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Abstract

The measurement of phytoplankton distributions in ocean ecosystems provides the basis for elucidating the influences of
physical processes on plankton dynamics. Technological advances allow for measurement of phytoplankton data to greater
resolution, displaying high spatial variability. In conventional mathematical models, the mean value of the measured
variable is approximated to compare with the model output, which may misinterpret the reality of planktonic ecosystems,
especially at the microscale level. To consider intermittency of variables, in this work, a new modelling approach to the
planktonic ecosystem is applied, called the closure approach. Using this approach for a simple nutrient-phytoplankton
model, we have shown how consideration of the fluctuating parts of model variables can affect system dynamics. Also, we
have found a critical value of variance of overall fluctuating terms below which the conventional non-closure model and the
mean value from the closure model exhibit the same result. This analysis gives an idea about the importance of the
fluctuating parts of model variables and about when to use the closure approach. Comparisons of plot of mean versus
standard deviation of phytoplankton at different depths, obtained using this new approach with real observations, give this
approach good conformity.
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Introduction

Seasonal variation of nutrient and dynamics of plankton in

aquatic systems have been studied by many researchers during the

last few decades, and mathematical models have been used to

better understand these systems. Ecological models have evolved

from simple two-component systems to highly complex multi-

component systems [1–15]. The complexity of a model increases

significantly when coupled with a physical system to make a

biophysical model [16–23]. However, these models study the

system dynamics in mesoscale or in larger scale but are not aimed

at explaining the dynamics in microscale.

Interactions of phytoplankton, other organisms and biogenic

particles in turbulent flows drive plankton dynamics and cycling of

nutrients, with influences expected to be accumulative across

multiple scales [24]. As technology improves and measurements of

phytoplankton distributions are done with greater resolution,

properly interpreting in situ spatial patterns becomes increasingly

important for developing our knowledge of the mechanisms that

create and support microscale structure and ecology of marine

ecosystems [25,26]. Phytoplankton measurements of microscale

distributions have recently been studied using a variety of high-

resolution instruments, such as water sampling devices [27],

microstructure profiling fluorometers [26,28–30], fluorescence

imaging systems [31,32] and holography systems [33–35]. Various

fluorescence-based measurement systems have consistently shown

increasing levels of fluorescent intermittency as sample volume

size is decreased [26,28,30,31], which can be attributed to the

preferential detection of larger individual cells, chains and

aggregates [36]. Furthermore, efforts to understand the mecha-

nisms driving the high levels of observed intermittency using

conventional (Gaussian) models, such as spectral analysis [37],

appear to be limited by the discrete nature of phytoplankton

distributions at small scales [26,36,38]. Highly resolved profiles of

phytoplankton concentration and fluorescence would give better

predictions of model parameters and improve understanding of

the dynamics of phytoplankton [22]. These high-resolution

instruments advance our understanding of the influence of

physical processes on phytoplankton dynamics from mesoscale

down to microscale. Therefore, an analysis of small-scale vertical

structure in phytoplankton is required to understand the ecosystem

behaviour more precisely.

Rationale for the development of a new ecosystem
model

Interactions between different biotic and abiotic factors [39,40],

at the microscale, generate spatial variability in the distribution of

phytoplankton [31,41]. Profiles of in vivo chlorophyll fluorescence

are commonly used to infer the distribution of phytoplankton

biomass.

Figure 1A shows an observation of chlorophyll profiles

(phytoplankton) collected at the mouth of Tokyo Bay, Japan, in

June 2011, up to 120-m depth from the ocean surface using four

sampling methods: Niskin bottle, Seapoint fluorometer, light

emitting diode (LED) sensor and laser sensor (Dataset S1).

Descriptions of the instruments and sampling methods are

described briefly in the next section. This survey was carried out
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with permission of the Japan Coast Guard (http://www.kaiho.

mlit.go.jp/e/index_e.htm).

Comparison of fluorescence profiles using these sensors shows

that the extent of phytoplankton spatial variability becomes

increasingly intermittent when measured with increased resolu-

tion. However, 1-m averaged fluorescence levels (spatial mean) are

consistent for all four devices. Spatial mean of the collected

chlorophyll data and the corresponding standard deviations in all

four methods are plotted in Figure 1B. For Niskin samples, the

standard deviation of phytoplankton is zero since only a single

number for average chlorophyll from the water sample is

available. High-resolution data show high spatial variability of

phytoplankton near the ocean surface and that variability and

mean decrease with depth. In theoretical studies of phytoplankton

dynamics, especially in formulating ecological models, almost all

modellers focus on the large-scale dynamics of phytoplankton and

the mean value of the collected data, not considering the

associated small-scale spatial variability.

Our observed data suggest that considering the fluctuating part

of each component of the system as a new variable is important,

particularly with high-resolution data. This paper aims to study

the effect of this variability on the model output and to compare

this effect with real observations.

