
A Review of Molecular Models for Gas Adsorption in Shale
Nanopores and Experimental Characterization of Shale Properties
Yufan Zhang, Dexiang Li,* Gongming Xin, and Shaoran Ren

Cite This: ACS Omega 2023, 8, 13519−13538 Read Online

ACCESS Metrics & More Article Recommendations

ABSTRACT: Shale gas, as a promising alternative energy source, has
received considerable attention because of its broad resource base and
wide distribution. The establishment of shale models that can accurately
describe the composition and structure of shale is essential to perform
molecular simulations of gas adsorption in shale reservoirs. This Review
provides an overview of shale models, which include organic matter
models, inorganic mineral models, and composite shale models.
Molecular simulations of gas adsorption performed on these models
are also reviewed to provide a more comprehensive understanding of the
behaviors and mechanisms of gas adsorption on shales. To accurately
understand the gas adsorption behaviors in shale reservoirs, it is
necessary to be aware of the pore structure characteristics of shale
reservoirs. Thus, we also present experimental studies on shale
microstructure analysis, including direct imaging methods and indirect measurements. The advantages, disadvantages, and
applications of these methods are also well summarized. This Review is useful for understanding molecular models of gas adsorption
in shales and provides guidance for selecting experimental characterization of shale structure and composition.

1. INTRODUCTION
Shale gas is an unconventional natural gas that has attracted
much attention because of its broad resource base and wide
distribution.1 As a typical unconventional gas reservoir, shale
gas reservoir has the characteristics of a large occupied area,
low permeability, and low porosity.2 Since the pore size in
shale gas reservoirs is 1 order of magnitude smaller (nanoscale)
than in conventional reservoirs (micron-scale), nanopores in
shale gas reservoirs are crucial for the storage of shale gas.3−5

Shale gas exists in the reservoir mainly as an adsorption state in
nanopores, accounting for about 20−85% of the shale gas
content.6 Therefore, understanding the behaviors and mech-
anisms of adsorbed gases in nanopores is crucial to the
estimation and evaluation of shale gas reserves. However, there
is a great challenge for the extraction of shale gas reservoirs
because the adsorption behaviors and mechanisms of shale gas
in nanoporous media are still unclear.
Many breakthroughs have been made in the study of gas

adsorption in shale reservoirs at the nanoscale, most of which
have used molecular simulation methods. The adsorption
mechanisms could not be determined directly at the molecular
level by experiments.7,8 Molecular simulations, such as grand
canonical Monte Carlo (GCMC) methods, molecular
dynamics simulation (MD), and density functional theory
(DFT), provide feasible methods for understanding the
adsorption behaviors and mechanisms of gases within
nanopores with the advantage of its own calculation scale.9

GCMC simulations create gas adsorption processes, utilizing
the Metropolis sampling method by adopting the exchange,
conformer, rotate, and translate processes.10,11 MD simulations
based on Newtonian mechanics are available for evaluating
properties such as the position and momenta of molecules,
which can achieve dynamic and thermodynamic properties
with a high level of accuracy.12 Besides, DFT simulations can
provide a quantitative description of interactions between
adsorbent and adsorbate.13 Shale modeling is the basis for
accurate adsorption simulations. Since shale contains a
complex composition of organic matter and inorganic minerals,
molecular models of different compositions have been
constructed. The behaviors and mechanisms of gas adsorption
differ in diverse molecular models of shale. Different shale
models, including organic matter, inorganic minerals, and
composite models, are presented, and molecular simulations of
gas adsorption on them are described in Section 2.
In order to understand the gas adsorption behaviors in shale,

it is essential to be aware of the complex pore structure
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characteristics of shale. Since the nanopore system controls the
occurrence, enrichment, and aggregation of shale gas,
experimental characterization of the shale microstructure is
necessary to obtain the realistic pore structure of real shales,
which is important for gas reservoir resource evaluation and
shale gas exploration.14−16 To clarify the complex pore system
of shales, researchers have used direct imaging methods and
indirect measurement techniques to characterize shale
pores.14,17 These two common types of characterization
techniques are presented in Section 3, and the advantages,
disadvantages, and applications of each technique are also
listed therein.
Recent reviews on shale gas research are listed in Table 1,

and it can be seen that there are few comprehensive reviews
that combine simulation and experiments. Therefore, this
Review focuses on giving a more complete reference process
for shale gas research, including both molecular simulations
and experimental studies. This Review provides an overview of
shale models and gas adsorption simulations performed on
them. Moreover, experimental studies on shale microstructure
analysis are described, as a complement and correction to
simulation. The present Review will provide a fundamental
understanding of the molecular models for studying gas
adsorption in shales and certain guidance for the choice of
experimental characterization for shale structure and compo-
sition.

2. MOLECULAR MODELS OF SHALE
The composition of shale is quite complex, generally
containing 30−50% clay minerals (illite, smectite, montmor-
illonite, etc.), 15−25% clastic minerals (quartz, calcite,
carbonates, etc.), and 4−30% organic matter.28 Besides,
natural and hydraulic fractures exist in the shale reservoir,
forming multiscale pore systems and different gas transport
mechanisms in shale.29,24 Kerogen is the most widely
distributed and abundant group of sedimentary organic matter
in shale, which strongly associates with shale gas production.30

The composition and structure of kerogen are still not
completely accurate, and thus it is represented by different
molecular models which perform a few characteristics of the
real kerogen to some extent.24,31 What’s more, inorganic
matter accounts for a large percentage of the shale
composition, the role of which thus cannot be ignored.32

Therefore, this section will focus on different molecular models
of shale construction and gas adsorption simulations
performed on them.
2.1. Organic Shale Models. Organic shale models have

evolved over the years from simplified shale organic models
(graphene, CNTs, nanoporous materials, etc.) to realistic
kerogen models. Based on these different simulation methods,
various different shale organic molecular models were
constructed. In this section the different shale organic models
are described in detail, and the simulation results on the
models are analyzed.

Table 1. Recent Reviews on Shale Gas Research

number main content
publication

time ref

1 The two-component gas transport and competitive adsorption models in the CO2-EGR process are reviewed. 2019 Guo et
al.18

2 The pure gas adsorption mechanism, adsorption model, and displacing properties in shale are described, and the competitive
adsorption mechanism is summarized.

2020 Liu et al.19

3 The commonly used shale gas adsorption models are summarized in detail, and their advantages and disadvantages are pointed
out.

