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One of the key challenges in current cancer research is the development of computational

strategies to support clinicians in the identification of successful personalized treatments.

Control theory might be an effective approach to this end, as proven by the

long-established application to therapy design and testing. In this respect, we here

introduce the Control Theory for Therapy Design (CT4TD) framework, which employs

optimal control theory on patient-specific pharmacokinetics (PK) and pharmacodynamics

(PD) models, to deliver optimized therapeutic strategies. The definition of personalized

PK/PD models allows to explicitly consider the physiological heterogeneity of individuals

and to adapt the therapy accordingly, as opposed to standard clinical practices. CT4TD

can be used in two distinct scenarios. At the time of the diagnosis, CT4TD allows to

set optimized personalized administration strategies, aimed at reaching selected target

drug concentrations, while minimizing the costs in terms of toxicity and adverse effects.

Moreover, if longitudinal data on patients under treatment are available, our approach

allows to adjust the ongoing therapy, by relying on simplified models of cancer population

dynamics, with the goal of minimizing or controlling the tumor burden. CT4TD is highly

scalable, as it employs the efficient dCRAB/RedCRAB optimization algorithm, and the

results are robust, as proven by extensive tests on synthetic data. Furthermore, the

theoretical framework is general, and it might be applied to any therapy for which a

PK/PD model can be estimated, and for any kind of administration and cost. As a proof

of principle, we present the application of CT4TD to Imatinib administration in Chronic

Myeloid leukemia, in which we adopt a simplified model of cancer population dynamics.

In particular, we show that the optimized therapeutic strategies are diversified among

patients, and display improvements with respect to the current standard regime.

Keywords: personalized therapy, optimal control theory, pharmacodynamics, pharmacokinetics, RedCRAB,
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1. INTRODUCTION

The increasing availability of reliable experimental data on cancer
patients and the concurrent decreasing costs of computational
power are fueling the development of algorithmic strategies
for the automated generation of experimental hypotheses in
cancer research. This is particularly relevant in the sphere of
precision and personalized medicine, as efficient methods are
urgently needed to make sense of available data and support
clinicians in delivering patient-specific therapeutic strategies
(Salgado et al., 2018). To this end, methods borrowed from
optimal control theory (e.g., Bertsekas, 1995; Bailey and Haddad,
2005; Lenhart and Workman, 2007; Aström and Murray, 2010)
can be employed in combination with efficient techniques for
data analysis (Michor et al., 2005; Tang et al., 2011; Olshen
et al., 2014; Rainero et al., 2018), to produce accurate predictive
model of the clinical outcome of a given therapy in single
cancer patients.

Here, we introduce a theoretical framework named CT4TD

(Control Theory for Therapy Design), which employs the
RedCRAB optimal control algorithm (Heck et al., 2018b;
Omran et al., 2019), on patient-specific pharmacokinetics and

pharmacodynamics (PK/PD) models (Welling, 1997), with the
goal of delivering an optimized drug administration schedule (see
Figure 1 for a schematic representation of the framework).

In brief, PK models describe the temporal dynamics of the
concentration of a given drug in a certain tissue or organ,
whereas PD models depict the efficacy of the drug with respect
to distinct concentration values. The CT4TD framework first
defines patient-specific PKmodels based on demographic factors,
such as, e.g., age, sex, and body weight. Suchmodels are employed
to automatically identify optimized therapy dosages and/or
schedules to reach given target drug concentrations, as those
commonly used in clinical practice, also by respecting any desired
constraint such as, e.g., the maximum allowed number of doses
per day or the maximum dosage. In this way, our framework
can guide clinicians in the setting of optimized regimes at
diagnosis, allowing for an either more or less aggressive tuning;
this approach mimics the steady state optimization commonly
proposed in pharmacological studies.

Furthermore, when longitudinal experimental data on tumor
burden—e.g., the fraction of tumor cells on the total, in liquid
tumors—are available for patients under standard treatment,
CT4TD allows to determine optimized personalized strategies
to be used in order to minimize or even eradicating the cancer
cell subpopulation. In fact, with the CT4TD framework it is
possible to fit experimental data with a hierarchical population
dynamics model, which describes the temporal evolution of
cancer subpopulations in a given tumor (Michor et al., 2005;
Stiehl and Marciniak-Czochra, 2012; Werner et al., 2016; Stiehl
et al., 2018). Such model allows to measure the impact of a
given therapy over the tumor’s ability to expand and develop and,
accordingly, to estimate patient-specific PD models from clinical
data, which are then employed to design optimized therapeutic
regimes aimed at reducing the tumor burden.

Therefore, CT4TD can support clinicians in designing
personalized therapies both at diagnosis and when longitudinal

data on disease progression have become available. In all
scenarios, with our approach it is possible to compare the
actual therapeutic regime with the optimized one, showing
improvements in terms of efficacy, toxicity, and overall costs.

The CT4TD theoretical framework is general and applicable
to any kind of drugs, as long as PK/PD models can be
retrieved or estimated. Yet, liquid tumors allow to safely adopt
several simplifications and define simple and reliable models of
population dynamics, avoiding possible complications due to the
spatial and morphological properties of solid tumors (Graudenzi
et al., 2014, 2018).

For this reason, in this work we apply the CT4TD to the
specific case of Imatinib administration in patients with Chronic
Myeloid leukemia (CML), and we show the advantages of
employing our automated and data-driven framework in terms
of increased efficacy of the therapy and reduction of the overall
costs and toxicity. In particular, we here present the results
of the application of the CT4TD framework in two ideally
subsequent scenarios.

In the first case,CT4TD is used to identify the best therapeutic
regime to reach selected target drug concentrations, as those
commonly used in the clinic (e.g., Gambacorti-Passerini et al.,
1997; Peng et al., 2005; Baccarani et al., 2014). This scenario
provides indications which can be employed by clinicians
at the time of the diagnosis. Importantly, the inclusion of
demographic factors within the PK models (Widmer et al.,
2006) allows to define personalized drug schedules that are
different from standard practice. A robustness analysis to assess
the impact of intra-patient variability and of possible systematic
errors proves the safety of the hypotheses generated with
our approach, especially with respect to possible technical or
measurement errors.

In the second case, we employ longitudinal data on tumor
burden of a selected cohort of CML patients under standard
treatment, in order to retrieve personalized PD models and,
accordingly, to identify an adjusted therapy that is most effective
in minimizing cancer subpopulation, once the major molecular
response has been observed. In both cases the results allow to
explicitly evaluate the advantages in costs and improved efficacy
with respect to standard therapies.

2. BACKGROUND

2.1. Pharmacokinetic and
Pharmacodynamic Models
Pharmacokinetic (PK) models (Welling, 1997) are mathematical
models that describe the temporal evolution of the concentration
of a substance in a certain tissue of the body. Commonly
used techniques to study such processes are the so-called
compartmental models (Welling, 1997), i.e., dynamical models
based on the law of conservation of mass, and which assume
that the body is composed by a certain number of macroscopic
coupled subsystem, namely compartments. Such models assume
an instantaneous mixing of the drug in a compartment and
a perfect transport among them, and are usually defined
via systems of differential equations (e.g., Schwilden, 1981).
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FIGURE 1 | CT4TD pipeline. (A) The CT4TD framework employs demographic factors such as body weight, age, and sex to define patient-specific parameters of the

pharmacokinetic models. We here focus on the case of Imatinib administration in Chronic Myeloid leukemia (CML). (B) CT4TD manages two working scenarios: (i) at

(Continued)
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FIGURE 1 | time of diagnosis, CT4TD can be used to reach given optimal/lower-bound drug concentration targets, e.g., from clinical studies (steady state

optimization); (ii) when longitudinal data on tumor burden variation under standard therapy are available, CT4TD fits the data points with a hierarchical population

dynamics model of CML, and this allows to estimate patient-specific pharmacodynamics (PD) parameters, based on the observed cancer cell death rate. In both

scenarios, optimization on pharmacokinetics/pharmacodynamics (PK/PD) models is performed via RedCRAB, on distinct cost functions, aimed at: either being close

to given target concentrations (and strictly larger in the lower-bound case)—WS (i); minimizing the Area Under the Curve (AUC) and the tumor burden—Working

Scenario (WS) (ii). (C) optimized personalized dosage and schedule are returned, allowing to measure in silico the differences with respect to standard administration,

in terms of dosage, drug concentration, cost, and AUC. WS (ii) allows to predict the tumor burden evolution in case of an optimized therapy.