Materials and Methods

Microstructure data collection
Four sampling methods, namely Niskin bottle, Seapoint

fluorometer, light emitting diode (LED) sensor and laser sensor,

were used for data collection. The Niskin bottle and the Seapoint

fluorometer were mounted on a CTD cage, which was tethered to

a winch cable. Swaying with the motion of ship, the CTD cage

generated a disturbed water column. The Niskin bottle is a discrete

sampling device, which measures the ‘‘averaged’’ ecosystem

characteristics by collecting water samples. The sampling volume

of Seapoint is 0.34 mL, but the motion of the CTD cage and the

configuration of the probe did not allow for sampling from

undisturbed water. In contrast, the LED and the laser sensor were

mounted on a free-fall microstructure profiler, TurboMAP-L [26];

thus, the sampling was made from essentially undisturbed water.

The minimum vertical resolution for the LED sensor is about

2 cm and is about 2 mm for the laser sensor [26]. Microscale

spatial variability observed by the LED sensor varied by less than

2-fold across centimetre to metre scales. In the laser sensor, the

microscale spatial variability varied by between 2- and 10-fold

across millimetre-size peaks. The reduced sampling volume of the

laser probe (32 mL), compared with that of the LED probe (4 mL),

allows for measurement of the fluorescence field with increased

spatial resolution.

High-resolution microstructure fluorescence data were collected

in several locations in Tokyo Bay at different time periods using a

laser probe mounted in a TurboMAP-L [26] (Dataset S1).

TurboMAP-L is a free-falling microstructure profiler that captures

physical and biological conditions. The instrument length is 2 m,

the weight is 30 kg in air, the diameter is 0.12 m, and the

withstanding pressure is 500 dbar (,500 m). The captured data

were transmitted in real time to the shipboard PC via a 5 mm

Kevlar tether attached to the end of the instrument. TurboMAP-L

was deployed and freefell into the sea with profiling speeds of

0.50–0.80 ms21. After reaching the target depth, the instrument

was recovered by taking up the tether using a winch exclusive to

TurboMAP-L.

The sensors attached to TurboMAP-L are a laser fluorescence

probe (digitized at 256 Hz), a light emitting diode (LED)

fluorescence/turbidity probe (256 Hz), two turbulent shear probes

(512 Hz), a FP07 fast temperature probe (512 Hz), XYZ 3-

dimensional accelerometers (64–256 Hz) and CTD (Conductivity,

Temperature and Depth; 64 Hz). These sensors were mounted

forward of the rounded nose to ensure the measurement of

undisturbed fields.

In May 2011, the experiments were conducted at three

locations in Tokyo Bay: (a) the mouth of the bay (depth

,500 m), (b) inside the bay (depth ,50 m) and (c) the mouth of

the Ara River (depth ,10 m). In these locations the microstruc-

ture data were collected from TurboMAP-L to a depth of

,200 m, ,50 m and ,10 m. Similarly the fluorescence data

were collected at a particular place inside the bay (depth ,50 m)

but in three different seasons, specifically during the months: (a)

December 2006, (b) September 2007 and (c) February 2008.

Normally arbitrary units of fluorescence are calibrated to give

estimates of biomass in mg l21. Permission for these surveys was

received from the Japan Coast Guard.

Mathematical model
Aiming to develop the methodology of a new ocean ecosystem

model, at the initial stage, we concentrate only on nutrient (N) and

Figure 1. Examples of fluorescence microstructure measurements by Niskin bottle (red), Seapoint (black), LED sensor (blue) and
laser sensor (green). (A) Plot of data at different depths from the ocean surface at the mouth of Tokyo Bay, Japan, on June 18, 2011, and (B) mean
and standard deviation of chlorophyll signals by four sampling methods. Data from Seapoint, LED sensor and laser sensor were scaled to data
obtained by Niskin bottle, which gives the actual concentration of phytoplankton.
doi:10.1371/journal.pone.0094797.g001
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phytoplankton (P) as model variables and choose simple form for

transfer functions [5] (Section S1 in Text S1).

Simple NP model. The time evolution equations for an NP

system can be written as:

dP

dt
~C

N

KzN
P{D P ð1Þ

dN

dt
~{C

N

KzN
PzD P, ð2Þ

where parameters are described in Table 1. The sum of N and P

variables is a conserved quantity, i.e. N+P = A (Constant). This

reduces the number of equations into one,

dP

dt
~C

(A{P)

Kz(A{P)
P{D P: ð3Þ

Studies of microscale phytoplankton distributions using high-

resolution profiling fluorometers have revealed the ubiquity of

fluctuating millimetre- to centimetre-sized fluorescence peaks

across a range of marine systems, which also implies the local

values of fluorescence are highly fluctuating [26,38] in space. Since

the amount of nutrient in the system is interrelated to the biomass

of phytoplankton, the nutrient would be expected to be fluctuating

in space for a close system. But this spatial variability is not

considered in the simple non-closure model as described in

equations (1), (2) or (3).