2022 Liang et
al.20

4 The adsorption mechanism in shale and the basic influencing factors of gas adsorption in shale are discussed. 2019 Rani et
al.21

5 An overview of recent advances in molecular simulation studies of gas adsorption, desorption, and diffusion in the shale matrix
models is presented.

2019 Wang et
al.22

6 The effects of five submodels of the Langmuir parameters on gas adsorption capacity are examined, and the relationship
between the Langmuir parameters and gas adsorption dominating factors is reviewed.

2022 Memon et
al.23

7 A comprehensive review of shale inorganic mineral models, organic matter models, and composite shale molecular models and
shale gas adsorption is presented

2021 Wang et
al.24

8 Experimental studies on CH4 and CO2 adsorption in shales are reviewed, and the relationship between gas adsorption and
shale properties is discussed.

2020 Klewiah et
al.25

9 Based on in situ pilot tests, experiments, and simulation studies, the feasibility and effectiveness of gas injection methods for
shale oil/gas/condensate reservoirs are discussed.

2019 Du et al.26

10 The results of the adsorption experiments of CO2, CH4, and their mixtures on coal and shale are summarized, and the effects
of coal and shale properties on the adsorption are discussed.

2023 Jeong et
al.27

Figure 1. Snapshots of configurations of methane molecules in a multilayer graphene slit under different pore sizes. Reprinted from ref 39,
Copyright 2017, with permission from Elsevier, 10.1016/j.fuel.2017.03.083.
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2.1.1. Multilayer Graphene Slit. To simplify the organic
matter in shale and to extract the fundamental properties, two
vacancy defect models were developed on the basis of graphite
to obtain one-atom-thick layers of sp2-bonded carbon, which is
called graphene, with an intrinsic two-dimensional (2D)
structure containing honeycomb-like carbon atoms.33 The
multilayer graphene slit is a classical simplified shale organic
matter model on which a variety of simulation studies related
to shale gas have been carried out.34−36

Cao et al. set up a multilayer graphene slit model with
different distances to simulate nanopore slits, thereby
predicting the CH4 density in nanopore slits of different
sizes and comparing it with bulk CH4 density.

37 When the pore
size was less than 2.0 nm, CH4 molecules were affected by the
adsorption from graphene slits. The predicted CH4 density in
nanopores deviated from the bulk density in the pore size
range of 2−20 nm, which is consistent with previous molecular
simulation results, as shown in Figure 1.35,38,39 The adsorption
isotherms for the total gas content and bulk and excess
adsorption of methane on graphitic surfaces were calculated by
molecular simulation.35,39 It was found that the overall trend in
pore size is that smaller pores exhibit higher excess density
than larger ones, as shown in Figure 2.35 The methane

adsorption capacity increases with decreasing temperature and
increasing pressure at the same pore size. Graphite layers were
also used to describe the microscopic details of shale gas
occurrence behavior in organic-rich nanoslits from the
perspective of molecular interactions.40 Li et al. discovered
that high pressure is more favorable for gases within the
nanoslit to be extracted from the wall shackles, since increased
pressure leads to a significant increase in the ability to get rid of
wall restraints.40 The adsorption of methane on multilayer
graphene slits can be simulated by the GCMC and MD
methods, and the microscopic characterization was performed
by the DFT method.41

In addition to the molecular simulations associated with
methane, molecular simulations which are related to the CO2
enhanced gas recovery (CO2-EGR) project were also
performed on multilayer graphene slits. Liu et al. investigated
the adsorption and dynamics properties of pure CO2, pure

CH4, and their mixtures confined in graphene slits at different
temperatures and molar ratios, which is shown in Figure 3.42 It
was found that the preferential adsorption of CO2 on the
surface reduces the activation energy for CH4 diffusion, thus
improving CH4 mobility, which has proved the feasibility of
the CO2-EGR project. Shi et al. studied the effect of the
wettability of shale on CO2 enhanced gas recovery in shale
reservoirs.43 The adsorption capacity of the graphene surface
for CO2 is stronger than that of CH4 on a wettability model,
which has a guiding value for the exploitation of shale gas.
Besides, shale gas contains other hydrocarbons in addition to
methane. Therefore, the injection of a mixture of shale gases
(CH4, C2H6, and C3H8) in a graphene slit model was
studied.44 The results showed that the order of selective
propane > ethane > methane in the gas mixture is consistent
with the same order of graphite−gas interactions. Overall, a
multilayer graphene slit model can partially represent the
properties of shale organic matter.
2.1.2. Carbon Nanotubes (CNTs). Carbon nanotubes, as a

widely used adsorbent, are made up of a hexagonal grid of
carbon atoms, which are similar to shale nanopores.45 GCMC
and MD simulations can be performed on carbon nanotubes to
predict the adsorption behavior of confined gases.46−48

Specifically, the hydrocarbon gas adsorption capacity on
CNTs is stronger than that of activated carbon and graphene,
which may be related to higher specific surface area and
stronger interaction between adsorbent and adsorbent.49

The behaviors and mechanisms of methane adsorption in
carbon nanopores were studied by GCMC simulations in
previous studies.50,51 Carbon nanotubes of all diameters could
adsorb more methane than the bulk phase at the same
temperature and pressure, and there exists an optimal carbon
nanotube diameter that maximizes methane adsorption. As a
result of increasing diameter of carbon nanotubes, the
adsorption structure shifts from a single-file chain to two
adsorption layers, which is attributed to increasing pressure
exerted by the CNT wall on the adsorbed phase.52 Besides,
methane adsorption in carbon nanotubes is physisorption
because isosteric adsorption heat of it is in the range of the
physical adsorption.50 As the temperature increases, the kinetic
energy of methane molecules becomes larger, leading to the
intensification of Brownian motion. At this time, methane
molecules tend to break through the adsorption energy barrier
on the surface of carbon nanotubes and change from the
adsorbed state to the free state, resulting in the reduction of
methane adsorption capacity.50 In addition, the methane
adsorption on triangular arrays of single-walled carbon
nanotubes53 and single-walled carbon nanohorns52 was
investigated by the GCMC method. It was found that the
arrangement and diameter size of carbon nanotubes also have a
large effect on methane adsorption.
MD simulations are commonly used to study the shale gas

displacement in the CNT sandwiched by two tanks, as shown
in Figure 4.54,55 Yuan et al. set up the adsorption model on
which CH4 molecules were preadsorbed on the CNT wall
first.55 The displacement of preadsorbed CH4 in CNTs by
CO2 injection was explored on the model, and the CNT was
fixed during the whole process and connected with the bulk
phase of CH4. The results showed that there exists an optimal
carbon nanotube diameter for the CO2-injected displacement
of CH4, allowing the highest CH4 recovery efficiency. Injection
of CO2 into the CNT can increase the recovery of CH4 by at
least 14.78% over that achieved through pressure drawdown.55

Figure 2. Excess adsorption isotherms of methane at 298 K in slit
pores with pore sizes ranging from 0.4 to 9 nm. Reprinted from ref 35,
Copyright 2013, with permission from Elsevier, 10.1016/j.coal.2013.
01.001.

