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ABSTRACT
With the rapid development of industry, studies on lead pollution in total suspended
particulate matter (TSP) have received extensive attention. This paper analyzed the
concentration and pollution sources of lead in the Cuihu Wetland in Beijing during
the period of 2016–2017. The results show that the lead contents in TSP in the Cuihu
Wetland were approximately equal in summer and spring, greater in winter, and
greatest in autumn. The corresponding lead concentrations were 0.052, 0.053, 0.101,
and 0.115 ng/m3, respectively. We compared the 206Pb/207Pb data with other
materials to further understand the potential sources of atmospheric lead. The mean
values of 206Pb/207Pb from spring to winter were 1.082, 1.098, 1.092, and 1.078,
respectively. We found that the lead sources may be associated with coal burning,
brake and tire wear, and vehicle exhaust emissions. We also calculated the
enrichment factor values for the four seasons, and the values were all much greater
than 10, indicating that the lead pollution is closely related to human activities.
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INTRODUCTION
Air pollution, especially particulate matters’ pollution, has become an issue in the public
eye in China (Florig, 1997). Particulate matter pollution not only adversely affects human
health, but also acts as a catalyst for climate change (Seaton et al., 1995; Kyotani &
Iwatsuki, 2002). Studies have shown a positive correlation between air pollution and
respiratory system diseases like lung cancer (Dockery et al., 1993). Researchers found that
atmospheric aerosols can affect cloud microphysics and indirectly cause changes in
light radiation to affect climate (Charlson et al., 1992; Dickerson et al., 1997). Aerosol
particles are a mixture of liquid and solid materials which contains trace metals, ions, and
organic compounds and so on (Liu et al., 2015). Total suspended particulate matters (TSP)
played an important role in analyzing aerosols’ chemical constitution, studying the
spatial and temporal variations, revealing the relationship with meteorological factors, and
tracing sources (Cong et al., 2018; Ragosta et al., 2002). Atmospheric input of heavy metal
elements has a long-term adverse impact on the geobiochemical cycle of ecosystems
(Kelly, Thornton & Simpson, 1996). Therefore, it is imperative to understand the heavy
metals in TSP.
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Trace metals such as Pb, Cd, Hg, and Cr are biologically non-functional and are highly
toxic (Salt et al., 1995). Lead has been designated as one of the most dangerous
environmental pollutants by the United Nations Environment Programme (Morel, 2008;
Shi et al., 2008). With the rapid development of industry, anthropogenic Pb has become
the major source of the lead in the environment. They were widespread in the atmosphere,
soil, water, plants, and animals (Wang et al., 2013). It is very important to study the
geochemical cycle of lead in the environment (Hao et al., 2008; Dawson et al., 2010; Bove
et al., 2011; Uzu et al., 2010).

Lead has four stable isotopes which can be used as a tracer of anthropogenic pollution.
206Pb, 207Pb and 208Pb are three radiogenic isotopes while 204Pb is non-radiogenic
isotope. These four isotopes can be used as a “footprint” for different sources of lead
pollution in the environment, especially for the human activities (Grousset et al., 1994).
The inductively coupled plasma-mass spectrometry (ICP-MS) was designed for analyzing
stable isotopes more precisely, especially for Pb. The development of ICP-MS made it
possible to trace the sources and investigation of heavy metals in different materials.
It is widely used to identify the natural sources and anthropogenic pollution (Wiederhold,
2015). The unique lead isotope ratio ranges make it easier to find out the major sources of
lead, even though sometimes it may be overlapped (Wang et al., 2013; Bindler et al., 1999;
Bollhöfer & Rosman, 2001; Veysseyre et al., 2001; Kaste, Friedland & Stürup, 2003;
Zhang et al., 2007). This makes scientists more convenient to identify and quantify the
sources of lead in different environmental samples (e.g., atmospheric deposition (Gallon
et al., 2005), sediment (Dang et al., 2015), and soil (Huang et al., 2015)), as well as in
organisms (Martinez-Haro et al., 2011).