Therefore, considering our model variables as functions of time

(t) and space (r), and decomposing each variable into mean and

fluctuating component, we get

P(r, t)~P0(r, t)zP0(r, t) and ð4Þ

N(r, t)~N0(r, t)zN 0(r, t): ð5Þ

P0 and N0 are spatial mean values of the phytoplankton and

nutrient respectively, and P0 and N 0 are their fluctuating

components corresponding to each mean value. Note that at a

particular time point, the space-average of the fluctuating

components is zero (vP0(r)w~ vN 0(r)w ~ 0), while temporal

average can be nonzero, which also implies vP(r)w~ P0(r) and

vN(r)w ~ N0(r). This consideration is based upon our obser-

vation of Figure 1, where we see that 1-m averaged fluorescence

levels (spatial mean) for all four instruments coincide. Now we are

interested in seeing the temporal variation of mean and fluctuating

component of P and N variables using the closure approach, which

is widely used in the study of turbulence.

Closure model. Putting (4) and (5) into equations (1–2) and

applying the Reynolds averaging method in space (details in

Section S2 in Text S1), we get the following set of equations for the

temporal variation of P0, N0, vP02w, vN 02w and vN 0P0w:

dP0

dt
~C

N0P0

KzN0
z

KvN 0 P0w

(KzN0)2
{

K P0vN 0 2
w

(KzN0)3

� �
{D P0 ð6Þ

dN0

dt
~{C

N0P0

KzN0
z

KvN 0 P0w

(KzN0)2
{

K P0vN 0 2
w

(KzN0)3

� �
zD P0 ð7Þ

dvP02w

dt
~2 C

N0vP02w

KzN0

z
K P0vN 0 P0w

(KzN0)2

� �
{2 D vP02w ð8Þ

dvN 02w

dt
~{2 C

N0vN 0 P0w

KzN0

z
K P0vN 0 2

w

(KzN0)2

� �
z2 D vN 0 P0wð9Þ

dvN 0 P0w

dt

~C
N0 (vN 0 P0w{vP02w)

KzN0

z
K P0 (vN 02w{vN 0 P0w)

(KzN0)2

� �

z D ( vP02w{vN 0 P0w ):

ð10Þ

In the formulation of these equations we assume that N and P

variables follow a joint lognormal probability distribution function,

which forces the third and all higher odd order fluctuating terms to

vanish. We also ignored the fourth and higher order terms in this

analysis to achieve simple closure. The first two equations give the

time evolution of mean terms, the next two equations give the time

evolution of variance terms, and the last equation represents the

evolution of the covariance term.

Note that while the sum of NzPremains constant, in this

caseN0zP0 and vN 02w z vP02w z 2 vN 0 P0w, both are

temporally conserved quantities. Therefore, defining N0zP0 ~ A

and vN 02w z vP02w z 2 vN 0 P0w ~ B, the above five

equations can be reduced to three equations that lie in five-

dimensional parameter spaces. By appropriately rescaling the

equations with A and B, this dependency is reduced to three

dimensionless parameters. The scaling factors and dimensionless

parameters are given in Table 1, and the scaled equations can be

written as follows:

dp0

dt
~

(1{p0) p0

kz(1{p0)
z

k b (1{x{y)

2 fkz(1{p0)g2
{

k b p0 y

fkz(1{p0)g3
{e p0 ð11Þ

dx

dt
~2

(1{p0) x

kz(1{p0)
z

k p0 (1{x{y)

fkz(1{p0)g2
{2 e x ð12Þ

dy

dt
~{

(1{p0) (1{x{y)

kz(1{p0)
{

2 k p0 y

fkz(1{p0)g2
ze (1{x{y) ð13Þ

with n0zp0 ~ 1 and xzyz2 z ~ 1.

The values of the scaled variables n0 and p0, corresponding to

the variables N0 and P0 respectively, lie between 0 and 1. Similarly,

the values of x and y lie between 0 and 1 if the term z, which is

associated with the covariance of the fluctuating components,

vN 0 P0w, is positive. For negative covariance, the values of x and

y can exceed 1. Now we define the normalized sum of variance

and covariance as follows:

ð7Þ

ð8Þ

ð9Þ

ð10Þ

ð11Þ

Intermittent Phytoplankton Distribution Model
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b ~ (vN 02w z vP02w z 2 vN 0 P0w) =A2

~ v(N 0zP0)2
w=A2 ~ B=A2

ð14Þ

where B is the variance of the sum of N 0 and P0, and therefore, b
value actually reflects the overall strength of the fluctuating

components and modifies the model dynamics. Other dimension-

less variables and parameters of the model equations (11–13) are

described in Table 1.