ACS Omega http://pubs.acs.org/journal/acsodf Review

https://doi.org/10.1021/acsomega.3c01036
ACS Omega 2023, 8, 13519−13538

13521

https://pubs.acs.org/doi/10.1021/acsomega.3c01036?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c01036?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c01036?fig=fig2&ref=pdf
https://doi.org/10.1016/j.coal.2013.01.001
https://doi.org/10.1016/j.coal.2013.01.001
https://pubs.acs.org/doi/10.1021/acsomega.3c01036?fig=fig2&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c01036?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


The self-diffusion coefficient of methane in the interior of
constricted CNTs models was calculated using the MD
simulations.56 The calculated diffusion coefficient declined
with increasing carbon nanotube diameter.
2.1.3. Nanoporous Carbons (NPCs) with Functional

Groups. Since real shale organic matter contains a large
number of functional groups, functional groups including
hydroxyl (−OH), carboxyl (−COOH), epoxy (−OX), carbon-
yl (−CO), and nitrile (−CN) were introduced into the
nanoporous carbons model to obtain a reasonable model that
is more closely matched with real shale.57−59

The adsorption behavior of methane on nanoporous carbon
containing different functional groups varies widely. Among
them, the models containing hydrophobic groups have a
greater adsorption capacity than that containing hydrophilic
groups.60 Furthermore, competitive adsorption of a binary
CO2−CH4 mixture in nanoporous carbons was studied for the
CO2-EGR project.57,59 Zhang et al. found that the selectivity of
CO2/CH4 in the nanoporous carbon model containing

functional groups was higher than that in the nanoporous
carbon model without functional groups.59 The results showed
that the selectivity of CO2/CH4 in nanoporous carbon
containing different functional groups was in the order of
epoxy > carbonyl > carboxyl > hydroxyl > nitrile, as shown in
Figure 5.59 Lu et al. discovered that the effect of functional
groups on CO2 adsorption was greater than that on CH4
adsorption, so that the selectivity of CO2 over CH4 was
significantly higher at low pressure, in the order of NH2−NPC
> COOH−NPC > OH−NPC > H−NPC > NPC.57 Overall,
the introduction of functional groups has undoubtedly further
reduced the variation between molecular models and real shale
organic matter, and thus the simulations performed on
nanoporous carbon containing functional groups are more
informative.
2.1.4. Kerogen Model. The shale organic matter is mainly

composed of kerogen, which is considered to be the dominant
methane trap. Kerogen is sedimentary organic matter insoluble
in common polar solvents, such as chloroform and dichloro-
methane.61 The physicochemical properties of kerogen depend
on the origin and on the burial history.62 Kerogen can be
classified into three different types:63 (i) type I from a
lacustrine anoxic environment, (ii) type II from marine shales
and continental plankton, and (iii) type III from plants in
tertiary and quaternary coals. The entire process is shown in
Figure 6.63 Since the elemental and functional group data of
different types of kerogen have been reported in the previous
work, kerogen models with similar structure and properties to
real shale organic matter are also gradually established.61,63

The dynamic and thermodynamic properties of gas molecules
can be better predicted in these kerogen models because they
are able to simulate a more realistic structure of shale.7 What’s
more, kerogen models can provide experimental environments
for gas adsorption research under the real shale reservoir
conditions, allowing for a better understanding of the
mechanisms of gas adsorption at a microscopic level. In this
section, the latest advances in kerogen models and relative
simulations are introduced.

Figure 3. Two-component density profiles of three temperatures at 290, 343, and 423 K. Molecular density profiles for CO2 (top) and CH4
(bottom) in mixtures of a total of 600 molecules. The CO2:CH4 ratios of mixtures are at 15:85, 50:50, and 85:15 with black, red, and blue lines,
respectively. Reprinted from ref 42, Copyright 2018, with permission from Elsevier, 10.1016/j.jngse.2018.02.034.

Figure 4. Adsorption model of MD simulations. The blue and gray
balls represent CH4 molecules and carbon atoms, respectively.
Republished with permission of the Royal Society of Chemistry,
from ref 55, Copyright 2015; permission conveyed through Copyright
Clearance Center, Inc.
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In order to reveal the complex nanoscale structure and
properties of kerogen, Kelemen et al. obtained elemental and
functional group data of kerogen based on the analysis of real
shales, which prepared for the subsequent modeling of
kerogen.63 Ungerer et al. developed molecular models of
casein at different maturity levels on the basis of the above
data, which to some extent reproduced the kerogen in real
shales, and these models were widely used in the later
simulation work.61,64−71 The simulation results of these

different types of kerogen models matched with experimental
data with reasonable accuracy.64,69,72 Thus, this method of
constructing kerogen models proposed by Ungerer et al. also
offers the possibility of understanding kerogen structures and
developing better molecular kerogen models.
Several molecular simulations of gas adsorption behaviors in

shale were carried out using kerogen matrix models.62,64,66,72,73

The process of constructing the kerogen matrix model is
shown in Figure 7.69 Both adsorption on the surface of the
kerogen matrix and adsorption within it result in a high
adsorption capacity. Previous studies have shown that the
affinity and adsorption capacity of CO2 on the kerogen matrix
are higher than those of CH4, providing strong evidence for the
feasibility of CO2-EGR projects.68,69,73,74 In addition, real shale
reservoirs often contain a certain amount of water; therefore,
research on the moist kerogen matrix is also necessary. Chong
et al. investigated the adsorption of carbon dioxide, methane,
and water in the immature type II-A kerogen matrix model,
using MD and GCMC simulations.64 The adsorption
isotherms showed that the adsorption capacities of methane
and carbon dioxide on the kerogen matrix were similar (up to
1.5 mmol/g) and both less than that of water (up to 6.2
mmol/g), which was due to the strong water−kerogen energy
interactions and the tendency to form large water clusters.
Furthermore, the pore volume of the kerogen matrix is
influenced by the presence of water molecules.72 The enterable
pore volume decreased with increasing water content, leading
to a decrease in the adsorption of CH4 and CO2.