The solution of such systems provide predictions about the
variation of drug concentration in time, in a certain tissue. A
limitation of PK models is the employment of coarse-grained
oversimplifications, which require ad-hoc assumptions and are
valid only for sufficiently long timescales.

Pharmacodynamic (PD) models (Welling, 1997; Rowland
et al., 2011) study the relationship between the concentration of
a drug and the resulting effect, in terms of efficacy and possible
adverse effects (AEs). The effects of a certain substance are
estimated by modeling relevant biochemical reactions, usually by
exploiting the law of mass action (see, e.g., Goutelle et al., 2008).
One of the major limitations of PD models is that it is usually
impossible to have all the measurements necessary to determine
the kinetic constants of the involved chemical reactions. For this
reason, the efficacy of a drug is usually estimated with statistical
methods and target concentrations are defined with respect to
some arbitrary criteria (Peng et al., 2005; Larson et al., 2008a;
Takahashi et al., 2010; von Mehren andWidmer, 2011; Baccarani
et al., 2014).

PK/PD models are increasingly used to define new drug
dosage guidelines and protocols (e.g., Peng et al., 2005).
Nonetheless, standard approaches to this end are affected by
several major issues. Usually the optimal dose is identified in
phase I dose escalating clinical trials. Moreover, such trials may
suffer from possible idiosyncrasies of the study, from the presence
of unknown confounding factors and from the often limited
sample size. Another problem is that the recommended dosage
is often defined as optimal for an ideal—and non existing—
average patient, because the efficacy is only defined statistically.
As a consequence, the same drug dosage/schedulemight be either
insufficient or exceeding for different patients. In the former case,
this might lead to a non-optimal clinical outcome, in terms of
lower efficacy of the treatment, whereas in the latter case an excess
of drug may raise the probability of AEs, as well as the economic

cost of the therapy, an aspect that is particular relevant for
oncological therapies (Fojo and Grady, 2009; Himmelstein et al.,
2009; Experts in Chronic Myeloid Leukemia, 2013; Gomez-de
León et al., 2017; Jabbour et al., 2017).

Therefore, effective strategies for the identification of

optimized personalized therapy schedules are needed, in order to
possibly reduce the amount of drug and minimize the probability

of related adverse effects, while providing the same or an even
better efficacy—i.e., clinical outcome—, with respect to the
standard administration schedule. As a side effect, an optimized
personalized schedule would also deliver a minimal economic
cost, i.e., more patients will be able to afford its costs.

In this respect, CT4TD allows to: (i) define patient-specific
PK models that depend on a number of demographic factors

and biological covariates, such as age, sex, ethnicity, and body
weight, as proposed by Widmer et al. (2006); (ii) estimate
personalized PD models from longitudinal experimental data on
tumor burden (if available). This allows to identify personalized
therapeutic strategies, which explicitly account for the expected
differences in PK and PD, due to the physiological heterogeneity
of the individuals. It is important to stress that population PK/PD
models are employed in a wide range of distinct diseases such,
e.g., cancer (Yoshitsuga and et al., 2012), HIV (Chan et al., 2011),
diabetes (Landersdorfer and Jusko, 2008), as well as in anesthesia
administration (Potts et al., 2008).

2.2. Applications of Optimal Control Theory
in Medicine
Control theory is an interdisciplinary field bridging engineering
andmathematics, whose main objective is to define an opportune
control function that modifies the state of a given dynamical
system in order to perform a specific task, while minimizing the
cost and maximizing the performance (Bertsekas, 1995; Lenhart
and Workman, 2007; Aström and Murray, 2010) (see section 3
for a technical description).

Two main classes of controls exist: (i) open-loop control,
and (ii) closed-loop (feedback) control. In the former case, the
set and sequence of control actions is chosen a priori, by
exploiting theoretical study on the models. In this case, the
input is independent with respect to the output (e.g., possible
measurements on the system) (Lenhart and Workman, 2007).
Closed-loop control, instead, introduces in the procedure one
or more feedback loops, which are able to quantify the real
response of the system to variations of the control functions, and
adjust them according to the differences recorded between the
theoretical and real behaviors of the system (Aström andMurray,
2010).

There are several examples of successful applications of
control theory in pharmacology (see Bailey and Haddad, 2005;
Shi et al., 2014). In this respect, the final goal is to determine the
optimal set of therapeutic choices—e.g., dosages and schedules—
to obtained a desired efficacy, while minimizing the overall costs.
Closed-loop controls are extremely effective in achieving this
goal and have been often implemented in real-world health-
care settings (Haddad et al., 2006; Steil, 2013; Jayachandran
et al., 2014; Shi et al., 2014; Babaei and Salamci, 2015; Fuentes-
Garí et al., 2015; Naşcu et al., 2015). Nonetheless, technological
problems, such the absence of real-time measurements, as well as
possible problems in titrating drugs to the right concentration,
are still limiting real-life applications (Bailey and Haddad, 2005;
Cunningham et al., 2018). For this reason, open-loop controls
are still a viable option, mostly because of the applicability in a
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wide range of real-world scenarios for which, for instance, real-
time measurements and/or therapy adjustments are unfeasible.
Moreover, open-loop controls have proven to identify more
effective drug concentration in therapeutic ranges than standard
clinical practice (Barbolosi and Iliadis, 2001; Ledzewicz and
Schättler, 2006; Zhu andQian, 2014; Bara et al., 2017; Rocha et al.,
2018; Yoon et al., 2018).

However, many approaches in both categories are based on
limiting assumptions. Certain techniques, for instance, assume
continuous—yet unrealistic—drug infusion procedures (e.g.,
Pefani et al., 2013). Some methods rely on often speculative
mathematical models, which cannot be evaluated due to the lack
of opportune experimental data (Yoon et al., 2018).

The CT4TD framework aims at improving the current
state-of-the-art, by solving an open-loop control problem on
PK/PD models via RedCRAB (Heck et al., 2018b; Omran
et al., 2019), a remote suite based on dCRAB (Doria et al.,
2011; Rach et al., 2015), an algorithm for optimization and
control. The dCRAB algorithm is particularly suitable for
complex optimization problems when it is neither possible
or efficient to build the gradient from the set of differential
equations, defined by the main dynamics. In the aforementioned
case, the standard gradient-based methods could not be
efficient or failed the gradient calculation. The dCRAB optimal
control tool has the peculiarity to avoid local traps by
changing the optimization basis and paves also the possibility
to perform a closed-loop optimization, using the feedback
provided by the patient’s response. Extensions in this sense
are underway.

2.3. Mathematical Modeling of Cell
Population Dynamics
Many healthy and aberrant biological tissues are characterized by
a hierarchical organization, constituted by an ordered sequence
of discrete maturation states, as driven by differentiation
processes. In this respect, a number of mathematical models
have been proposed to study the cell population dynamics,
both in healthy systems (Marciniak-Czochra and Stiehl, 2013)
and in cancer (Michor et al., 2005; Tang et al., 2011;
Stiehl and Marciniak-Czochra, 2012; Olshen et al., 2014;
Altrock et al., 2015; Werner et al., 2016; Stiehl et al.,
2018).

In such models, cells are divided in n non-intersecting
compartments, with every ensemble representing a certain
stage of cell differentiation. The time ordering of the
differentiation stage defines an explicit hierarchy among
such ensembles. Accordingly, a lineage is defined as a
collection of compartments that fully describe all the
stages of differentiation of cells within a certain tissue
(see Figure S7).

Various approaches are employed to model the dynamics
of such systems such as, e.g., ordinary differential equations
(ODEs), discrete-time and continuous-time Markov chains,
master equations, etc. (see Altrock et al., 2015 for a recent
review). Each strategy displays a specific trade-off in
terms of expressivity and computational complexity. For

instance, ODEs are very convenient from the computational
perspective, but they are not suitable in certain cases,
e.g., when representing low numbers of cells. Conversely,
probabilistic models allow for a richer representation of the
system, yet at the cost of a higher computational burden and
mathematical complexity.