Similarly, the non-closure equation (3) can be reduced to the

following form:

dp

dt
~

p (1{p)

kz(1{p)
{e p ð15Þ

Note that for b = 0, equation (11) of the closure model reduces

to equation (15), which corresponds to the non-closure model.

We have found six steady state solutions (p0*, x*, y*) for the set

of closure equations (11–13), among which two are not ecolog-

ically feasible as these are complex for any realistic set of

parameter values (Sections S3 and S4 in Text S1). Two other

solutions lie at the boundary, and the remaining two are interior

steady states. Depending on the sign of the covariance term

(vN 0 P0w), between these two, only one interior steady state

exists for the system. Also, from stability analysis, we have seen

that the interior steady state is stable when the covariance term is

positive (Section S5 in Text S1). Therefore, all analysis was done

emphasising this stable steady state solution.

Parameter values. After reducing the equations into dimen-

sionless variables and parameters, the influences of only three

parameters on the model have to be studied. Here, the model

under study is a general one and does not describe any specific

ecological situation. Therefore, for numerical simulation, the

assigned parameter values are adopted from previous studies

[2,19,42–44]. To find the domain of parameter space for this

model, we have studied a wide range of parameter values around

these reported values.

Maximum growth rate of phytoplankton (C) varies with the

intensity of light, although at the first stage of this work C is

considered to be 2 day21 [2,19], while 2 mg N l21 is chosen as the

value of A [2]. Different literature shows that the death rate (D) of

phytoplankton varies from 0.07 day21 to 0.2 day21 [2,19,42]. For

the neritic zone, MacIsaac and Dugdale [43] and Eppley et al. [44]

had considered the value for the half-saturation constant of

phytoplankton nutrient uptake K to be 1 mg N l21, whereas

Edwards et al. [19] had used 1.4 mg N l21 as this parameter value.

For our numerical simulation, we have varied the dimensionless

parameter e ( = D/C) from 0.025 to 0.99 and k ( = K/A) from 0.05

to 2.5, covering the reported values range. All the reported

parameter values, their ranges and the corresponding dimension-

less values are summarized in Table 2. The domains of parameter

values, which the system of equations (11–13) shows to have stable

Table 1. Definition of different quantities used in the model and their dimensions.

Quantity Definition Dimension Scaling factor
Dimensionless
quantity

A Sum of nitrate mg N l21 - -

B Variance of sum of fluctuating
components

(mg N l21)2 B/A2 B

C Maximum growth rate of
phytoplankton

day21 - -

K Nutrient uptake half-saturation
constant

mg N l21 K/A K

D Phytoplankton death rate day21 D/C E

P0 Mean phytoplankton mg N l21 P0/A p0

vP02w Variance for phytoplankton (mg N l21)2
vP02w/B X

vN 02w Variance for nutrient (mg N l21)2
vN 02w/B Y

vN 0P0w Covariance (mg N l21)2
vN 0P0w/B Z

t Time day t C T

doi:10.1371/journal.pone.0094797.t001

Table 2. Parameter values and ranges for dimensional and dimensionless systems.

Quantity Reported value with references
Corresponding
dimensionless quantity Corresponding dimensionless value

Range of parameter values
studied in this article

A 2 mg N l21 [2] - - -

C 2 day21 [2,19] (varies with light
intensity)

- - -

K 1 mg N l21 [43,44], 1.4 mg N l21 [19] k 0.5–0.7 0.05–2.5

D 0.07 day21 to 0.2 day21 [2,19,42] e 0.035-0.1 (for C = 2 day21); 0.35-1.0 (for
C = 0.2 day21)

0.025–0.99

doi:10.1371/journal.pone.0094797.t002
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feasible solutions, are shown in Figures S1, S2, S3, S4, S5 and S6

(See Sections S4 and S5 in Text S1).

Results and Discussion

This article attempts to capture the spatial variability of

different constituents (nutrient and phytoplankton) of an ocean

ecosystem through mathematical models and to understand the

contribution of the fluctuation part of model variables in the

system dynamics. Here the dimensionless parameter b actually

represents the ratio of overall variance of the fluctuating

part to the square of total nutrient contained in the

system, i.e., b ~ (vN 02w z vP02w z 2 vN 0 P0w) =A2 ~

v(N 0zP0)2
w=A2. We have found a critical value of b below

which both closure model and non-closure model give the same

steady state level.

Critical parameter value
For a certain choice of parameter values, from our studied

parameter domain, Figure 2 shows the time dynamics of the

variables p0, x, y and z, which correspond to mean of

phytoplankton, variance of phytoplankton, variance of nutrient

and covariance of x and y. In these plots, k and e values are kept

constant at 0.6 and 0.4 respectively (chosen from the realistic

parameter domain in Table 2), and for the closure model four b
values are chosen, b = 0.2, 0.6, 1.0 and 2.0. Time dynamics

corresponding to the variable phytoplankton for both the closure

and the non-closure model are simultaneously plotted in Figure 2A.