64,72 The
maturity of kerogen also has an effect on gas adsorption, and in
general, there is a positive correlation between the gas
adsorption capacity on the matrix and the maturity of

Figure 5. (a) Selectivity of CO2/CH4 in the organic-rich shale model and pristine pillared shales model at T = 370 K. (b) Selectivity of CO2/CH4
at different depths. (c) Selectivity of CO2/CH4 at different basal spacings. The bulk CO2 mole faction of yCOd2

= 0.5. Reprinted from ref 59,
Copyright 2017, with permission from Elsevier, 10.1016/j.jngse.2017.01.024.

Figure 6. Van Krevelen diagram for kerogen using hydrogen from
elemental analysis and organic oxygen from XPS analysis. Reproduced
from ref 63, Copyright 2007, American Chemical Society.
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kerogen.72,75 The competitive adsorption behaviors of CH4
and CO2 on the kerogen matrix models of different organic
types were investigated, as shown in Figure 8.72 It was found
that the CO2 and CH4 adsorption capacity and adsorption
selectivity were in the order of kerogen I-A < II-A < III-A,
which was consistent with the sequence of enterable pore
volume fraction.72 Meanwhile, the kerogen matrix is a dynamic
system, and a coupling may exist between gas adsorption and
kerogen matrix structure deformation.73 Pathak et al. found
that methane and carbon dioxide adsorption on the kerogen
matrix could swell the kerogen matrix.66 What’s more, the CO2

adsorption swelled the kerogen matrix to a smaller order of
magnitude than that caused by adsorption of equal moles of
methane, which is beneficial for CO2 sequestration in shale
reservoirs.66 This means that if the CO2 injected into the shale
formation is roughly equal to or less than the gas-in-place
(GIP), the volume of the kerogen matrix may shrink rather
than swell. Moreover, the radial distribution function (RDF)
describes the density as a function of distance from the
reference particle and is an essential tool to study the structural
information on gas adsorption in the kerogen matrix.62 Sui and
Yao found that the N- and S-containing functional groups in

Figure 7. (a) Initial structure of the kerogen II-D unit; (b) structure of the kerogen II-D unit after the geometry optimization and annealing
dynamics; (c) initial kerogen model configuration; (d) final kerogen model configuration. Atoms: C in gray, H in white, O in red, N in blue, and S
in yellow. Reprinted from ref 69, Copyright 2021, with permission from Elsevier, 10.1016/j.jngse.2021.103903.

Figure 8. Absolute adsorption isotherms of CH4 and CO2 in the binary mixtures on dry kerogen models of different organic types at 338 K with
yCOd2

= 0.5. (a) CH4 absolute adsorption isotherms; (b) CO2 absolute adsorption isotherms. Reprinted from ref 72, Copyright 2017, with
permission from Elsevier, 10.1016/j.apenergy.2017.10.122.
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kerogen have a positive effect on CH4 and CO2 adsorption,
inferring that CH4/CO2 is preferentially adsorbed on the N/S-
containing functional groups of the kerogen matrix.62

Although the kerogen matrix models with pores are capable
of representing shale organic matter, the presence of natural
fractures in the real shale reservoirs results in a wider range of

Figure 9. (a) Molecular model of a type I-A kerogen molecule with the chemical formula C251H385O13N7S3; (b) bulk kerogen configuration with 10
kerogen molecules; (c) bulk kerogen model with porosity; (d) structure of a realistic slit kerogen nanopore. Reproduced from ref 79, Copyright
2020, Multidisciplinary Digital Publishing Institute.

Figure 10. Visualization of constructed kerogen pore structures and corresponding internal surfaces/isolated pore surfaces. Reproduced from ref
78, Copyright 2020, American Chemical Society.
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pore size system than the kerogen matrix model. Only
micropores and no mesopores are observed in the kerogen
matrix model, leading to pore size system limitations in the
model, which result in a limiting gas adsorption capacity.76

Research related to shale organic matter requires models with
multiscale structures. Therefore, the kerogen slit model
satisfying multiscale structures is generated, which can be
constructed in two ways: one is to form slit pores using two
blocks of matrix models, and the other is to dummy particles or
cutter atoms in the kerogen model, which are shown in Figures
9 and 10, respectively.70,71,77−79

The competing adsorption behaviors of CO2 and CH4 in
kerogen slit nanopores were investigated and compared with
the kerogen matrix.69 The adsorption capacity of CH4 and
CO2 in the kerogen slit nanopores is greater than that in the
kerogen matrix at the same temperature and pressure.
However, the adsorption selectivity of CO2 over CH4 in the
kerogen matrix is greater than that in the kerogen slit
nanopores.69 This means that more CH4 can be displaced
from a shale reservoir without slits (or fractures) when the
same amount of CO2 is injected. Sun et al. investigated a
displacement process of the residual adsorbed CH4 by CO2 in
kerogen slit nanopores and found that with the increase of the
bulk pressure, the displacement efficiency increased and the
CO2 sequestration amount in the slit nanopores of kerogen
rose at the same time, which is shown in Figure 11.69

Moreover, confinement effects were observed in both micro-
pores and small mesopores of the kerogen slit model, which
resulted in part of the CH4 being firmly adsorbed in the
intrinsic pores of the kerogen matrix, making it difficult for
CO2 injection to displace it.69,71 Recently, the competitive
adsorption between CO2 and typical hydrocarbon components
(CH4, C2H6, and C3H8) in the kerogen slit was also studied.70