The Cuihu Wetland is the only national urban wetland park in Beijing, which has an
area of 1.57 km2. It is one of the most typical artificial wetland, which is constructed to
improve the environmental conditions. It also plays important roles in hydrological and
economic aspects, especially in keeping biological diversity. However, the Cuihu Wetland
is open only in certain days and strictly controls the number of tourists and their activities,
which is not like other wetlands in Beijing. Thus, the Cuihu Wetland is less affected by
different human activities. This makes the Cuihu Wetland a good place for scientific
research. It is reported that artificial wetland is a long term green technology to remove the
heavy metals from the polluted areas (Huang et al., 2017), such as Pb. It can also
theoretically influence the heavy metal air pollution by increasing humidity and decreasing
temperature. The transport of particulates is associated with a series of biogeochemical
processes of chemical compounds such as heavy metals (Henderson, 2002). Thus, the
variation of heavy metals is also connected with the changes of meteorological factors such
as humidity and temperature. This can also provide important information about particle
cycling processes (Sun et al., 2016).

However, there were few studies focused on atmospheric lead pollution in an artificial
wetland in Beijing. On the other hand, it is difficult to make a systematic research about the
lead pollution in the particles by only knowing their total concentrations. Thus, efforts
must be made to identify the possible lead sources of the TSPs, thus, to control and reduce
the air pollution (Zheng et al., 2004). Therefore, we studied atmospheric lead
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concentrations and lead isotopic ratios in the Cuihu Wetland in Beijing. We analyzed
the temporal variations of lead in TSP in the CuihuWetland and compared the differences
of lead pollution in atmosphere over different regions and land use types. Another primary
target of this study is to determine the sources of lead. We measured lead isotopic
ratios in TSP and calculated the enrichment factor (EF) values over a year. Based upon
the results, the study attempts to examine the effects of human activity on Pb in the
atmosphere and the potential sources of Pb in the TSP in the region. It is helpful for us to
have a systematic acknowledgement on the lead pollution in the TSP of the air in an
artificial wetland.

MATERIALS AND METHODS
Sampling site
The Cuihu Wetland is a typical country wetland located north of the Shangzhuang
Reservoir in the Haidian District of Beijing. The area of the Cuihu Wetland is 1.57 km2,
of which approximately 0.09 km2 is water with an approximate maximum length and
width of 1.9 and 1.2 km, respectively.

The weather is rainy and hot in summer (June–September) and dry and cold in winter
(December–March). Spring (March–June) and autumn (September–December) are short.

The sampling site was on Crane Island near the center of the Cuihu Wetland (Fig. 1).
The island’s main vegetation is willow (Salix babylonica), with reeds (Phragmites
communis) growing on the more flat areas of the island.

Sampling process
An intelligent medium-flow total suspended particle sampler (TH-150; Wuhan Tianhong
Instruments Co., Ltd, Hubei, China) and Teflon filters (Beijing RyderCase Instruments
Co., Ltd, Beijing, China) were used to collect TSP. A microwave digestion system is used in
the key step of the pretreatment. Samples of atmospheric particulates were digested by
microwave digestion system, and Al and Pb were determined by ICP-MS. The advantages
of microwave digestion system are: quick heating, strong resolution ability and short
dissolution time. Besides, the digestion process is in an airtight container. It can save acid
reagent and reduce the interference of impurity elements. Its disadvantage is that it needs
manual acid driving and it may induce a lower average data. The sampling flow rate
was fixed at 100 L min−1. The filters were put in an open plastic bag and conditioned in a
constant temperature (25 �C) and humidity (50%) chamber for 24 h before and after
sampling (Marcazzan et al., 2001). The filters were transported to and from the sampling
site in sealed plastic boxes.

Ambient TSP samples were collected at the sampling site on Crane Island from September
2016 to August 2017. Three samples were collected simultaneously at the site during each of
the four seasons during the year. The duration per sample was 12 h (from 08:00 to 20:00).