Figures 2A–D show that the values of p0, y and z increase as the b
value increases, whereas x decreases with the increase of b.

According to Figures 2A and B, the variance of phytoplankton (x)

can be greater or less than the mean value (p0) depending on the

value of b. Figure 2A shows that for b = 0.2 the steady state level of

the closure model coincides with the steady state level of the non-

closure model although their transient dynamics are different. But

as b increases, beyond some critical value of b = b*, the steady

state levels of phytoplankton in these models do not coincide, and

the difference increases as b increases (also see Section S6 in Text

S1, Figures S7 and S8). This gives an idea about the limit of the

parameter b above which the closure approach is appropriate to

use and below which the non-closure model agrees with the results

from the closure model.

This critical parameter value of b can be obtained by equating

the nonzero steady state value for p0 of the closure model and p for

the non-closure model (see Section S3 in Text S1). Thus, at b = b*

we have the following expression for b*:

2 k

1{e
{

ffiffiffiffiffiffiffiffiffiffi
czd

p
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
{cz2 dz

2 k b�
(1{e)

ffiffiffiffiffiffiffiffiffiffi
czd
p

s
~ 0 ð16Þ

with,

d~
4 k (1zk)

3 (1{e)
ð17Þ

c~
16|2

1
3 k2 (1zk)2

3 g
1
3

z
g

1
3

3|2
1
3(1{e)2

ð18Þ

and

g~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
128 k3 (1zk)3 (1{e)3z27 k2 b2(1{e)4
� �

{16384 k6(1zk)6 (1{e)6
q

z128 k3(1zk)3(1{e)3z27 k2 b2(1{e)4:

ð19Þ

Figure 3 shows the variation of the critical parameter b* with

the variation of k and e. For a particular value of e and k, b* value

corresponds to the maximum value of b up to which the non-

closure model and the closure model reach the same steady state

value for phytoplankton. However, beyond that value, the closure

model shows a different result. For example, from equation (16) we

Figure 2. Time variation of variables p0, x, y and 2z of the closure model. Plots of these variables are shown in Figures A, B, C and D
respectively for b= 0.2, 0.6, 1.0 and 2.0. Variation of p of the non-closure model is simultaneously depicted in Figure A. The constant parameter values
for this simulation are k = 0.6 and e= 0.4, for which b* = 0.36.
doi:10.1371/journal.pone.0094797.g002

ð19Þ
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can determine the b* value as 0.36 for k = 0.6 and e = 0.4, which

clearly justifies our numerical results above as shown in Figure 2A:

for b = 0.2 (,0.36) the closure model approaches the non-closure

model, but for b = 0.6, 1.0 and 2.0 (.0.36) the closure model gives

a different result from the non-closure model.

From the same figure it is also observed that as the value of the

parameter e decreases, the b* value increases. This means that as

the death rate of phytoplankton (D) decreases or as the growth rate

of phytoplankton (C) increases, the critical value of b increases.

Similarly, as the value of k ( = K/A) decreases, the critical value of b
increases. These phenomena imply that the closure model has a

more important role where the growth rate of phytoplankton is less

with respect to death rate and half-saturation constant (K) is high

with respect to total nutrient content (A) of the system.

Coefficient of variation (CV) of phytoplankton in closure
model

In real observations we can never measure data with full

certainty. To standardize our measurement, we normally consider

the mean value of several collections of that data along with its

standard deviation. In this situation, a statistical parameter, which

becomes important, is the coefficient of variation (CV). This is a

normalized measure of variability of a distribution and is defined

as the ratio of standard deviation to the mean of that variable.

Because the closure model considers the fluctuation of variables,

one can expect to determine the coefficient of variation in this

model. To do this, we first recall our model variables P0, N0,

vP02w and vN 02w. P0 and N0 represent the mean of

phytoplankton and nutrient respectively.vP02w and vN 02w
represent the variance of fluctuating component corresponding to

those variables. The square root of the variance is a measure of

standard deviation.

From Figure 2 we have seen that for a particular value of k and

e, all the variables reach a steady state level after some time period.

This level varies as b varies. We have also seen from Figures 2A

and B that the variance of the fluctuating component of

phytoplankton (x) can be greater or less than the mean value of

phytoplankton (p0) depending on the value of b. Therefore, the

coefficient of variation for phytoplankton can be greater or less

than one, depending on the parameter values.