For sake of simplicity, the CT4TD framework employs a
ODEs hierarchical model of cell population dynamics to fit
longitudinal data on tumor burden (Michor et al., 2005; Tang
et al., 2011; Stiehl and Marciniak-Czochra, 2012; Olshen et al.,
2014; Altrock et al., 2015; Werner et al., 2016; Stiehl et al.,
2018). On the one hand, this model provides a description of
cell population dynamics in time for any given patient. On the
other hand, it allows to estimate the efficacy of the therapy in each
patient, on the basis of the observed cancer subpopulation decay,
which is then used to estimate patient-specific PD models (see
section 3 for further details).

3. MATERIALS AND METHODS

3.1. Estimation of Patient-Specific PK
Models of Imatinib in CML
In order to describe the various steps of the CT4TD pipeline
in detail, we here present its application to the specific case
of Imatinib administration in CML. Yet, we stress that the
theoretical approach is general and could be applied for any
therapy for which PK/PD models can be estimated.

We here employ the PK model of oral administration of
Imatinib introduced by Widmer et al. (2006) (see Figure S1): if
χg(t) is the amount of Imatinib in the gastrointestinal tract, ka
is the first order absorption rate, f is the bioavailability, i.e., the
fraction of an administered dose of unchanged drug that reaches
the circulatory system, and D the ingested dose, then:

dχg(t)

dt
= −kaχg(t), χg(0) = Df , (1)

so if v is the volume of the distribution, i.e., the theoretical volume
needed to account for the overall amount of drug in the body in
case the drug was evenly distributed throughout the body, CL the
clearance, i.e., the volume of plasma cleared of the drug per unit
time, C(t) the concentration in the blood, χb(t) the amount of

Imatinib in the blood (C(t) =
χb(t)
v ), then:

dχb(t)

dt
= +kaχg(t)− CL · C(t), C(0) = 0. (2)

An example of the solution of Equation (2) can be found in
Figure S2.

Both equations can be tuned to consider demographic factors
as body weight, age and sex, thus providing patient-specific
PK models. More in detail, such demographic factors can be
incorporated in the clearance CL and in the volume of the
distribution v, as initially proposed by Widmer et al. (2006):

CL = θa+θ1
BW − BW

BW
+θ2q−θ2(1−q)+θ3

AGE− AGE

AGE
, (3)
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v = θb + θ4q− θ4(1− q), (4)

where θi, for i = a, b, 1, 2, 3, 4 are constants, BW is the body
weight of the patient and BW is its population-average, AGE
is the age of the patient and AGE its population-average and
q is a binary variable which takes value 1 for male and 0 for
female. Estimation of such parameters is provided by Widmer
et al. (2006) and shown in Tables S1, S2. As in the dataset used
in the case study, only the information about age and sex was
available, we estimated the corresponding BW in each patient
on the basis of average measures provided by McDowell et al.
(2005)1.

3.1.1. Therapy Simulation
In order to simulate a therapy, we need tomodel amulti-dose oral
administration. Let tin and tfin be the initial and the final time of
the therapy, we suppose to give n+1 doses at time t0, t1, t2, . . . , tn,
with a dose amountDi (i = 0, 1, 2, 3, . . . n), respectively. Thus, we
have n first order differential equations like Equation (1); by using
the superposition principle the solution will be:

t0 ≤ t < t1 χg(t) = χg0(t),
t1 ≤ t < t2 χg(t) = χg0(t)+ χg1(t),
t2 ≤ t < t3 χg(t) = χg0(t)+ χg1(t)+ χg2(t),
. . . . . .

tin ≤ t < tfin χg(t) =
∑n

i=0 χgi(t),

(5)

where χgi(t) = ψgi(ti)e
−ka(t−ti) is a solution of Equation (1), with

ψgi(ti) = fDi. Then, substituting χg(t) into the Equation (2) it is
possible to study the dynamics of blood concentration of a certain
drug for a multi-dose oral administration (see Figure S2 for an

example). Notice that
χg (t)

v = C(t).

3.2. Estimation of Patient-Specific PD
Models From Experimental Data
CT4TD includes a data analysis module, aimed at identifying
patient-specific parameters of the PD model from experimental
data, and which relies on a widely-used model of cancer
population dynamics. The following subsection include details
on each pipeline step.

3.2.1. Population Dynamics Model of Leukemia
In CT4TD we use the simplest compartmental model of
population dynamics for which it is possible to estimate the
parameters from available experimental data.

In detail, the organization of leukemic systems is characterized
by a hierarchy that is analogous to the healthy hematopoietic
counterpart, and which can be modeled in the simplest case
with two compartments: (i) cancer stem cells (CSC) and (ii)
progressively differentiated cancer cells (Michor et al., 2005; Tang
et al., 2011; Stiehl and Marciniak-Czochra, 2012; Olshen et al.,
2014; Wodarz et al., 2014; Werner et al., 2016; Stiehl et al., 2018).

1It is known that other factors can change the value of the clearance and

the volume of the distribution. For instance, the concentration of the α1-acid

glycoprotein affects the volume of the distribution, whereas the MDR1 genotype,

the CYP3A4 activity and the creatinine clearance affect both CL and v (Widmer

et al., 2006). However, we here limit to consider the aforementioned demographic

measurements, because of their availability in our and in most datasets.

Note that the model could be generalized to account for
m lineages, in order to represent the possible presence of
subpopulations of tumor cells with distinct properties (e.g.,
therapy resistant phenotypes), and to account for complex
interaction phenomena (e.g., between lymph nodes/bone-
marrow and blood-stream). However, in order to allow for
an accurate and robust parameter estimation, more complex
models of population dynamics would typically require—
among other things—a much higher number of data points
than those usually available. In addition, limitations regarding
parameter identification of ODE models with inadequate data
(i.e., identifiability of a model) were described in Saccomani et al.
(2010) and Hong et al. (2019), and justify our choice of adopting
highly simplified models, at least until new suitable experimental
data will become available.

In this case, first order differential equations are suitable
to describe the population dynamics, because experimental
evidences show that the proliferation of healthy cells display
an exponential increase (Marciniak-Czochra and Stiehl, 2013),
whereas cancer cells under therapy display an exponential decay
(Michor et al., 2005; Tang et al., 2011; Olshen et al., 2014; Rainero
et al., 2018). Thus, we analyse the fluxes between compartments,
by defining the following constants:

• pi,k is the division rate of the cells in the i ensemble of the k
lineage.

• di,k is the death rate of the cells in the i ensemble of the k
lineage—this rate will be estimated from experimental data.

• ai,k ∈ [0, 1] is the probability that, when a cell undergoes
mitosis, both of its daughters belong to the i ensemble in the k
lineage; therefore, 1−ai,k is the probability of belonging to the
i + 1 ensemble. With respect to CSCs (or SC) this quantifies
the self-renewal process.

Note that, we consider a symmetric differentiation scheme,
according to which after mitosis both cells are of the same type,
either stem or differentiated.

In a single individual, the dynamics of the healthy system—
which includes stem cells, progenitors and differentiated cells—
and that of the leukemic system coexist. Yet, we here assume that
CML cells are cytokine-independent (as formulated by Werner
et al., 2016), so the equations describing the dynamics of leukemic
subpopulation do not include terms related to the healthy
counterpart, (i.e., the ODE system of healthy and leukemic
subpopulations becomes uncoupled). As a consequence, the
dynamics of the leukemic system can be defined as follows:

dl1(t)
dt

= λl1(t),
dl2(t)
dt

= γ l1(t)+ τ l2(t),
(6)

where:

λ = (2a1,l − 1)p1,l − d1,l, γ = 2(1− a1,l)p1,l,
τ = −d2,l.

(7)
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This is a typical example of a linear autonomous system, and the
solution could be obtained analytically in a recursive way:

l1(t) = l1(0)e
λt ,

l2(t) =
eτ t(γ l1(0)−λl2(0)+τ l2(0))−l1(0)γ e

−λt

τ−λ
.