It was found that according to the competitive adsorption
behaviors for hydrocarbon mixtures, CO2 huff-n-puff is more
favorable for recovery of heavier hydrocarbons, while pressure
drop is suitable for production of lighter hydrocarbons.
Furthermore, the pore structures of the real shale are very
complex, and the main pore structures can be classified into
four types based on experiments: cylinder-shaped pores,
bottleneck pores, wedge-shaped pores, and slit-shaped
pores.80,81 Liu et al. found that pore structure had a significant
effect on shale gas recovery, and the difficulty for CH4
molecules to be displaced in different pore structures was in

the order of cylinder-shaped > bottleneck > slit-shaped >
wedge-shaped pores.78

2.2. Inorganic Mineral Models. Inorganic minerals
account for the main body of shale, which always have
important effects on the reserve and transport properties of
gases in shale. Among the shale clay minerals, the main
components are illite, montmorillonite, and kaolinite.82 In
addition, quartz is a major component of the mineralogical
composition of shale.82 In recent years, there has been an
increasing number of studies focusing on the structure and
properties of shale inorganic minerals and using molecular
simulations to study the gas adsorption behaviors in inorganic
minerals.83−87 Therefore, two main shale inorganic mineral
models are presented in this section: one is the clay mineral
model, which consists of aluminum phyllosilicates, and the
other is a quartz nanopore composed of silicon and oxygen
atoms.
2.2.1. Clay Mineral Models. Montmorillonite is a clay

mineral widely distributed in some shale formations; for
example, clay-dominated shale samples from Sichuan, China
contain up to 78.7% montmorillonite.88 The common Na-
montmorillonite mineral model was a Wyoming-type, with a
three-layer structure including two tetrahedral (Si−O) layers
and an octahedral (Al−O) layer.89 Sun et al. investigated the
adsorption properties of CH4 and CO2 in montmorillonite slit-
nanopores and found that the positively charged Na+ ions on
the surface of montmorillonite have a positive effect on the
CO2 adsorption.90 This is because the O atoms in CO2
molecules can be attracted to Na+ ions on the surface, while
H atoms in CH4 molecules repel them. Besides, at a fixed CO2
injection pressure, the displacement amount of CH4, the
percentage of displacement, and the sequestration amount of
CO2 in the montmorillonite slit model all decrease significantly
with decreasing pore size and increasing geological depth.91

Adsorption studies on hydrocarbon mixtures were also
performed in montmorillonite slit-nanopores, as shown in
Figure 12, and it was found that the adsorption selectivity of
C2H6 over CH4 decreased monotonically with increasing
pressure, which is shown in Figure 13, indicating preferential
adsorption of C2H6 molecules at low pressure and a higher
adsorption of CH4 molecules at high pressure.92 Stronger
interactions between C2H6 molecules and larger molecular size
are responsible for the preferential adsorption shift.92

Another clay mineral in shale is illite, the highest proportion
of clay minerals in gas-bearing shales in China, especially in the

Figure 11. (a) Loading amount of CH4 (black line) and sequestration amount of CO2 (red line) with the variation of bulk pressures in kerogen slit
nanopores at 323 K, with the corresponding snapshots of the residual gases in kerogen slit nanopores at the bulk pressure of 6 (b) and 20 (c) MPa.
Reproduced from ref 69, Copyright 2017, American Chemical Society.
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Yangzi region.93 The K-illite model is typically used in
molecular simulations, which is represented by dioctahedral
illite with the general unit cell formula of Kx[SiaAl8−a]-
[AlbMg4−b]O20(OH)4.

94 Using the GCMC method, Chen et
al. simulated the adsorption behavior of CH4 and CO2 in K-
illite slit pores and revealed the key gas adsorption
mechanism.85,95 CH4 molecules without polarity are adsorbed
in the center of the six-membered oxygen ring on the silicon
oxygen tetrahedron surface, while CO2 molecules with an
electric quadrupole moment are closer to the polar oxygen
atoms in the ring, so the electric quadrupole moment makes
the adsorption capacity of CO2 in the K-illite pores much
greater than that of CH4.

95 The clay pores of shale formations
are expressed as basal surfaces and edge surfaces, where in illite
the edge surface is dominated by the A and C chain surface

and the B chain surface.96 Molecular models of these surfaces
in illite are shown in Figure 14.97 Hao et al. found that
methane adsorption was in the order of basal surface > B chain
surface > A and C chain surface, as shown in Figure 15, and the
difference in adsorption capacity between these surfaces was
negligible.97 This suggests that the edge surface pores have
comparable adsorption capacity to the basal surface pores,
whose influence is not negligible in real shale formations.
Kaolinite is a typical type of clay mineral in shale. The

kaolinite mineral model, which is shown in Figure 16, is
composed of 1:1 dioctahedral layers, which consist of a sheet
of corner-sharing SiO4 tetrahedra and a sheet of edge-sharing
AlO6 octahedra.98,99 Zhou et al. investigated the adsorption
mechanism of pure CH4 and CO2/CH4 mixtures in kaolinite
slit pores using the GCMC method.99 The results showed that
both monolayer adsorption and micropore-filling adsorption
mechanisms existed in kaolinite slit pores, and the micropore-
filling adsorption tended to be significant as the pore size
decreased or the pressure increased.99 The adsorption
behaviors of CH4 in kaolinite with water contents have also
been analyzed by MD and MC methods.100,101 It was found
that a higher water content would cause a weaker interaction
energy between CH4 and kaolinite.102 This is owing to the fact
that water molecules preferentially adsorb on oxygen and
hydrogen atoms in kaolinite, seizing the adsorption sites of
CH4 on kaolinite.100 Besides, due to the large amount of
defective elements in kaolinite, Wang et al. investigated the
effect of Mg, Fe(II), and Al doping on CH4 adsorption on the
surface of kaolinite (001).102 The simulation results showed
that all kinds of ion doping can significantly reduce the
adsorption of CH4 on kaolinite, which is because ion doping
reduced the strength of the interaction between CH4 and the
kaolinite surface.102

Moreover, selective adsorption behaviors of CO2/CH4 have
been investigated through diverse clay mineral types.83,84 It
was generally found that the order of adsorption selectivity of
CO2 over CH4 on different clay minerals was kaolinite < illite <
montmorillonite, as shown in Figure 17.83 This is attributed to
the fact that CO2 molecules are more likely to adsorb on the
surface of montmorillonite and illite nanopores with cation
exchange than on the surface of kaolinite nanopores without
cation exchange.83,84