Chemical analysis
The determinations of lead concentration, aluminum concentration and the lead isotopic
composition (206Pb, 207Pb, and 208Pb) were performed via ICP-MS (Bi et al., 2007;
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Dai et al., 2015). A quarter of a filter sample was first placed in a Teflon digestion
vessel. Then, eight mL of nitric acid (6%, v/v) and two mL of hydrogen peroxide were
added to the vessel. The vessel was covered and placed in a microwave digestive system to
dissolve the sample. The sample digestion was performed then. The first procedure is to
heat the samples to 150 �C in 10 min and remaining for 10 min. The second procedure is
to heat them to 210 �C in 5 min and remaining for 20 min. Then, the sample solution
and filter residue mixture were transferred to a Teflon crucible to heat at 150 �C until
nearly dry; five mL of nitric acid (6%, v/v) was then added to the vessel for 15 min to
dissolve the filter residue. After cooling, the solution was diluted with nitric acid (1%, v/v)
and then used to determine the metal elements. Finally, the solution was measured
using an ICP-MS to determine the lead and aluminum concentration and the lead
isotopic composition. An international reference material (SRM 981 common Pb isotopic
standard) was used for calibration and analytical control before the samples were
measured. The precision (% RDS) of the Pb isotopic ratios was typically <0.5%.

Figure 1 Position of the sampling site. Full-size DOI: 10.7717/peerj.7851/fig-1
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Statistical analysis
The statistical treatments of the data were performed using SigmaPlot 12.5 and the IBM
SPSS Statistics 22 statistical software.

Enrichment factor analysis
We calculated the EFs to identify the origin of lead and to calculate the proportions of the
anthropogenic sources (Ny & Lee, 2010; Yang et al., 2010). In previous studies, these
measures have been effective tools to distinguish different sources of heavy metals such as
natural sources and anthropogenic sources (Petaloti et al., 2006; Ayrault et al., 2010). The
value of EF is calculated via the following relationship:

EF ¼ E½ �
R½ �

� �
sample=

E½ �
R½ �

� �
crust;

where E is the considered element, R represents the reference element for crustal material,
([E]/[R]) sample is the concentration ratio of E to R in the aerosol sample, and ([E]/[R])
crust indicates the mean concentration ratio of E to R in the crust (Han et al., 2006).

Al is abundant in the earth’s crust and is frequently used as a reference element
(Han et al., 2006; Taylor & McLennan, 1995; Duan et al., 2012). We calculated the EFs
using the value of Al in Chinese soil in 1990, due to the stability and lack of anthropogenic
sources. Many of the studies were focused on the concentration changes of different heavy
metals. They usually measured the concentrations in surface soils. We found that in
1990, it has been measured of the Al and Pb concentrations of parent rock that Al was
6.62%, and Pb was 26 mg/kg (Wei et al., 1991). If EF approaches unity, the parent rock is
the predominant source of the element. Operationally, given the local variation in the
soil composition, if EF > 10, it can be assumed that the anthropogenic pollution is the
primary source of the elemental abundance (Basha et al., 2010).

RESULTS
Concentration of lead in atmosphere particles
Figures 2 and 3 show TSP and Pb concentrations (±SE) in the samples, respectively.

The concentrations of TSP were more than 1,000 times greater than the Pb
concentrations. The summer season has the lowest concentrations of TSP at 68.867 ng/m3.
The highest concentrations are seen in winter at 244.213 ng/m3. The TSP concentration in
spring is higher than that in autumn, with values of 171.528 and 101.042 ng/m3,
respectively. However, the seasonal trend is slightly different for TSP and lead. The average
concentrations of lead in the four seasons vary from 0.052 to 0.115 ng/m3. The lowest
concentration of lead was recorded during summer and spring followed by winter, while
the highest concentration was found during autumn at 0.115 ng/m3. The concentrations in
spring and summer were 0.052 and 0.053 ng/m3, respectively. The concentration was
approximately 0.101 ng/m3 in winter. Even though the concentrations in autumn and
winter are higher than those in spring and summer, the only significant difference is
between autumn and summer (P < 0.05). There were no significant differences between the
other seasons.
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Sources of atmospheric lead
The lead isotope compositions in the four seasons are shown in Table 1. In general, the
samples show a wide range of lead isotope ratios, ranging from 36.145 to 37.949 for
208Pb/204Pb, from 2.094 to 2.206 for 208Pb/206Pb, from 15.129 to 15.773 for 207Pb/204Pb,
from 16.490 to 18.121 for 206Pb/204Pb, and from 1.061 to 1.168 for 206Pb/207Pb (Table 1).
206Pb/207Pb is relatively important in studying the sources of lead in the environment, as it
can be determined precisely. The 206Pb/207Pb isotope ratio revealed differences in the
behavior in different seasons at the sampling site.