(8)

3.2.2. Experimental Data Fitting
Once the leukemia 2-compartments model has been defined, it
is possible to estimate its parameters from experimental data. In
particular, we here focus on the specific case of CML. As every
cancer cell in CML is characterized by the BCR-ABL mutation, it
is possible to distinguish healthy from cancer cells with Q-PCR
measurement, and this allows to have longitudinal experimental
data returning the fraction of cancer cells over the total, i.e., the
tumor burden (Michor et al., 2005; Tang et al., 2011; Olshen et al.,
2014; Rainero et al., 2018).

TheCT4TD fits the longitudinal data on tumor burden in each
patient with a biphasic exponential, which in log-scale describes
two distinct and intersecting lines, as proposed in Michor et al.
(2005), Tang et al. (2011), and Olshen et al. (2014). In particular,
we selected the combination of straight lines minimizing the
value of R2 (i.e., the standard coefficient of the goodness of a
linear regression, which quantifies the portion of the response
that is explained by a linear model), by scanning all the points of
intersection (with a step of 1 day) and fitting data with two lines
with distinct slopes, via a standard non-linear fit (see theTable S3
for all parameter estimation). We also tried to fit data with either
one or three distinct lines, yet in our case study the best fit was
obtained in the two-lines case.

Once the two best fitting curves have been obtained
for each patient, we adopt a simplifying assumption that
allows us to estimate the parameters of the compartmental
model from data. In Marciniak-Czochra et al. (2009), it
is shown that the leftmost curve (with higher slope) is
likely to represent the overall population dynamics involving
cancer stem cells, cancer progenitors and cancer differentiated
cells (decreasing in population size), together with that of
healthy blood cells (increasing in population size). Considering
that the Q-PCR measurements of the BCR-ABL fusion
gene return the ratio between cancer cells and the total
number of cells in the system, it would be impossible to
disentangle the contribution of each subpopulation to the overall
dynamics, and to reliably estimate the values of γ and τ

in Equation (7), without ad-hoc assumptions and/or further
opportune experiments.

Instead, it is possible to hypothesize that the rightmost curve
(i.e., the second exponential decay, with lower slope) accounts
for the dynamics involving a completely recovered healthy cell
subpopulation—thus, healthy cells can be considered as constant
in number—and a decaying cancer stem cell subpopulation,
with no progenitors and differentiated cancer cells left in the
system, as a consequence of the therapy (Michor et al., 2005;
Tang et al., 2011; Olshen et al., 2014; Rainero et al., 2018).
With this assumption, it is possible to estimate the parameters
of the first compartment, and in particular, the cancer stem cell
death rate d1,l in Equation (9), from experimental data. This
also allows us not to explicit consider a model for the healthy
hematopoietic system.

In detail, we assume that the exponential decay of the
rightmost curve (i.e. the exponential decay of CSC, given by the
first equation in Equation 8) accounts for the dynamics of the
CSC subpopulation only. In this way, it is possible to evaluate the
effect of a standard Imatinib therapy—400 mg per day—directly
on the CSC decay, as estimated from any patient’s data.

In fact, βj, i.e., the measured slope accounting for the decay of
CSCs, will be given by:

βj = Log10[e][(2a1,l,j − 1)p1,l,j − d1,l,j] = Log10[e]λj, (9)

where j is the patient’s index.

3.2.3. Identification of Patient-Specific PD Models
Various PD models can be employed to estimate the efficacy of
Imatinib in CML. In our case, we use a PD model based on
the maximum-inhibition effect (Emax) (Peng et al., 2005) (see
Figure S3):

E(C(t)) =
Emax · C

n(t)

ECn
50 + Cn(t)

, (10)

where E(t) is the effect, Emax is the maximum effect, C(t) is the
concentration of the drug, EC50 the concentration of the drug
that produces half of maximal effect, and n is a shape factor.

In order to identify patient-specific PD models from the
parameters of the leukemia model estimated from data, we can
safely suppose a linear relation between the population-average of
the efficacy 〈E〉 and the population-average of 〈d1,l〉 (Gambacorti-
Passerini et al., 1997). Hence, the relation is the following:

〈d1,l〉 = K〈E〉, (11)

where K is a conversion constant. In this case, the efficacy of a
certain concentration of a drug is directly proportional to the
increase of the cancer cell death rate.

It is possible to estimate K from the available dataset, by
employing patient-specific PKmodels and an average benchmark
PD model (n = 1, EC50 = 0.123 [mg/L] and Emax = 1). To do
this, we first compute the time-average of the concentration C̄j(t)
for each patient, with respect to a 40-days standard therapy—400
mg Imatib per day—, which we then use to compute the time-
average of the efficacy Ēj as per Equation (10), by considering
unique average PD parameters for all patients. Finally, we
consider the population-average the efficacy 〈E〉, as computed on
all patients. 〈d1,l,j〉 is then obtained by using formula (Equation

9), setting a1,l = 0.87 and p1,l = 0.45 [days−1] as proposed
(Stiehl et al., 2018), and by taking the mean over all patients. As
a result, the conversion factor for this dataset is K ≈ 0.377 ±

0.0007 [days−1]. Since we suppose a linear relation between K,
〈d1,l〉 and 〈E〉 (see Equation 11), the confidence interval of K is
determined via standard (linear) error propagation procedure.

At this point, we are able to estimate the personalized
parameters of the PD model, and in particular of EC50, by
supposing that the maximum efficacy is Emax = 1 and the shape
factor is n = 1, for all patients (Peng et al., 2005; Weigel et al.,
2010). Therefore, the relation is the following:

EC50,j = C̄j

[

KEmax

d1,l,j
− 1

]1/n

. (12)
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With this procedure, we can estimate the value of EC50,j

for each patient from individual longitudinal data on tumor
burden. This result leads to the definition of PK/PD personalized
models, which integrate demographic factors and Q-PCR data
that measure the response of each patient to the therapy, and
represents one of the major novelties of our approach.

The results for all patients are presented in Table S4 and in
Figure 4. Notice that, if longitudinal data on single patients are
not available, the CT4TD allows to employ a unique (average)
PDmodel for all patients, as estimated from experimental studies
(see e.g., Gambacorti-Passerini et al., 1997; Peng et al., 2005;
Picard et al., 2007; Baccarani et al., 2014).

3.3. Definition of the PK/PD Control
Problem
We formally define the PK/PD control problem for the
administration of discrete doses as follows. Let be tin and tfin
the initial and the final time of the therapy. Here we aim at
finding: (i) the optimal doses D∗

0 ,D
∗
1 , . . .D

∗
n, and (ii) the optimal

schedule of administration t∗0 , t
∗
1 , . . . , t

∗
n , such that a functional

that represents the cost L(C(t, {(D0, t0), (D1, t1), . . . , (Dn, tn)}))
is minimized. Notice that the set {(D∗

0 , t
∗
0 ), (D

∗
1 , t

∗
1 ), . . . , (D

∗
n, t

∗
n)}

are the control functions and C∗ is the optimal unknown
drug concentration, described in a general setting with the
ODE in Equation (18) (the solution of the particular case
of multi-dose oral administration is shown in Equation 5).
To simplify the notation, in the following we will refer to
L(C(t, {(D0, t0), (D1, t1), . . . , (Dn, tn)})) as L(C(t, {(Di, ti)})).

The definition of the cost functionalL is the core of the PK/PD
control problem and can include various weighed terms, which
one should wisely select with respect the specific problem and
goals. In particular, L may (or may not) include distinct terms
accounting for: (i) the efficacy E of the therapy, as derived via
PD models, such as the Hill equation (Goutelle et al., 2008)
or the Emax model (Peng et al., 2005) (if average or patient-
specific parameters can be estimated); (ii) the toxicity of the
therapy and/or the possible AEs as measured, e.g., via the Area
Under the Curve (AUC); (iii) in case the PD model is unknown
or indefinable—a distance between the optimized concentration
C∗(t) and a target concentration Ctg as estimated, for instance,
from clinical trials (Baccarani et al., 2014); (iv) the economic
cost of the therapy; (v) the properties and the temporal evolution
of the disease, as in the case of the tumor burden estimation
from longitudinal experimental data (Michor et al., 2005; Stiehl
and Marciniak-Czochra, 2012; Altrock et al., 2015; Werner et al.,
2016; Stiehl et al., 2018) (in this case the goal will be the
optimization of the performance of the therapy with respect to
the minimization of cancer subpopulations; (vi) the probability
of developing resistance to the therapy (Michor et al., 2005;
Tang et al., 2011), etc. Obviously, some of these terms are highly
correlated, as for example the AUC and the economic cost.
Notice also that the choice of opportune weights is crucial in
defining an effective control, if more than one term is used,
and that it is necessary to fix n a priori when minimizing L.
The latter choice is related to the applicability to current real-
world scenarios, in which practical limitations usually prevent to

exceed a certain amount of doses per day, as well as to administer
continuous dosages, especially with respect to cancer therapies.
In detail, we here define cost functions L with respect to two
distinct scenarios: (i) optimization of therapy for fixed target
concentrations, (ii) optimization of therapy for tumor burden
reduction or stabilization (as proposed by West et al., 2018).