2.2.2. Quartz Models. Quartz is an important part of shale
reservoirs and has various forms such as α-quartz, β-quartz,
coesite, and stishovite, among which α-quartz is the most
stable and widely distributed in sedimentary, magmatic, and
metamorphic rocks.87 α-Quartz crystal is characterized by a
hexagonal structure with the space group P3121.103 The
hydrophilic/hydrophobic properties of the quartz nanopore
surface have a significant effect on the gas adsorption. Sun et al.
investigated the adsorption behaviors of pure CH4 and binary-
mixed CH4 and CO2 in quartz nanopores with different
hydrophilic/hydrophobic surfaces and found that the hydro-
philic surface had a significant contribution to the CO2
adsorption, while the hydrophobic surface was beneficial for
the CH4 adsorption.104 The microscopic mechanism of CO2
and CH4 adsorption on α-quartz surfaces was investigated by
means of DFT.103 The simulations revealed that due to polar
interactions, CO2 molecules on quartz nanopore surfaces
prefer to adsorb near hydroxyl groups, while CH4 molecules
prefer to adsorb preferentially near methyl groups.103,104 Yang
et al. found that the CO2/CH4 adsorption selectivity in quartz
nanopores was greater than 1, which can be observed in Figure

Figure 12. Schematic diagram showing competitive adsorption of a
CH4/C2H6 mixture in a 3.0 nm MMT slit. Dark green and orange
spheres represent the united-atom models of CH4 and C2H6,
respectively. Color scheme: pink, Al; light green, Mg; blue, Ca; red,
O; yellow, Si; white, H. Reprinted from ref 92, Copyright 2019, with
permission from Elsevier, 10.1016/j.cej.2018.08.067.

Figure 13. Selectivity of C2H6 relative to CH4 versus pore pressure P
(yCd2Hd6

= 0.3). Reprinted from ref 92, Copyright 2019, with permission
from Elsevier, 10.1016/j.cej.2018.08.067.
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18, indicating the adsorption advantage of CO2 over CH4,
which illustrates the feasibility of the CO2-EGR project.87 The
effect of water molecules on methane adsorption in quartz
nanopores was also investigated, and it was found that water
molecules in quartz nanopores were oriented to occupy the
pore walls and take up the adsorption space of methane
molecules, resulting in reduced methane adsorption capacity.
2.3. Composite Shale Models with Organic and

Inorganic Matter. The two main types of geological models
used in the previous research are inorganic and organic matter
models, which are simple in structure and cannot accurately
and graphically represent the true microscopic state in shale
reservoirs. In addition, both organic matter and inorganic
minerals have an influence on the adsorption behaviors of shale
gas, while the overall adsorption properties of shale cannot be
expressed by simply adding up the adsorption capacity of
inorganic minerals and organic matter.105,106 Thus, it is

necessary to construct a composite shale model that includes
inorganic minerals and organic matter to represent the real
shale, which is closer in composition to the real shale and has a
more comprehensive level of adsorption than the individual
organic and inorganic mineral models.91

In the composite shale model developed by Lyu et al, as
shown in Figure 19, montmorillonite was used to represent
inorganic clay minerals, and kerogen was used to represent
organic matter, both of which were treated as rigid
materials.107 It was found that the difference in methane
adsorption between montmorillonite and kerogen was little in
the smaller composite nanopores.107 Lee et al. constructed a
composite shale model containing quartz and CNTs regions, in
which CNTs and quartz were hydrophobic and hydrophilic,
respectively.106 Gong et al. built a composite shale model
consisting of two kaolinite layers and two kerogen II-D layers
to study the displacement characteristics of CH4 by CO2, as

Figure 14. Illustration of a molecular model of illite (a) basal slit pore, (b) A and C chain slit pore, and (c) B chain slit pore with adsorbate CH4 in
the equilibrium state (from an orthographic view) and (d) basal slit pore, (e) A and C chain slit pore, and (f) B chain slit pore (from a perspective
view). Color scheme: yellow, silicon; pink, aluminum; green, magnesium; red, oxygen; purple, potassium; cyan, carbon; white, hydrogen.
Reproduced from ref 97, Copyright 2018, American Chemical Society.

Figure 15. (a) Pore size dependence (333 K, 10 MPa) and (b) temperature dependence (3 nm pore, 10 MPa) of simulated adsorption capacity in
different illite slit pores. Reproduced from ref 97, Copyright 2018, American Chemical Society.
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shown in Figure 20.108 It was found that the increase of
formation temperature and pore size could improve the
displacement efficiency of CH4. An accurate description of
shale composition and structure is critical to the molecular
simulation of shale gas adsorption, so the establishment of a
more accurate composite shale model is the key to future
simulation research.
2.4. Model Validation.Model validation is an integral part

of the simulation which ensures that the simulation work is
somewhat realistic and not just a random fabrication. Several
common methods exist in the validation of shale models. First,
the final density of the model should be compared with the
density profile of the real reservoir. For example, the simulated
density of the kerogen matrix model constructed by Sun et al.
is 1.17 ± 0.03 g/cm3, close to the experimental value of 1.181
g/cm3.69 Second, before simulating the adsorption process, a
force field validation of the adopted force field parameters is
required.109 This allows the model to be further validated by
comparing simulated CH4 adsorption isotherms with exper-
imentally measured CH4 adsorption in shale samples. Huang et
al. compared the simulated and experimentally obtained CH4
excess adsorption isotherms, as shown in Figure 21, finding
that the uncertainty for type I and type II kerogen was
negligible.72 In contrast, the standard deviation for type III
kerogen can reach 0.034 mmol/g. However, this uncertainty is
acceptable as it is within ±3% for different configurations. With
the help of the experimental data from real shale and
sophisticated simulators, the uncertainty of the currently
constructed model is within acceptable limits. There are two

types of simulators currently in general use: the first is classic
molecular simulation software, such as Lammps and Materials
studio, which is often used as for GCMC and MD simulations,
and the second is a simulator suitable for unconventional gas
and oil reservoir simulation, including ECLIPSE and GEM,
which are capable of predicting reservoir production
dynamics.110,111

3. EXPERIMENTAL STUDIES ON SHALE
MICROSTRUCTURE ANALYSIS

The shale is mainly composed of various micrometer- and
nanometer-size pore types that are associated with organic
matter and clay minerals.112 In order to estimate the shale gas
reservoir potential, it is necessary to understand the pore
structure characteristics. Therefore, experimental character-
ization of shale samples is necessary. In previous studies, the
pore network of shale rocks has been documented by
quantitative and qualitative techniques.16,113,114 However, the
microstructural characterization of shale gas reservoirs remains
a challenge due to ultrafine grained microfabric and microlevel
heterogeneity of shale rocks.14 The purpose of this section is to
summarize some experimental methods for shale micro-
structure analysis. Two experimental methods to analyze the
pore structure are indirect measurement and direct imaging
methods, which can characterize the specific surface area and
pore size distribution (PSD), pore volume, and total porosity
to describe complex shale pore systems.14,16 The range of pore
sizes that can be observed with these techniques is shown in
Figure 22.14