Microscale fluorescence measurements at different locations in

Tokyo Bay and at different time periods are shown in Figure 4

(Dataset S1). Permission for these surveys was received from the

Japan Coast Guard. Scattered points represent the mean and

standard deviation of the fluorescence measurements over one-

meter vertical intervals. Figures 4A–C show that the effective

coefficient of variation at the mouth of the bay, inside the bay and

at the mouth of the Ara River to varied from 1.50, 0.78 and 0.32

respectively in May 2011. These spatial structures imply that at the

same period but at different locations the coefficient of variation of

phytoplankton can be different. This is because of a combination

of the variation of physical processes and the community structure

of phytoplankton at different locations that influences the plankton

ecology. Figures 4D–F demonstrate the fluorescence data at a

particular place inside the bay (depth ,50 m) but in three

different seasons. In December 2006, the coefficient of variation

was 1.61, which becomes 0.37 (,1) in September 2007. Again, in

February 2008, the value of the coefficient of variation increases to

1.36 (.1). Therefore, at a particular location the coefficient of

variation changes seasonally with the seasonal change of physical

dynamics as well as with the change in the community structure of

phytoplankton.

Now we will see how the newly developed closure model can

capture these changes of the coefficient of variation by changing

different parameters. In a particular study area of ocean, when

considering the abundance of a particular species of phytoplank-

ton, we can assume that the average death rate (D) and half-

saturation constant (K) of phytoplankton are constant. As an

example, let us consider the values of D and K as 0.135 day21 and

1.2 mg N l21 respectively, which are actually the average values of

the reported cases (Table 2). We also assume the total nutrient of

the system to be constant, and during the first step we set its value

to be 2 mg N l21 (Table 2). Therefore, among three main

parameters (C, K and D) of the original model, two (K and D) are

constant over time and space (here space actually represents the

depth). The maximum growth rate, C, depends on the intensity of

light and varies with depth. As the intensity of light decreases with

the depth from the sea surface, we assume that the maximum

growth rate of phytoplankton decreases with depth.

To study our system of equations (11–13) we must look after the

values of the dimensionless parameters. The value of k is 0.6 as

k = K/A, and the value of e = D/C = 0.135/C. Considering the

maximum value of C at the surface as 2 day21 gives the minimum

value of e = 0.067, and according to our model formulation, the

maximum value of e is ,1. Therefore, the value of e, which is the

ratio of phytoplankton death rate to the maximum growth rate of

phytoplankton, at a specific depth, is the minimum at the ocean

surface, and its value increases as depth increases. Figure 5 shows

the domain of parameters in the e-b parameter space for p0 to lie

between zero and one. The red line indicates the value of b* below

which the mean value of phytoplankton for the non-closure and

the closure model coincide. The dashed curve in the grey shaded

region divides the entire parameter domain of the closure model

into two sections: on one side the coefficient of variation (CV) for

phytoplankton is less than one and on the other, is greater than

one. We have also observed that as the total nutrient (A) of the

system decreases, the domain of parameter in e-b space for CV,1

decreases and the parameter domain for CV.1 increases (see

Section S7 in Text S1, Figure S9). Now we will see the variation of

mean and standard deviation for phytoplankton at different depths

within this described parameter domain.

Figure 6 shows the normalized mean (P0/A) and standard

deviation (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vP02w
p

=A) corresponding to phytoplankton for

different b values. This is obtained by giving back the dimensions

of the variables of the system of equations (11–13). Each point in

this plot represents the steady state value of mean and standard

Figure 3. Plot of critical value of b ( = b*), with the variation of e
for k. The red dotted line indicates the b* value corresponding to
specific k and e values.
doi:10.1371/journal.pone.0094797.g003
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Figure 4. Observations of phytoplankton data in Tokyo Bay. Figures (A, B, C) show mean and standard deviation of fluorescence
microstructure data obtained from different locations in Tokyo Bay in May 2011. (D, E, F) show data obtained from the same location in Tokyo Bay but
at different time periods. Slope of the trend line passing through the origin of these data sets (red line) gives the effective value of the coefficient of
variation at that location. Inset figures show the data collection locations.
doi:10.1371/journal.pone.0094797.g004

Figure 5. Domain of parameters for the value of coefficient of
variation (CV) of phytoplankton. The grey region is the domain of
parameters in the (e-b) parameter space for p0 to lie between 0 and 1.
Green lines are the boundary values corresponding to the mean of
phytoplankton (p0). The dashed line divides the parameter domain for
CV,1 and CV.1.
doi:10.1371/journal.pone.0094797.g005

Figure 6. Plot of mean versus standard deviation (SD) of
phytoplankton at different depths for eight different b values.
Each point corresponds to the mean and SD of phytoplankton at a
particular depth. Both axes are normalized by the value of A ( = 2 mg N
l21). Here the depth profile is obtained by changing the parameter
value C, which decreases as depth increases, and the other two
parameters K and D are kept constant at 1.2 mg N l21 and 0.135 day21.
doi:10.1371/journal.pone.0094797.g006
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deviation at a specific value of e ( = D/C). The value of e increases

with depth as the growth rate of phytoplankton (C) decreases with

depth due to light attenuation, even if the average death rate of

phytoplankton (D) remains constant. Therefore, for a particular b
value, the changes of e value give us the depth profile of

phytoplankton from our model simulation. Eight b values

(b = 0.01, 0.1, 0.5, 1.0, 2.0, 3.0, 4.0 and 5.0) are chosen to show

these results, and for a particular b value, the ranges of e values are

determined from the parameter domain of Figure 5. As an

example, for b = 3.0, the value of e can vary from 0.46 to 0.86.