3.3.1. Working Scenario (i): Optimal Control With

Fixed Target Concentration at Diagnosis Time

(Patient-Specific PK Models—No PD Models)
In many real-world scenarios it is not possible to retrieve or
estimate the parameters of the PD models, for instance at the
time of diagnosis. In this case, CT4TD can be used to find
the best personalized therapeutic strategy to either: (i) be as
close as possible to a given optimal target drug concentration,
or (ii) be close to, but strictly larger than a given lower-bound
target (i.e., steady state optimization; Shargel et al., 1999). In the
first case—i.e., optimal target concentration—CT4TD employs a
simple Euclidean distance between two concentrations:

E(C1 ,C2) =
∣

∣C2(t)− C1(t)
∣

∣ . (13)

Ctg is the target drug concentration, necessary to have a
major molecular response, estimated, e.g., via clinical trials. For
example, in clinical studies, Imatinib concentration in blood is
required to be above 0.57 [mg/L] and with a time average of 1
[mg/L] (Peng et al., 2005). C∗(t) is the unknown concentration
of drug in blood, which will be identified by solving the
control problem.

Then, in this case the cost is defined as follows:

L(C∗(t, {(D∗
i , ti)})) =

∫ tfin

tin

dtE(C∗,Ctg ). (14)

This cost favors the solutions which are close to the target, with
no preference between above or under the target. In the second
case—i.e., lower-bound target concentration—CT4TD uses a step
distance in the space of concentrations. In this case the distance
between two concentrations becomes:

S(C1 ,C2) =

{

E(C1,C2), C1 ≥ C2,

G, C1 < C2,
(15)

where G is a constant. It is then possible to define the cost
as follows:

L(C∗(t, {(D∗
i , ti)})) =

∫ tfin

tin

dtS(C∗,Ctg ). (16)

In this case, CT4TD will give solutions that display
concentrations above the lower-bound target. We stress
that working scenario (i) is general, as target drug concentration
can be derived from any given clinical trial or practice. In
such case, the target concentration is a parameter of the cost
functional, which can be opportunely modified according to the
considered therapy, both in the optimal target (Equation 14) and
the lower-bound target cases (Equation 16).
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3.3.2. Working Scenario (ii): Optimal Control for

Tumor Burden Reduction (Patient-Specific PK

Models—Patient-Specific PD Models)
When it is possible to estimate patient-specific PD parameters
from longitudinal data on tumor burden variation under
standard treatment, CT4TD can be used to identify an adjusted
optimized therapy to reduce such burden in each patient. In
particular, our approach can use a cost function with the aim
of: (i) minimizing the number of cancer stem cells (e.g., at the
end of the treatment, (ii) minimizing the AUC of the therapy,
which accounts for toxicity and possible AEs. To do this, we need
to introduce two arbitrary weights W1 and W2, which account
for the relative relevance of the two distinct components. Notice
that we cannot consider the exponent of Equation (8) only, as the
dynamics of l1(t) is a monotone function and the minimization
of cancer stem cells is reached for Di → ∞, which implicates
that if the maximum amount of drug is bounded (i.e., Dmax) the
optimal solution is trivially reached forDi = Dmax,∀i. Therefore,
we have:

L(C∗(t, {(D∗
i , ti)})) =

∫ tfin

tin

dt[W1(Log10[e]λ(Ej(C
∗(t))))

+W2C
∗(t)]

=

∫ tfin

tin

dt[W1(Log10[e]((2a1,l − 1)p1,l

− KEj(C
∗(t))))+W2C

∗(t)],

(17)

Notice that cost functional in Equation (17) includes the net
growth rate of the CSCs, i.e., λ in Equation (8). This choice allows
us not to know or estimate the initial number of CSCs l1(0), since
is not possible to infer this quantity from tumor burden data
only. The ratio φ =

W1
W2

determines the overall of the optimal
solution and should be wisely chosen. In order to provide some
indications on this modeling choice, we performed an extensive
scan of φ (in the range φ ∈ [10, 100]), with respect to all patients
and we analyzed the variation of the time-average concentration
C̄. The results are shown in Figure 5. From this analysis, one can
see that a sound choice for φ might be in the range [60–65] for
males and in [70–75] for females (note this choice depends on the
units of measurement), meaning that the weight corresponding
to the time evolution of CSCs is relatively more relevant than that
corresponding to the toxic effects.

We finally specify that working scenario (ii) was originally
designed for liquid tumor therapies, as it requires the definition
and the measurement of the tumor burden, which is used to
estimate the CSCs net growth rate. Whether measurements
on tumor burden and an appropriate model for cancer
population dynamics would be available for distinct cancer
types, our framework might be applied without any significant
theoretical modification.

3.4. Resolution of Control Problem via
RedCRAB
In CT4TD the control problem is heuristically solved by using
RedCRAB, the remote version of the dressed Chopped RAndom
Basis (dCRAB) optimal control via a cloud server (Caneva and

et al., 2011; Doria et al., 2011; Rach et al., 2015; Heck et al.,
2018a; Omran et al., 2019). Optimal control theory has been
used for decades to optimize classical processes, and its quantum
counterpart has been increasingly exploited in the last years
(Khaneja and et al., 2005; Spörl et al., 2007; Caneva and et al.,
2009; Brif et al., 2010; Lloyd and Montangero, 2014; Koch, 2016;
Pichler et al., 2016; Sørensen and et al., 2016; van Frank and
et al., 2016; Deffner and Campbell, 2017; Goerz et al., 2017). In
its simplest version, optimal control drives the state of the system
to a goal one, characterized by some desired properties, by using
a set of time-dependent controls.

Here, the dynamics of the system is identified by the
concentration of the drug in a certain compartment C(t,D(t)),
which obeys the time evolution equation:

∂C(t,D(t)))

∂t
= f (t,D(t),C(t,D(t))), (18)

where D(t) is the time-dependent control function, i.e., the
doses function defined in section (see the section describing
the patient-specific PK models of Imatinib in CML). The goal
here is to optimize the drug administration schedule (see
section 3.4.1) while minimize the cost functional as defined in
subsections describing working scenario (i) and working scenario
(ii) (see above).

Starting from the standard administration schedule D0(t), the
optimization proceeds by looking for the optimal correction g(t)
such the optimal administration schedule will be D(t) = D0(t)+
g(t). Following (Rach et al., 2015), the correction g(t) is expanded
in a truncated function space, specifically in random Fourier
components as:

g(t) = Ŵ(t)

nc
∑

k=1

[Ak sin(ωk t)+ Bk cos(ωk t)] (19)

where ωk = 2π(k + rk)/T and rk ∈ [−0.5, 0.5], nc is the total
number of frequency used, T is the final time, and Ŵ(t) is a
fixed scaling function to keep the values at initial and final times
unchanged. In conclusion, the control problem is reformulated
as maximization of a multivariable function L(Ak,Bk) with fixed
ωk, and can be efficiently solved numerically by searching the
best combination of {Ak,Bk}with the preferredmethod of choice,
here a direct-search method (Nelder and Mead, 1965). Notice
that, each frequency ωk is independently optimized: indeed,
after a certain number of iterations, we move to the next ωk+1,
by introducing an external loop on the frequencies, i.e., super-
iterations. This allows the algorithm to include a high number of
Fourier components and efficiently find the optimal solution, by
avoiding local traps that can stick the optimization into not the
global minimum (Rach et al., 2015).

