%

Uncorrected 33 842 17 582 1 974 461 45 625 25 356 7 385 219 516 983 279 387 27 909 22 851
Colormap 36 391 13 586 7 904 6 235 46 209 18 398 12 364 4 715 NA NA NA NA
HALC (w/ LoRDEC) 43 678 7 989 6 408 24 453 53 017 8 068 6 070 34 407 NA NA NA NA
HALC (w/o LoRDEC) 40 866 9 509 9 643 17 025 52 069 10 201 10 628 26 352 NA NA NA NA
Hercules 44 229 13 609 7 569 12 583 56 140 13 433 9 809 24 269 530 973 168 906 105 012 99 600
LoRDEC 36 812 10 320 7 397 12 167 47 304 8 875 7 010 25 844 534 713 266 257 26 395 43 617
LSC* 43 431 13 534 7 511 12 277 55 853 13 619 10 205 23 509 NA NA NA NA
proovread 38 962 14 918 6 714 7 956 47 344 17 460 9 233 11 140 NA NA NA NA

We applied Hercules to correct PacBio reads generated from two BAC clones (CH17-157L1 and CH17-227A2) and a human CHM1 cell-line (WGS)
using Illumina reads from the same resource. We report the accuracy as the alignment identity as calculated by the BLASR (34) aligner. Mapped refers
to the number of any reads aligned to the assembly reference for these clones with any identity, where the other columns show the number of alignments
within respective identity brackets. NA is set for the tools that we did not run for CHM1 cell-line. We picked the three algorithms that performed best given
moderate short read coverage. * We ran LSC with a subsampled human CHM1 data set as it did not scale to large data set as it is reported in Supplementary
Table S3.

For the BAC clones, we observed that de Bruijn graph
based methods were at least three times faster than the
alignment-based methods, LoRDEC and HALC were the
fastest algorithms, and the run times of alignment-based
tools were similar (Table 4). The only exception for this case
is Colormap without its OEA refinement as its running time
is similar to de Bruijn graph based methods. Running time
of Hercules is still on the same scale even though the learn-
ing procedure is more time consuming because of per-read
calls to Forward Backward and Viterbi algorithms. Inter-
estingly, Hercules runs faster than LoRDEC on the large
human genome data set. Since error correction is an offline
and one-time task we argue that these run times are accept-
able given the gain in accuracy.

We also investigated the memory requirements of the
tools we benchmarked (Table 4). For BAC clones, we find
that Hercules uses only a modest amount of memory, sec-
ond to only LoRDEC. In the BAC clone data sets, the max-
imum memory Hercules required was 3.2GB, which makes
it usable on commodity desktop computers if the size of the
data set is not large such as human genome. We found that
LoRDEC scales better than Hercules in terms of memory
given a human genome data set as Hercules required five
times more memory than that of LoRDEC. We note that
the memory requirements of Hercules scale linearly with the
short read depth of coverage and the number of the long

reads to be corrected simultaneously in multiple threads,
and the LoRDEC memory usage depends on the size of the
de Bruijn graph. Note that LoRDEC is alignment-free, and
it builds a de Bruijn graph to cover the entire short read data
set. Thus, its memory usage will be determined by the graph
size of the input DNA.

DISCUSSION

Long reads such as PacBio are attractive alternatives to
short Illumina reads due to the ability to span across com-
mon repeats and complete gene fusions, which present an-
alytical and computational challenges to accurately char-
acterize and assemble genomes and transcripts. However,
their error rate is also substantially higher than that of short
reads making it hard to align them to reference genomes, or
infer the fused genes. Therefore, it is useful to correct short
indel and substitution errors either using very high cover-
age long read data, which substantially increases sequenc-
ing cost, or by using orthogonal and less expensive short
read sequencing data. Here we introduced a new algorithm,
Hercules, which uses a hidden Markov model based method
to correct erroneous long reads using short but accurate Il-
lumina data.

Profile HMMs have been successfully used for multiple
sequence alignment and protein classification (35). In this
paper, we modified the standard pHMM to leverage their
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Table 4. Requirements of computational resources for all methods we compared

CH17-1571 CH17-227A2 Homo Sapiens (CHM1)

Tool Run time Memory (GB) Run time Memory (GB) Run time Memory (GB)

Colormap 22m 17s 9.88 25m 20s 8.79 NA NA
Colormap (OEA) 1h 36m 57s 9.82 2h 45m 51s 9.23 NA NA
HALC (w/ LoRDEC) 16m 25s 26.29 25m 09s 23.09 NA NA
HALC (w/o LoRDEC) 20m 22s 38.97 22m 47s 44.69 NA NA
Hercules 1h 07m 49s 3.20 2h 10m 09s 3.16 82h 59m 53s 278.74
LoRDEC 12m 43s 1.20 26m 19s 1.33 112h 6m 34s 52.34
LSC* 1h 04m 55s 11.08 1h 40m 51s 9.00 NA NA
proovread 1h 34m 24s 7.91 2h 39m 57s 4.03 NA NA

We ran all tools on the same server using 60 threads. We report wall clock run times, and peak memory usage (GB) for each tool. NA is set for the tools
that we did not run for CHM1 cell-line. We picked the three algorithms that performed best given a moderate short read coverage. * We ran LSC with a
subsampled human CHM1 data set as it did not scale to large data set as it is reported in Supplementary Table S3.

probabilistic basepair consensus representation to correct
long reads given set of aligned short reads. Our proposed
pHMM-like structure offers a flexible approach since its ini-
tial parameters can be redefined based on the error profile of
any other error-prone sequencing technology, such as Ox-
ford Nanopore.

Hercules is slightly slower and more memory demand-
ing compared to LoRDEC for small genome sizes, how-
ever, it returns more mappable reads. Hercules is also ro-
bust in terms of short read coverage and the genome size.
It produces comparable results with low coverage data. It
also scales well for large genome data set such as human
genome. Furthermore, as we discussed above, the require-
ment of Bowtie2 aligner becomes a running time bottleneck
for large genomes, which renders it inapplicable for mam-
malian genomes. Even though it may be possible to pre-
vent a memory bottleneck of an aligner by partitioning long
and short reads into smaller sizes, a running time bottle-
neck cannot be solved without either changing the param-
eters of an aligner or switching to a less accurate but faster
aligner. For such cases, the aligner-flexible methods such as
Hercules become more advantageous as it can adapt to any
applicable aligner. In terms of run time, the main bottle-
neck for Hercules lies in the pHMM training for each long
read. There are several algorithms proposed to improve run-
ning time and memory requirements of the standard Viterbi
algorithm and Forward/Backward likelihood calculations
that may be used to improve run time (36–38). Additionally
Hercules may further be accelerated through SIMD vector-
ization of pHMM training and decoding (39–41) that we
leave as future work.
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