From these plots, we observe that as the depth increases, the mean

value of phytoplankton as well as its standard deviation decreases,

which implies that the mean of phytoplankton and its spatial

variability decrease with depth. This model result is justifiable, as

we see similar behaviour in small-scale observation of phytoplank-

ton data, depicted in Figure 4.

In real observations we see the coefficient of variation vary from

less than one to greater than one (Figure 4). In Figure 6, the

diagonal line characterizes the points where the mean and

standard deviation are equal, indicating that the coefficient of

variation is equal to one along this line. From our model results we

also see the coefficient of variation vary on both sides of the

diagonal line depending on the value of the parameter b. This

figure also shows that as b increases, the coefficient of variation

increases. If the total nutrient of the system, A, is conserved, then

the change of b implies the change of fluctuating components of

the system. This is because b = B/A2, and B represents the

variance of overall fluctuating components. Therefore, according

to our analysis, as the variance of the overall fluctuating

components of the system increases, the coefficient of variation

increases.

We have also observed that the parameter b is more sensitive to

the coefficient of variation when the total nutrient (A) of the system

is high. These mathematical observations imply that in a particular

area of ocean with high total nutrient, spatial variation will be low

for low b value and therefore, the coefficient of variation will be

low. This may be the reason for low coefficient of variation at the

mouth of the Ara River (Figure 4C). Low values of CV may imply

that phytoplankton species with less sticky material may dominate

the community structure. As the seasons change, the ocean

dynamics change, which causes the spatial variability of the

phytoplankton species to vary. In the closure model this change is

observed by changing the parameter b. Therefore, Figures 4D, E,

and F can be explained by stating that the b value changes

seasonally and causes the coefficient of variation to change

seasonally.

Estimation of parameter values
In our closure model the phytoplankton death rate D is a

measurable quantity and was estimated by Lehman et al. [42],

Franks et al. [2], Edwards et al. [19] and many other researchers.

Similarly, the value of half-saturation constant, K, the maximum

growth rate of phytoplankton, C, and the total nutrient of the

system, A, were also measured by Franks et al. [2], Edwards et al.

[19], MacIsaac and Dugdale [43] and Eppley et al. [44]. On the

other hand, in our model, B is a conserved quantity that essentially

measures the sum of variance and covariance terms (or

equivalently the variance of total fluctuating components) and is

not easily measurable. One can guess the value of this quantity by

estimating the parameter b, as B = b6A2. This parameter can be

estimated by using b-value, at which the coefficient of variations

( = Standard deviation/Mean) of the observation agrees with the

coefficient of variation of the model result (Figure 6). Therefore,

the closure model can also be used to estimate this unknown

parameter of the system.

Conclusions

Mathematical modelling is a pillar of theoretical ecology

research. Aimed at addressing various questions, several models

have been developed over the decades and range from very simple

to the highly complex. Predictive models are always validated or

compared with measured data sets. However, sometimes a

problem occurs where the measured variables are highly

intermittent. Technological advances allow for measurement of

phytoplankton data to greater resolution in oceanic ecosystems.

High-resolution data, which displays high spatial variability, are

useful for understanding the influences of physical processes on

phytoplankton dynamics. In conventional methods, the mean

value of the measured variable is approximated to compare with

the model output. This approximation may misrepresent the

reality of planktonic ecosystems, especially at microscale level. To

consider spatial variability of variables, in this article, we have

applied a new modelling approach, the closure approach, to the

planktonic ecosystem. The closure approach has been widely used

for numerical models in turbulence research. In this approach, the

variables are separated into mean and fluctuating parts, and the

fluctuating parts are considered new variables of the system. By

taking the spatial average of the governing equations, we get the

closure equations, which are then solved to see the effect of

fluctuation on the mean variables.

To justify this closure approach, as a first step we have

considered the simple two-component NP system. After dividing

each variable into mean and fluctuating parts, using the closure

approach technique we have obtained five evolution equations

among which two belong to the mean value of the variables, two

correspond to the variance terms, and the last corresponds to the

covariance term. Analysing this set of equations, first we found the

domain of parameters and conditions for stability of the system

(see Sections S4 and S5 in Text S1). We have observed that the

increase of variance of overall spatial fluctuation (b-value)

increases the stability zone of the system (Figure S5). Then we

determined the critical value of fluctuation below which the non-

closure modelling approach is sufficient to describe the dynamics

of the system but above which the system attains a new steady

state, which shows why the closure approach is necessary above

this critical limit.