In the RedCRAB optimization, the server generates and
transmits a set of controls to theCT4TD, which evaluates the cost
function, by interfacing with MATLAB and communicates it to
the server completing one iteration. The optimization continues
iteratively by providing the optimal set of controls as well as
giving back the figure of merit, until the convergence is reached.
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We specify that, as for any heuristic method, the solution
provided by our approach might be sub-optimal. This depends
on the complexity of the search space and by the computational
resources available. Yet, as proven in several real-world
applications (Doria et al., 2011; Rach et al., 2015; Hoeb and
et al., 2017; Omran et al., 2019) RedCRAB was proven to be a
computationally efficient and robust technique.

3.4.1. Optimal Dosage
To solve the optimization problem with respect to dosages, we
optimize a control field D(t) defined between (t0 ≤ t ≤ tf )
via RedCRAB. Then, we proceed by mapping the D(t) doses
function into (n+ 1)-integer values which correspond to (n+ 1)-
doses D∗

j (j = 0,..., n), where n is the number of total doses

given to the patient; tf is the final time of the therapy and t0 =

0 the initial time. Accordingly, we can define the schedule of
administration as:

(t0, t1, ..., ti, ..., tn, tn+1) =

(

0,
tf

n+ 1
, ..., i ·

tf

n+ 1
, ..., n ·

tf

n+ 1
, tf

)

(20)

i.e., ti = i ·
tf

n+1 for i = 0, 1, ..., n + 1 Indeed, the n-doses D∗
j are

obtained by integrating the doses function D(t) between adjacent
times in the schedule administration as follows:

D∗
j =

∫ tj+1

tj

dsD(s) (21)

with j = 0, ..., n. The more general case where also the time
schedule of the administration is optimized (i.e., optimal schedule
case) is described in the SM.

4. RESULTS

4.1. Imatinib Administration in Chronic
Myeloid Leukemia—CML
We here show the application of CT4TD to the specific case of
Imatinibmesylate administration in patients with CML. The final
goal is to determine the drug optimized dosage and schedule in
two distinct scenarios.

1. In the first case the goal is to optimize personalized therapeutic
strategies to reach given target concentrations, as those
commonly used in clinical protocols, and by assuming to be
at diagnosis time.

2. In the second case, we employ the population dynamics
models, as retrieved by fitting longitudinal data on single
patients under standard treatment, to deliver patient-specific
therapies that are most effective in reducing/eradicating the
tumor subpopulation after the major molecular response, on
the basis of PK/PD personalized models.

Imatinib is an inhibitor of the BCR-ABL tyrosine kinase, which is
known to bind to the inactive form of BCR-ABL at nanomolar
concentration, competing with the ATP for its binding pocket
and hindering the switch of the fusion kinase to the active
form, therefore impairing the catalytic activity of the enzyme
(Gambacorti-Passerini et al., 2003). The therapy is in most cases
long-life (Michor et al., 2005; Tang et al., 2011; Branford et al.,

2013; Olshen et al., 2014; Rainero et al., 2018) and the treatment
is expensive (≈ 30,000 US$ per year; Cole and Dusetzina,
2018). Therefore, the impact of an optimized and personalized
administration would be two-fold: on the one hand, it could
be effective in optimizing the performance, while reducing
the toxicity and minimizing the adverse effects for long-term
therapies (Larson et al., 2008b; Mughal and Schrieber, 2010;
Hu et al., 2012); on the other hand, it could help in reducing
the overall economical costs, which currently limit the access to
therapy, hence making long-term health care more sustainable
(Fojo and Grady, 2009; Himmelstein et al., 2009)2.

4.2. Datasets
We applied the CT4TD framework to a longitudinal dataset
from Michor et al. (2005), in which 29 CML patients have been
monitored with a peripheral blood draw taken every 90 days,
from the time of diagnosis up to a maximum time of about 3, 500
days (average time ≈ 2, 659 ± 938 days) For these patients, the
administration schedule has been 400 mg Imatinib/day for the
whole considered period.

In particular the fraction of cancer cells in blood—that
will be referred to as tumor burden from now on—can be
reliably estimated by analyzing the expression level of the
fusion gene BCR-ABL, thus providing an easy way to monitor
the disease progression, as well the response to therapy. As
BCR-ABL transcript is solely expressed by the leukemic cells,
its measurement by mean of quantitative PCR (Q-PCR) is
considered one of the most sensitive and specific techniques to
indirectly assess the tumor burden, and is the standard de facto
for monitoring minimal residual disease in CML.

More in detail, we selected a subset of the dataset provided in
Michor et al. (2005), by removing all the patients that displayed
too few data points (i.e., < 3), or that were characterized by
resistant mutations, i.e., specific DNA alterations that render
the therapy via Imatinib ineffective, usually due to steric
impediments (Shah et al., 2004). In such cases, it is common
practice to employ an alternative therapy, based either on
Dasatinib, Nilotinib, Ponatinib, or Bosutinib (Shah et al., 2004).
We decided to leave resistant patients out of the analysis for
two distinct technical reasons. First, this scenario would require
a more complex population dynamics model—i.e., with more
subpopulations—, characterized bymanymore parameters, often
impossible to estimate. Second, in this case the identification of
an optimized therapy should involve two distinct controls, and
even if theoretically possible, this would require to obtain data
concerning the effect of Dasatinib/Nilotinib/Ponatinib/Bosutinib
on tumor burden, which are not present in the used dataset.

We eventually selected 22 (out of 29) patients, for which the
therapy led to a successful major molecular response (MMR),
i.e., the ratio of cells with BCR-ABL mutation is ≤ 0.1 on the
international scale (Griffiths et al., 2014).

2Note that it was recently hypothesized that CML CSC could be resistant to the

effects of Imatinib and persist in all patients on long-term therapy. (Holyoake and

Vetrie, 2017). However, only further experimental studies could unravel this point.
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FIGURE 2 | Patient-specific PK models. Personalized pharmacokinetic curves

(blue solid lines), as estimated from demographic factors, such as age, sex,

and body weight, as per Equations (3) and (4), in the range t ∈ [0, 48] h (x axis);

y axis describes the drug concentration C(t) in [mg/L]. The blue curves

correspond to the 22 distinct patients included in the dataset, whereas the

dashed red curve represents the population-average pharmacokinetics.

4.3. Patient-Specific PK Models
We first use patient-specific PK models by incorporating
demographic factors—i.e., body weight, age, and sex—in the
clearance and in the volume of the distribution, as per Equations
(3) and (4) (Widmer et al., 2006)(see section 3). The parameter
settings of RedCRAB optmization for this case study are shown
in Table S6.

In Figure 2, the PK curves corresponding to the 22 patients
(in blue) and the average PK model (in red) over a selected time
window ([0, 48] h) are displayed.

4.4. Defining Personalized Optimized
Administration at Diagnosis Time
CT4TD can be employed when CML is diagnosed, in order
to identify optimized therapeutic strategies that lead to drug
concentrations as close as possible to given targets. We here
present the application of CT4TD to two distinct targets.

The first target concentration is Ctarg(t) = 0.57 [mg/L],
which is currently the most widely employed in the clinic (Peng
et al., 2005). It is hypothesized that any effective therapy should
ensure a drug concentration close to, but strictly larger than this
value, in order to lead to a good performance, while minimizing
the AEs (Graham et al., 2002; Faber et al., 2016). In this case, we
consider this concentration as a lower-bound target, and the goal
of the CT4TD framework will be to design an optimized therapy
to be close to, but strictly larger than this concentration value, by
employing an opportune distance notion (see section 3).

The second target concentration is Ctarg(t) = 1 [mg/L]
and is supposed to provide a more effective therapy, but at the
cost of an increased likelihood of AEs and toxicity (Gambacorti-
Passerini et al., 1997; Picard et al., 2007; Baccarani et al., 2014).
From common practice, an effective therapy is that leading
to values of drug concentrations around this target. For this
reason, CT4TD will return an optimized therapy ensuring a
drug concentration as close as possible to this optimal target
(see section 3). Note that one could select any arbitrary target
concentration, or even combinations of targets, and this would
not affect the validity of our approach. For both targets we

tested distinct settings, in which we considered, respectively, 1
and 3 doses per day at fixed times (i.e., 1 dose each 24 and 8
h, respectively)3.