Enrichment factors
Figure 4 shows the EFs of lead for TSP in the four seasons using Al as the reference
element. The EFs represent the enrichment or depletion of lead in the samples.

Figure 2 Seasonal variations in TSP (±SE) expressed in ng/m3 during the study period.
Full-size DOI: 10.7717/peerj.7851/fig-2

Figure 3 Seasonal variations in the lead concentrations (±SE) expressed in ng/m3 during the study
period. Full-size DOI: 10.7717/peerj.7851/fig-3
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If an element’s EF value is less than 10, it can be considered to be a crustal (or
topsoil) source that is primarily caused by soil- or rock-weathered dust blowing into the
atmosphere. If the EF value is much greater than 10, for example, tens to tens of thousands,
the element is likely enriched and reflects not just the contribution of crustal material but
may also be related to contributions from different human activities.

The EF values in TSP for each season varied substantially from 214 (summer) to 9,623
(autumn). The average EF value of lead is 805 in spring, 557 in summer, 5,133 in autumn,
and 3,008 in winter.

DISCUSSION
Variations of lead concentrations in TSP
The Cuihu Wetland is a typical country wetland in Beijing and is little affected by outside
conditions in comparison with some industrial sites, which are influenced by heavy metals
and related to manufacturing processes. The average lead concentrations in the Cuihu
Wetland were low enough, and were even below the safe limits of the international
agencies. The WHO and USEPA standard for atmospheric lead is 0.500 ng/m3

Table 1 Lead isotope compositions.

Spring Summer Autumn Winter
208Pb/204Pb Mean 36.773 37.033 36.795 36.596

Range 36.710–36.888 36.471–37.949 36.145–37.559 36.233–37.166
208Pb/206Pb Mean 2.184 2.162 2.171 2.189

Range 2.165–2.204 2.094–2.197 2.112–2.206 2.160–2.202
207Pb/204Pb Mean 15.568 15.600 15.529 15.517

Range 15.443–15.688 15.429–15.761 15.129–15.732 15.350–15.773
206Pb/204Pb Mean 16.838 17.134 16.957 16.720

Range 16.678–16.971 16.758–18.121 16.490–17.787 16.505–17.034
206Pb/207Pb Mean 1.082 1.098 1.092 1.078

Range 1.063–1.098 1.069–1.168 1.061–1.132 1.069–1.100

Figure 4 Lead enrichment factors during the study period.
Full-size DOI: 10.7717/peerj.7851/fig-4
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(World Health Organization, 2000). During the present study, the average concentration of
lead (0.080 ng/m3) was found to be below the limits of the WHO and USEPA standard.
The reason for the lower concentration of lead in the atmospheric particulate matter
in Cuihu may be self-purification of the wetlands and its distance from large industrial
areas. Even though there is a main road which is a practice road for driving school
students and a road to transport sand from one sand mining plant. This makes the lead
concentrations lower than in areas with many factories or other sources of lead pollution.
In addition, the difference between the lead concentrations in the local atmosphere and
the WHO level may be due to the different situations of the climate especially the
metrological data during the research. We can refine the experimental data by performing
additional repetitions and increasing the number of samples.