3.1. Direct Imaging Methods. To understand the
complex nanoscale pore system of shale, direct imaging
techniques such as nano-CT, scanning electron microscopy
(SEM), transmission electron microscopy (TEM), and focused
ion beam scanning electron microscopy (FIB-SEM) have been
used to characterize shale pores.15,113,115 According to IUPAC
(International Union of Pure and Applied Chemistry), pores
are divided as micropores (<2 nm), mesopores (2−50 nm),
and macropores (>50 nm). Since the proportion of mesopores
and micropores in shale pores is considerable, the nano-CT
technique, whose maximum resolution is slightly less than 50
nm, has difficulty in meeting more accurate imaging standards
and has been used less frequently in recent years.15

SEM is an imaging technique for direct observation of
porosity in 2D images with relatively low resolution.116 TEM
can observe pore structures smaller than 2 nm and requires
samples with electron transparency and X-ray transparency
(thinner than 200−250 nm).14 Both SEM and TEM are
commonly applied imaging techniques in analyzing shale pore
structure; SEM excels in observing mesopore structure, while
TEM is more accurate in micropore observation.14 Combina-
tion of the two imaging techniques can reflect the true pore
size distribution of shale samples comprehensively and is
suitable for nanoscale characterization of shale gas reser-
voirs.117,118 Zhou et al. conducted a 2D characterization of
shale samples from the Lower Silurian Longmaxi Formation in
the southern Sichuan Basin by SEM techniques.15 The results
showed that the nanopore structure can be divided into three
types: organic pores, inorganic pores, and microfractures,
among which the Longmaxi Formation shales are dominated
by organic pores. Another example is the Horn River Shale
Reservoir in Canada, where the main structure observed by
SEM and TEM imaging consists of organic matter pores,
intraparticle pores, and interparticle pores.115 An emission

Figure 16. Molecular models: (a) kaolinite, Si4Al4O10(OH)8; (b) slit-
shaped supercell kaolinite pore. Color scheme: red, oxygen; white,
hydrogen; pink, aluminum; yellow, silicon. Reproduced from ref 99,
Copyright 2019, American Chemical Society.
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microscope field and an ion-milling device (i.e., FIB: focused
ion beam) were added to the SEM/TEM in turn to obtain
higher-resolution 2D images.119 Chalmers et al. combined FIB-

SEM and FIB-TEM to obtain high-resolution images (similar
to 5 nm) of gas shale pore systems.120

The high resolution of SEM combined with the precise
cutting capability of FIB allows direct 3D imaging with a

Figure 17. Selectivity for different molar fractions at T = 333.15 K in (a) montmorillonite, (b) illite, and (c) kaolinite nanopores. Reproduced from
ref 83, Copyright 2019, American Chemical Society.

Figure 18. Selectivity of CO2/CH4, S, at varied yCOd2
in anhydrous

quartz nanoslit. Reprinted from ref 87, Copyright 2022, with
permission from Elsevier, 10.1016/j.energy.2021.122789.

Figure 19. MMT−kerogen composite simulation models with lattice-
related parameters. Reprinted from ref 107, Copyright 2022, with
permission from Elsevier, 10.1016/j.molliq.2022.119263.
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resolution of a few nanometers.15 X-ray microtomography is
also a common technique for imaging three-dimensional
microstructures.121 Pore size distribution and porosity can be
calculated from the 3D digital models created by the above-
mentioned techniques.115 Zhou et al. reconstructed and
segmented the three-dimensional digital cores of the Longmaxi
Formation by means of FIB-SEM and calculated the average
pore size of 32 nm and porosity of 3.62%.15 Besides, image
acquisition and analysis were performed using X-ray micro-
tomography and FIB-SEM to set up 3D gradients and marker-
based watershed transformations, segmenting and visualizing
organic matter, minerals, and pore phases of oil shale samples
from the Green River Formation.121 In conclusion, even

though FIB-SEM is expensive and time-consuming, which
limits the number of samples analyzed, it is the most effective
2D and 3D imaging technique for characterizing shale
nanopores, which is beneficial for shale gas reservoir
exploration and development evaluation.
The advantages and disadvantages of direct imaging

methods and their applicable occasions are listed in Table 2.
3.2. Indirect Methods. Indirect methods can estimate the

bulk properties including porosity, pore size. and morphology
and indicate the composition of shale samples.14,116 In this
section, common indirect measurement methods are de-
scribed, such as helium porosity measurements, low-pressure
N2 gas adsorption (LP-N2-GA), mercury intrusion capillary
pressure (MICP), nuclear magnetic resonance (NMR), and X-
ray diffraction (XRD).
3.2.1. Helium Porosity Measurement. Helium is an inert

gas with a very small molecular diameter and is insensitive to
any chemical reaction. Helium can penetrate pores with
diameters on the order of micropores and has the lowest
tendency to adsorb on pore surfaces, making the helium
porosity measurement a very reliable shale porosity measure-
ment technique.122 Chakraborty et al. measured the porosity of
the shale samples using helium, methane, and argon,
respectively, and the results obtained from helium porosity
measurements were between 5% and 16.4%, which is within
the range of porosity for shales in general.122 However, the
porosity obtained using methane and argon was much higher
than the normal porosity levels, which is apparently due to
adsorption phenomena. The helium porosity measurement can
also be used to compare particle density, bulk density, and total
porosity of shale samples.123,124 Li et al. investigated the effect
of comminution of shale samples on shale pore characteristics
by helium porosity measurements.125 The results showed that
comminution reduced the proportion of helium inaccessible
pores and greatly increased the shale porosity. Therefore, the
analytical shale particle size for helium porosity measurements
is not recommended to be excessive; less than 20 mesh is a
more appropriate range.125 Overall, the porosity measured

Figure 20. Composite shale model of kaolinite and kerogen II-D. Reproduced from ref 108, Copyright 2020, Multidisciplinary Digital Publishing
Institute.