In Figure 3, we present the application of CT4TD to a
selected patient (n. 0001 00004 AJR, male), with respect to
the lower-bound target Ctarg(t) = 0.57 [mg/L] (left panels),
and the optimal target Ctarg(t) = 1 [mg/L] (right panels).
In particular, we compared the standard administration (red),
the 1-dose optimized therapy (blue) and the 3-doses optimized
therapy (green), on a temporal window of 14 days, with
respect to drug dosage (Figures 3A–E),drug concentration in
blood (Figures 3B–F), cumulative (Euclidean) distance with
respect to the target concentration (Figures 3C–E), and AUC
(Figures 3D–H).

When assessing the goodness of a therapy in the lower-
bound scenario—i.e., Ctarg = 0.57 [mg/L]—it is important
to look at both the distance to the target and the overall
time in which the drug concentration is above such target. In
Figures 3A–D, one can see that the optimized 1-dose strategy
displays higher cumulative distance and area under the curve—
AUC—with respect to the standard schedule, due to the fact
that drug concentration is always strictly larger than the lower-
bound target. This is proven by the proportion of time spent
above the target (computed on the whole period), which is
100, 100, and 88.6%, for the 1-dose, the 3-doses, and the
standard administrations, respectively. The 3-doses optimized
strategy displays a remarkable improvement also with respect
to cumulative distance and AUC, proving to be an effective
therapeutic choice for this specific patient. This expected result
shows the effectiveness of our methodological approach in
producing biologically-plausible experimental hypotheses.

With respect to the optimal target—i.e., Ctarg(t) =

1 [mg/L]—, an effective therapy should ensure a drug
concentration as close as possible to the target, thus reducing the
drug surpluses, while minimizing the cases of insufficient dosage.
In this case, the 1-dose optimized scenario almost overlaps
with the standard administration (yet, this is not always the
case as one can see, for example, with respect to 0006 00007
RJW in Figure S18), whereas the 3-doses optimized strategy
displays an improvement in terms of cumulative distance, as
the drug concentration is constantly kept much closer to the
desired target, thus importantly reducing under- and over-dosing
(Figures 3E–H). In Figures S8–S28, one can find the results of
the analyses on the other 21 patients included the dataset.

4.5. Adjusting Treatment for Tumor Burden
Reduction
The CT4TD framework can be employed in order to identify
optimized therapeutic strategies for patients that are currently
treated with a standard regime, and for which longitudinal data
on tumor burden variation are available. In this case, in order
to estimate personalized PD models from experimental data—
which describe the individual therapeutic response to identical
drug concentrations—, CT4TD employs a module which fits

3It would be possible to use our theoretical framework to define a free-time

schedule optimization procedure. Yet, we believe that current practices in Imatinib

oral administration would make a free-time schedule scarcely usable.
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FIGURE 3 | Patient-specific optimized therapy with fixed target drug concentrations. Optimized Imatinib administration returned by CT4TD for patient 0001 00004

AJR from Michor et al. (2005), in the cases of: 1-dose/day (blue) and 3-doses/day (green), with respect to: lower-bound target concentration Ctarg = 0.57 [mg/L]

(A–D), and optimal target concentration Ctarg = 1 [mg/L] (E–H). Standard administration—i.e., 400 mg Imatinib/day—is shown with a red dashed line. In this case,

the optimization is obtained on patient-specific PK parameters, without considering the PD models. (A,E) Imatinib scheduled dosage in mg (y axis), displayed on 14

days (x axis). (B–F) Imatinib concentration in blood in [mg/L] (y axis). (C–G) Variation of the cumulative distances between the observed concentration and the

selected target in time. (D–H) Temporal variation of the AUC in [mg · h/L].

longitudinal data on tumor burden with a hierarchical model of
cancer population dynamics4.

4Notice that any arbitrary ODE mathematical model could be employed, as long

it is effective in representing the phenomenological properties of the disease (e.g.,

multi-stable states), and that sufficient and adequate data are available to estimate

its parameters.

In particular, we fitted each patient’s data with a biphasic
exponential, which in log-scale describes the presence of two
straight lines with distinct slopes, as proposed by Michor et al.
(2005), Tang et al. (2011), and Olshen et al. (2014) (see section
3 for further details). With a few assumptions, the slope of such
lines can be used to estimate the parameters of a 2-compartment
population dynamics model of CML and, in particular, the
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FIGURE 4 | Patient-specific PD models. (A) personalized PD curves obtained from Equation (10) by using Emax = 1 and n = 1 for all patients, and distinct values of

EC50, based on the death rate of cancer stem cells, as estimated from longitudinal data on tumor burden; x axis (Log10 scale) describes the concentration in the range

C ∈ [0, 1.2] [mg/L], on y axis the efficiency E is displayed. The solid blue curves correspond to the 18 distinct male patients included in the dataset and the solid pink

curves correspond to the 4 distinct female patients and the dashed red curve represents the population-average pharmacodynamics. (B) Heat-map returning the

variation of efficiency E, computed via Equation (10), with respect to distinct parameters of the PK model—i.e., patient-specific time-average concentration C̄ (y

axis)—and of the PD model—i.e., patient-specific EC50 (x axis). Red triangles represent the 22 patients in the dataset.

FIGURE 5 | Assessment of term weights in cost function definition. The definition of the cost function for the adjusting treatment scenario requires to set the weights

of the different terms. We here considered two terms, in order to: (i) minimize the tumor burden (weight W1), and (ii) minimize the AUC (weight W2) (see section 3 for

further details). We scanned the values of φ =
W1
W2

in the range [10, 100], by repeatedly applying the CT4TD framework to the 22-patients CML dataset from Michor

et al. (2005). (A) Distribution of the value of the AUC after 14-days of the optimized therapy retrieved by CT4TD (1-dose case), for distinct values of φ, with respect to

the 22 samples in the datasets, divided in males (blue) and females (pink), and compared to the average AUC values returned by standard administration (400 mg

Imatinib/day) in males (red solid line) and females (red dashed line). (B) Distribution of efficiency computed via Equation (10) on the time-average concentration over 14

days of the optimized therapy retrieved by CT4TD (1-dose case), for distinct values of φ, and compared to the average efficiency in the standard administration

scenario (solid and dashed red lines overlap).

(stem) cancer subpopulation death rate in presence of a standard
Imatinib therapy—i.e., 400 mg per day—in each patient. This
allows to estimate the patient-specific parameters of the PD
model. The results of the data analysis on all patients are
presented in Table S3 and in Figures S4–S6. In Figure 4A, one
can see the personalized PD curves for the 22 patients, computed
via Equation (10), as compared to the average one.

We also assessed the relative relevance of the personalized
parameters of the PD and PK models with respect to the
efficacy of the therapy. The heat-map in Figure 4B returns the
variation of the efficacy with respect to combination of time-
average concentration C̄ and EC50, highlighting the personalized
parameters of the 22 patients. As a first result, one can see that
much of the variance in our dataset is due to differences in PK,
rather than to PD, which however is still relevant. Notice also that
the two visible clusters basically overlap with the male and the

female groups, providing a possible explanation of the distinct
therapeutic response observed in clinical studies (Branford et al.,
2013). We stress that the estimation of personalized PD models
from experimental data of patients under treatment is one of
the major novelties of our approach, and, in combination with
the demographics-based PK models, allow to identify patient-
specific therapeutic regimes that are optimized to minimize the
tumor burden.