Variations in average lead levels showed the following sort during the study period:
levels in summer were approximately equal to levels in spring, levels in winter were greater,
and levels in autumn were the greatest, which is slightly different from a study in
Islamabad during the period of 2004–2005, were the levels in summer were approximately
equal to the levels in spring, levels in autumn were greater, and levels in winter were
greatest (Shah & Shaheen, 2008). The results show that the metal content is inversely
proportional to temperature. Even though the concentration of lead in autumn is higher
than that in winter, the difference between them is not significant (Kim, Kim & Lee, 1997;
Kim, Lee & Jang, 2002; Mishra et al., 2004). Studies have found positive relationships of
lead with relative humidity and negative relationships of lead with the temperature
(Jonsson et al., 2004; Kim, Kim & Lee, 1997). Other studies show that the wind speed
appreciably affects the spread of trace metals. For example, it is shown that the wind speed
affects the dilution of lead in the environment (Kim et al., 2002; Vallius et al., 2005; Wu
et al., 2002; Ragosta et al., 2002). Furthermore, studies show that the rainfall scavenging is
of great efficiency in removing heavy metals from the atmosphere (Mircea, Stefan & Fuzzi,
2000).

Data for lead concentrations in the Cuihu Wetland and other sites are listed in Table 2.
We selected nine different types of sampling sites. The lead concentration in the Cuihu
Wetland is approximately four to eight times higher than those in wetlands in Taiwan,
with values of 0.010 and 0.025 ng/m3, respectively (Fang et al., 2010; Fang & Chang, 2012).
The annual concentration of lead in the Cuihu Wetland is similar to that in Haeng
Goo Dong, Korea, which was sampled in a grassland (Kim, 2004). Another study of lead in
TSP in Beijing had a concentration of 0.690 ng/m3, which exceeds the limit of the WHO
and USEPA standard. Okuda et al. (2008) conclude that coal combustion as a major source
of some anthropogenic metals. During 1995–2004 there is a large amount of coal for
heating supply and residential use in Beijing. Even though that the location for coal
combustion for urban residential heating has changed from the domestic stove to large
heating supply facilities in recent years. It is also estimated that there is an annual increase
in Pb concentration. On the other hand, nonferrous metal smelters are also possible
sources. However, efforts must be made to lower the lead concentration. The lead
concentrations in forests were very low, followed by grasslands (Wang et al., 2016;
Kim, 2004; Quiterio et al., 2006). Lead concentrations appeared higher in industrial areas
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(Kim et al., 2002; Shaheen, Shah & Jaffar, 2005; Shah & Shaheen, 2007). However, this also
depends on the meteorological parameters when the samples were collected and levels are
very different in different cities.

Sources of lead from nature and human activities
Regardless of the lead sources (lithogenic or anthropogenic), the average 206Pb/207Pb
ratio in the four seasons followed the order: summer (1.098) > autumn (1.092) > spring
(1.082) > winter (1.078). It is indicated that the geochemical background Pb has relatively
high 206Pb/207Pb (approximately 1.200), while low 206Pb/207Pb ratios may indicate
potential anthropogenic inputs (Lee et al., 2007). Thus, it could be inferred that in winter
one source with low 206Pb/207Pb ratio dominates over others.

The lead isotope compositions of the TSP are helpful to further understand the potential
sources of atmospheric lead. We compared the 206Pb/207Pb and 208Pb/206Pb data with that
of other materials (Table 3). Due to the Th-rich environment in China, relatively high
208Pb abundances may interfere with estimations of contributions from alkyl lead
additives (Chen et al., 2005). Therefore, in the following discussion, we give priority to the
influence of 206Pb/207Pb. The results show that the average ratios of TSP in spring are
in the range of 1.063–1.098, which is closest to leaded vehicle exhaust (Mukai et al., 1993).
In addition, the 206Pb/207Pb isotope ratios in autumn are 1.061–1.132, which are similar to
those in spring. The 208Pb/206Pb analysis results are consistent with those of 206Pb/207Pb.

Table 2 Lead concentrations in TSP in the Cuihu Wetland and other sites worldwide.