As this modelling approach handles variance and covariance

terms, simulated results of this model are easily comparable with

observed coefficients of variation. Depending on the variance of

overall fluctuation (b-value), the system may have coefficients of

variation greater or less than one. We have observed from our

simulation that for high fluctuation, the coefficient of variation is

higher, and we have also found a parameter domain (e-b space)

where the coefficient of variation is greater or less than one. By

comparing model results with observed data sets, physically

unmeasured parameter values, such as variance of overall

fluctuation, can also be estimated.

Although the whole analysis is performed on a simple NP

model, the results of this new approach show some beautiful

features that we also observe in the real oceanic ecosystem. This

novel technique for planktonic ecosystem modelling can be used

for a system where the observed data sets are highly intermittent

and normally difficult to compare with conventional non-closure

models. Also, this method gives a general idea about the

contribution of fluctuating components of the variables, which

are generated by various biotic and abiotic factors of the system. In

Intermittent Phytoplankton Distribution Model
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the next step of our work, we plan to incorporate physical

dynamics, extend model variables in a more realistic way using this

methodology and observe the effect of intermittency on the

variables. How these fluctuating terms will change the results of

global climate models when the time integration is extended over a

few decades or more is not clear, but the results would be different

from current predictions using these methods. The future of the

climate is still unknown.

Supporting Information

Figure S1 Domain of parameter values for which the
equilibrium point E2 exists. Grey shaded regions indicate the

domain for (A) b= 0.1, (B) b= 0.5, (C) b= 1.0, (D) b= 1.5, (E)

b= 4.0 and (F) b= 10.0. Green, blue and red lines are the

boundary values corresponding to the mean of phytoplankton (p0),

variance of fluctuating component associated with phytoplankton

(x) and nutrient (y) respectively.

(TIF)

Figure S2 Domain of parameter values for which the
equilibrium point E3 exists. Grey shaded regions indicate the

domain for (A) b= 0.1, (B) b= 0.5, (C) b= 1.0, (D) b= 1.5, (E)

b= 4.0 and (F) b= 10.0. Green, blue and red lines are the

boundary values corresponding to the mean of phytoplankton (p0),

variance of fluctuating component associated to phytoplankton (x)

and nutrient (y) respectively.

(TIF)

Figure S3 Stability zone of the equilibrium point E0.
Two-parameter bifurcation diagram to show the stability zone for

(A) b= 0.1, (B) b= 0.5, (C) b= 1.0, (D) b= 1.5, (E) b= 4.0 and (F)

b= 10.0.

(TIF)

Figure S4 Stability zone of the equilibrium point E1.
Two-parameter bifurcation diagram to show the stability zone for

(A) b= 0.1, (B) b= 0.5, (C) b= 1.0, (D) b= 1.5, (E) b= 4.0 and (F)

b= 10.0.

(TIF)

Figure S5 Stability zone of the inner equilibrium point
E2. Two-parameter bifurcation diagram to show the stability zone

for (A) b= 0.1, (B) b= 0.5, (C) b= 1.0, (D) b= 1.5, (E) b= 4.0 and

(F) b= 10.0.

(TIF)

Figure S6 Stability zone of the inner equilibrium point
E3. Two-parameter bifurcation diagram to show the stability zone

for (A) b= 0.1, (B) b= 0.5, (C) b= 1.0, (D) b= 1.5, (E) b= 4.0 and

(F) b= 10.0.

(TIF)

Figure S7 Change of steady state level due to parameter
variation for the closure model. For (A) b= 0.1, (B) b= 1.0,

(C) b= 4.0, (D) b= 10.0. Initial value of (p0, x, y) = (0.3, 0.01, 0.8).

(TIF)

Figure S8 Change of steady state level due to change of
parameter values for the non-closure model. Initial value

of p = 0.3.

(TIF)

Figure S9 Change of domain of CV for phytoplankton,
for the changes of total nutrient A of the system. Here

half-saturation constant K is kept constant at 1.2 mg N l21. Green

lines are the boundary values corresponding to the mean of

phytoplankton (p0). The dashed line divides the parameter domain

for CV,1 and CV.1.

(TIF)

Text S1 Supplementary text. This supplementary text

contains seven sections (Section S1–S7) explaining model

development and analysis referred in the main article.

(PDF)

Dataset S1 Experimental dataset. Phytoplankton data as

collected by four sampling methods, namely Niskin bottle,

Seapoint fluorometer, light emitting diode (LED) sensor and laser

sensor, are given in this file.

(XLSX)
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