In order to identify personalized optimized therapies, we
finally defined a cost function with the goals of: (i) maximizing
the reduction of the tumor burden, and (ii) minimizing the
toxicity and possible AEs, in terms of AUC (see section 3 for
further details). Such cost function requires to set opportune
weightsW1 andW2 for the two terms, respectively. In particular,
a parameter φ =

W1
W2

is defined, which can be opportunely tuned
to favor either the first or the second term. However, the choice
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FIGURE 6 | Adjusting therapy for tumor burden minimization. Imatinib administration optimized for tumor burden minimization in patient 0001 00004 AJR (male) from

Michor et al. (2005), in the cases of: 1-dose/day (purple) and 3-doses/day (green), with φ = 60, as compared to standard administration (red). In this case, the

optimization is obtained on patient-specific PK and PD models. (A) Imatinib scheduled dosage in mg (y axis), displayed on 14 days (x axis). (B) Imatinib concentration

in blood in [mg/L] (y axis). (C) Temporal variation of the AUC in [mg · h/L] (y axis). (D) Longitudinal data points on tumor burden recorded in the interval t ∈ [0, 2340]

days (purple). The best fit is shown with red lines. The slope of the right-most line is used to determine the cancer stem cell death rate and, in turn, the patient-specific

PD parameters. The blue (green) line represents the predicted cancer subpopulation decay in case the 1-dose (3-doses) optimized therapy was adopted from day

2, 340 to day 3, 500.

of a specific value for φ is arbitrary and depends on subjective
research and clinical criteria.

To investigate the sensitivity of our framework to the variation
of this parameter, we repeatedly applied the CT4TD framework
to the CML dataset, by scanning various values of φ, and
eventually assessed the differences in: (i) the time-average AUC as
computed on a 14-days temporal window, and (ii) the efficiency
computed on the time-average concentration in the same period,
with respect to a 1-dose optimization scenario (the 3-doses
scenario can be found in Figure S50). In Figure 5, one can see
the distribution of both quantities with respect to the 22 patients
in the dataset, divided in males (blue) and females (pink), as
compared to the average AUC and efficiency for the standard
administration case (red).

A first important thing to notice is that the results are highly
sensitive with respect to the choice of φ, and can either display
improvements (e.g., higher AUC and/or lower efficiency) or
worsening with respect to the standard case in distinct cases.
Moreover, male and female groups show significantly different
distributions, thus pointing at physiological differences that
should be considered in therapy design. As a rule-of-thumb, we
suggest to select a value of φ for which a slightly larger value of
efficiency is observed, while not inducing a too high increase in

AUC. In our case, we selected a value of φ equal to 60 for men
and of 75 for women.

In Figures 6A–D, we show the comparison among the actual
therapeutic regime administered to a selected patient (n.0001
00004 AJR, male—code ID in Table S3) and the optimized
therapies identified via CT4TD by setting φ = 60, in both 1-dose
(blue) and 3-doses (green) scenarios, in terms of: (i) drug dosage,
(ii) drug concentration, (iii) AUC, and (iv) variation of the tumor
burden in time. In particular, the temporal evolution of the tumor
burden from diagnosis to the present is displayed by showing the
experimental data points (purple) and the best fit (red), whereas
the predicted future evolution is shown with respect to the 1-dose
(blue) and the 3-doses (green) optimized strategies.

A result is that, given similar AUC curves (i.e., similar toxicity
and AEs), both the 1-dose and the 3-doses optimized strategies
lead to a significantly faster predicted tumor burden decay. In
particular, the tumor burden decay is, respectively 3.07 and 1.82
times faster for the 1-dose and the 3-doses regimes, with respect
to standard administration. This result paves the way for an
automated strategy for therapy adjustment design, which might
be further developed by employing closed-loop controllers.

In Figures S29–S49, one can find the results of the analyses on
the other 21 patients included the dataset.
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FIGURE 7 | Robustness analysis with respect to intra-patient variability. Intra-patient variability is here defined as stochastic noise randomly picked in the uniform

distribution χr = [−σr , σr ] and applied to distinct PK parameters. In particular, we here show the average and the standard deviation of the relative variation of the cost

1L/L0, with respect to distinct levels of noise, in the cases: r = ka (A), r = v in (B), and r = CL (C). Values of the fit are provided in Table S5.

4.5.1. Robustness Analysis
In order to assess the reliability of the results produced by
CT4TD, we tested its robustness with respect to intra-patient
variability and to possible systematic errors. To account for intra-
patient variability, we introduced a stochastic and uniformly
distributed noise, i.e., χr = [−σr , σr] with r = ka,CL, v, to
the following parameters of the PK model: ka, CL, and v, for
every time point in the analysis. We performed 700 distinct PK
simulations, on the average patient, in the specific scenario of a
target concentrationCtarg(t) = 0.57 [mg/L] and 1 dose per day.
We then analyze the relative variation of the average cost 1L,
as compared to the noise-free case, with respect to the width of
the distribution of noise σr . In Figure 7, one can notice that 1L

variation with respect to the noise level follows an approximately
quadratic trend, which is proven by fitting the data points with a
curve with equation b + aσ 2

r (the complete results of the fit are
provided in Table S5). Note that such results are in agreement
with other works that use quantum optimal control (Montangero
et al., 2007; Kallush et al., 2014; Hoeb and et al., 2017). We
performed a further robustness analysis, to assess the impact of
systematic errors, as those possibly due to scarce reliability of
the demographic study and/or to small or imbalanced datasets,
and which may result in errors in the estimation of the PK
parameters. To this end, we generated an optimized schedule
for a set of PK parameters {ka,CL, v} and then we applied such
schedule to a simulated patient where a parameter at time is

FIGURE 8 | Robustness analysis with respect to systematic errors. Relative

variation of the cost 1L/L0 with respect to the relative value of the systematic

error δka /ka.

different, e.g., {k′a,CL, v} with k
′
a = ka+ δka . We finally measured

the difference of 1L, as a function of δka . Also in this case,
we show in Figure 8 that the results produced by CT4TD are
robust with respect to possible technical or measurement errors.
In fact, with respect to an error of ≈ ±30%, we observe a
maximum difference ≈ 10% in performance, as compared to the
noise-free case.
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5. DISCUSSION

The introduction of the CT4TD framework aims at providing
an automated and data-driven procedure for decision support in
health care and personalized therapy design in cancer, especially
by exploiting the increasing available computational power,
which allows one to perform large-scale simulations and efficient
search in the parameter space, and to deal with noisy and
imperfect data.

In particular, CT4TD aims at overcoming the limitations
of current control-based methods for therapeutic hypothesis
generation. First, its completely general theoretical approach
allows to consider: (i) any disease for which a PK/PD model
can be derived and its parameters measured, (ii) any kind of
administration, e.g., continuous drug infusion or discrete doses,
(iii) any measurable term that is considered as relevant in the
definition of a therapeutic cost. CT4TD eventually allows to
evaluate in silico the outcome of the designed therapy.

Furthermore, CT4TD introduces the possibility of designing
optimized therapeutic strategies based on experimental data
concerning the disease progression. The identification of data-
based patient-specific PK/PDmodels is one of themajor novelties
of CT4TD and has a profound impact on the characterization of
tumor heterogeneity and, accordingly, on the customization of
cancer therapies.

One of the main limitations of CT4TD derives from the
adoption of highly simplified models of cancer population
dynamics. Unfortunately, the shortage of adequate longitudinal
data on tumor dynamics prevents to estimate the parameters
of more sophisticate and biologically realistic models, which
may take into account, for instance, the existence of various
competing cancer subpopulations, or the complex interplay
occurring within the tumor microenvironment. However, we
claim that our theoretical approach is completely general and
it will hold whether and when higher-resolution longitudinal
data on disease progression would become available, allowing for
instance to measure the (sub)clonal prevalence variation in time
(as proposed, e.g., by Acar et al., 2019).

Several developments of CT4TD are underway. In particular,
the possibility of tuning the PK/PD models to include
information on the somatic evolutionary history of the tumors
(Ramazzotti et al., 2015; Caravagna et al., 2016, 2018) will be
essential in delivering more effective personalized therapeutic
strategies. This is especially important for tumors displaying

high levels of intra-tumor heterogeneity, which is known to
be responsible for drug resistance, therapy failure and relapse
(McGranahan and Swanton, 2015).

As CT4TD relies on the RedCRAB optimization framework
(Heck et al., 2018b; Omran et al., 2019), the overall procedure
could be implemented in remote, paving the way for a wireless
decision support system for therapy design, to be used directly
by clinicians (Jeong et al., 2015). In this respect, as a future
development, an open-source computational tool will be made
available to the scientific community, allowing to perform
individual-specific analysis for a wide range of disease.
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