City Size Pb (ng/m3) Season Character Reference

Shenyang, China TSP 0.115 2013–2014 Farmland Wang et al. (2016)

Hailun, China TSP 0.037 2013–2014 Farmland Wang et al. (2016)

Taichung, Taiwan TSP 0.574 2002 Farmland Fang et al. (2003)

Tongyu, China TSP 0.031 2013–2014 Grassland Wang et al. (2016)

Haeng Goo Dong, Korea TSP 0.084 1991–1995 Grassland Kim (2004)

Taejon, Korea TSP 0.260 2002 Industrial Kim, Lee & Jang (2002)

Islamabad TSP 0.214 2003 Industrial Shaheen, Shah & Jaffar (2005)

Islamabad TSP 0.128 2004 Industrial Shah & Shaheen (2007)

Quan-xing, Taiwan TSP 0.015 2010 Industrial Fang et al. (2010)

Chang-hua, Taiwan TSP 0.019 2010 Downtown Fang et al. (2010)

Taiwan TSP 0.180 2004 Downtown Wu et al. (2002)

Beijing, China TSP 0.690 2005 Residential Okuda et al. (2008)

He-mei, Taiwan TSP 0.016 2010 Residential Fang et al. (2010)

Islamabad, Pakistan TSP 0.144 2004–2005 Urban area Wang et al. (2016)

Chang-Hua, Taiwan TSP 0.034 2009–2010 Urban area Fang & Chang (2012)

Changbai Mountain, China TSP 0.018 2013–2014 Forest Wang et al. (2016)

Ilha Grande, Brazil TSP 0.001 2005 Forest Quiterio et al. (2006)

Bei-shi, Taiwan TSP 0.044 2010 Suburban/Coastal Fang et al. (2010)

Gao-Mei, Taiwan TSP 0.025 2009–2010 Wetland Fang & Chang (2012)

Gao-mei, Taiwan TSP 0.010 2010 Wetland Fang et al. (2010)

Beijing, China TSP 0.080 2016–2017 Wetland This study
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Chen et al. (2005) conclude that the 206Pb/207Pb ratios from leaded gasoline range from
1.097 to 1.116. Moreover, Han et al. (2016) indicate that the average 206Pb/207Pb isotope
ratio of unleaded vehicle exhaust is 1.147. It seems plausible to assume that the Pb
pollution may derive from both the leaded and unleaded gasoline via atmospheric
deposition. The Cuihu Wetland is very close to a road, which is a training route for a
driving school that has more students in spring and autumn. This indicates that traffic
plays an important role in lead emissions. However, unleaded gasoline has been widely
promoted in China, which makes high concentrations of lead controversial. Before
unleaded gasoline was introduced, lead has been widely released into the environment via
leaded gasoline used in vehicles over several decades. Those Pb is of high possibility to be
settled into the soil. Such concentrations may be due to the high lead emissions that
entered the atmosphere over the past decades, resulting in a relatively high concentration
of lead in the soil along the roadside. The movement of vehicles can act to re-suspend
dust containing lead into the air (Shah, Shaheen & Jaffar, 2006; Ragosta et al., 2002; Kim,
Lee & Jang, 2002; Shah & Shaheen, 2008). It is thought that the sand mining plant near the
Cuihu Wetland also plays an important role in increasing the lead concentration. Lead
isotope ratios of Chinese coal are reported to vary widely (Mukai et al., 2001). It is
interesting that the lead contents in coal are enough low, while they are high in the coal
combustion dust samples. This may be due to the fact that combustion process has a
“concentration effect” on the emission of lead into the atmosphere (Chen et al., 2005). The
206Pb/207Pb isotope ratios in summer ranged from 1.069 to 1.168, which reflects several
factors, such as leaded vehicle exhaust, unleaded vehicle exhaust, and coal. The 208Pb/206Pb
ratios indicate that the major source of lead is coal. In winter, the isotope ratios of and
208Pb/206Pb were 1.069–1.200 and 2.160–2.202, respectively. Han et al. (2016) has reported
that Pb from coal appeared to be larger than 1.17. It is one of the indicators that one of
the sources of lead is coal (Han et al., 2016). Besides, coal is used as winter heating in the
Cuihu Wetland. The 206Pb/207Pb values indicate the contribution of three sources: coal,
metallurgic dust, and industrial sources. Meanwhile, the 208Pb/206Pb values are very close
to those of coal. Increased coal burning in winter is therefore the main source of lead.
Trace elements were released into the atmosphere throughout coal combustion via bottom

Table 3 Isotope ratios and the elemental content of possible additional lead sources.

Materials 206Pb/207Pb 208Pb/206Pb Reference

Leaded vehicle exhaust 1.11 2.194 Mukai et al. (1993)

Unleaded automobile exhaust 1.131–1.164 2.106–2.142 Tan et al. (2006)

Coal 1.153–1.182 2.090–2.220 Mukai et al. (2001)

Metallurgic dust 1.161–1.185 2.054–2.100 Tan et al. (2006)

Industrial sources 1.176 2.1 Mukai et al. (2001)

TSP (Spring) 1.063–1.098 2.165–2.204 This study

TSP (Summer) 1.069–1.168 2.094–2.197 This study

TSP (Autumn) 1.061–1.132 2.112–2.206 This study

TSP (Winter) 1.069–1.200 2.160–2.202 This study
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ash, fly ash and gaseous phase. The release of heavy metals depends on the composition of
the coal and also on gas temperature and residence time in the flue gas (Mariepierre
Pavageau et al., 2002). Studies have also shown that more than 50% of lead in coal may be
released into the atmosphere during normal coal pyrolysis processes (Zajusz-Zubek &
Konieczyński, 2003). This reminds us that it is of great significance to control the
combustion and emission process in ways of reducing the lead pollution in the air.

Enrichment factors of lead
It is obvious that lead in the atmospheric particles came from anthropogenic sources.
The highest EF value is found in autumn samples, which also had the highest lead
concentration. It can be seen that the EF variation is similar to the trend in the Pb
concentrations, which is autumn > winter > spring > summer. These findings indicate that
the variation in lead is closely related to human activities. The lead sources are associated
with coal burning, brake and tire wear, vehicle exhaust emissions, and the metal
industry (Hieu & Lee, 2010; Xu et al., 2013). One possible reason for the high EF values
is that the Cuihu Wetland is fairly close to a main road, which is a training route for a
driving school. This may increase the opportunity for pollution via brake and tire wear and
vehicle exhaust emissions. However, coal burning in autumn and winter also leads to
an increase in lead from anthropogenic sources. Other studies have also shown a similar
lead enrichment in other places of China (Pan et al., 2015). One study surveyed the EFs in
TSP measured at five sites from 2009 to 2010. The results showed that lead was highly
enriched in TSP samples in Beijing, Tianjin, Baoding, Tangshan, and Xinglong, with EFs
exceeding 100. These high EFs indicate that the lead is of anthropogenic origin, is a key
tracer of coal burning (Degen, 1963), and is rich in particles emitted from fossil fuels and
biofuel burning (Christian et al., 2009; Wang et al., 2008).

Enrichment factors have been widely used to evaluate the anthropogenic/natural
contributions of trace elements (Duce, Hoffman & Zoller, 1975; Polidori et al., 2009).
However, the size distribution of the particulate matters or soil samples was another
important factor that affects the enrichment of lead (Farao et al., 2014; Li, Wiedinmyer &
Hannigan, 2013). Therefore, more efforts must be done to figure out the effect of the size
distribution to the sources of lead.

CONCLUSIONS
This study showed that the lead concentrations in TSP vary from 0.055 to 0.115 ng/m3

during a year. The average lead concentrations exhibited the following pattern during the
study period: the level in summer was approximately equal to that in spring, levels in
winter were greater, and levels in autumn were greatest. The lead isotope ratio proved to be
a useful tool to characterize the source of the atmospheric lead contamination. Regardless
of the lead source, the average 206Pb/207Pb ratio in the four seasons followed the order:
summer (1.098) > autumn (1.092) > spring (1.082) > winter (1.078). We also calculated the
EF values in TSP for each season. These findings indicate that the variation in lead is
closely related to human activities. The sources of lead may be associated with coal
burning, brake and tire wear, vehicle exhaust emissions, and the metal industry. We found
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several possible ways that human activities affect the lead in the environment. However,
further effort is needed to decrease and remove such pollution.
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