Figure 21. Comparison of CH4 excess adsorption isotherms between
simulated results and experimental data at 338 K. Reprinted from ref
72, Copyright 2017, with permission from Elsevier, 10.1016/j.
apenergy.2017.10.122.
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using helium, which has the smallest molecular diameter, is the
most reflective of the effective porosity of the shale sample.
However, due to the low permeability of the shale samples, it
takes a relatively long time for helium to diffuse and equilibrate
in the shale samples.
3.2.2. Low-Pressure Gas Adsorption. Low-pressure gas

adsorption is a well-established method for characterizing pore
structure, which has been applied to characterize the pore
structure of shale samples in previous studies.126−131 The pore
size distribution is calculated using capillary condensation
based on the Kelvin Equation in the pore through gas
adsorption/desorption.116 Nitrogen adsorption at 77 K is the
standard method for analyzing pore sizes, which is highly
accurate for mesopores and macropores in shale samples.129 N2
adsorption at 77 K can detect pores with diameters greater
than or equal to 1.3 nm.116 On the other hand, the specific
interaction of nitrogen molecules with functional groups on the
adsorption surface, which affects the micropore-filling pressure,
leads to inaccurate detection of micropores.132 The relatively
high boiling point and high saturation vapor pressure of CO2

make its adsorption at 273 K a promising method for studying
narrow micropores (as small as 0.33 nm) in shale.132 Thus, the
combined CO2 and N2 adsorption data cover a range of pore
sizes from micropores to macropores in shale nanopores,
allowing information on the properties of shale porous
structures, such as surface area and pore structure. Zou et al.
quantified pores in shales with sizes ranging from 0.4 to 100
nm by low-pressure N2 and CO2 adsorption and further
investigated the effect of moisture on the structure of shale
samples.131 In another example, low-pressure N2 and CO2
isotherms were used to construct the full range of pore size
distribution in the Lower Cretaceous terrestrial Shahezi shale,
where mesopores were observed to contribute the most to the
pore volume, followed by macropores.127 In conclusion, the
combination of CO2 and N2 adsorption provides a more
comprehensive measurement of the pore structure, which
provides information on a variety of pore structure properties,
such as surface area and pore size. However, the low gas
pressure adsorption experiment is time-consuming; for
example, the degassing time for general samples recommended

Figure 22. Various analytical methods/techniques used for estimating porosity and pore size distributions in unconventional gas reservoirs.
Reproduced from ref 14, Copyright 2018, IOP Science.

Table 2. Comparison of Direct Imaging Methods

direct imaging
methods TEM SEM FIB-SEM

advantages 1. a relatively high resolution 1. relatively low cost 1. enabling both 2D and 3D microstructure imaging
2. clearly observing mesopores in the
shale

2. clearly observing fracture structure in the
shale

2. comprehensive representatives of pore structure
3. calculable pore size distribution and porosity

disadvantages 1. high cost 1. a relatively low resolution 1. extremely high cost
2. limited number of sample analyses 2. few representatives of pore structure 2. time consuming
3. few representatives of pore
structure

applicable
occasions

1. characterization of shale nanopores using 2D imaging 1. characterization of shale nanopores using 2D and 3D
imaging
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by IUPAC is at least 6 h, and for some microporous samples
even more than 12 h is required. Therefore, molecular
simulations can be used instead of experiments to achieve
time-saving results in the case in which an accurate model is
available. For instance, the GCMC method was used to
simulate helium adsorption of a kerogen matrix in order to
calculate and validate the effective pore volume.109

3.2.3. Mercury Intrusion Capillary Pressure (MICP). MICP
measurement is the standard method for characterizing pore
throat size distributions in media from the micron to
nanometer scale.116 MICP measurement is performed on
shale samples of a few cubic centimeters in size, measuring the
volume of mercury and the pressure injected, to obtain pore
throat profiles and pore volume measurements.133 MICP
measurement is accurate for pores larger than 3 nm because
the maximum pressure (60.000 psi) of the MICP instrument
allows mercury to enter pores up to 3 nm thick.133 Wang and
Zai revealed that the MICP curves for shale core plugs with
high permeability are characterized by low repulsion pressure,
small slope of mercury compression, and numerous mercury
compression processes.134 In another example, hysteresis was
observed in the MICP intrusion−extrusion curves for all three
shale samples, indicating that more than 50% of the intruded
mercury remained inside the samples after extrusion.135

Furthermore, MICP and gas adsorption methods can be
used in conjunction to characterize the pore structure of shale
in the complete pore size range.136 MICP is an affordable way
to gain initial insight into the porosity of shale gas reservoirs
without the need for unique and time-consuming processing
methods. However, the limitation of the pore size that can be
measured by MICP requires it to be used in combination with
other techniques such as NMR.
3.2.4. Nuclear Magnetic Resonance (NMR). NMR is a

powerful technique that can probe the state of molecular
motion within pores and the structure of shale pores. The
principle of NMR is to obtain information on pore space (size,
shape, and volume) by quantifying the interaction of protons
and porous media.137 In NMR measurements of shale, the
parameter of transverse relaxation time (T2) is widely used due
to its fast speed, nondestructive detection, and rich information
on core fluid. The T2 distribution actually reflects the
distribution of pore size, and the relationship between T2
and pore size is positively correlated.138 Huang and Zhao
measured shale pore size distribution using NMR measure-
ments and found that pore size varies over a multiscale range,
with nanoscale pore volumes accounting for the majority.137

Yuan et al. used NMR techniques to redefine the critical
dehydration temperature in the Permian Carynginia shale and
to determine the NMR T2 cutoff for clay-bound water.139 The
NMR porosity of shales is usually lower than the density

porosity, and the porosity difference increases with increasing
TOC content, which makes the NMR measurement applicable
in clay-rich shales.140 Besides, the results of NMR and MICP
measurements are integrated as complete data in some
research due to the fact that NMR can characterize pores
that cannot be characterized by MICP.116 Recently, the NMR
technique has gained great popularity owing to its capability
not only to probe the pore structure but also to predict the
molecular motion within the pores, despite its high price and
cumbersome operation.
3.2.5. X-ray Diffraction (XRD). XRD is an effective

technique for analyzing the mineral composition of shales by
X-ray diffraction patterns.141 Hui et al. investigated the effect of
supercritical carbon dioxide (ScCO2) exposure on the content
of inorganic minerals in shale samples by the XRD
technique.142 The results showed that the shale samples
mainly contained quartz, feldspar, carbonate minerals (calcite,
dolomite), and clay minerals, and no significant changes in
mineral composition were observed after ScCO2 expo-
sure.142,143 In another example, the XRD technique was used
to analyze the changes in mineral composition of the shale
before and after treatment with H2O2 solution.

144 It was found
that the dissolution capacity of pyrite was the greatest with
H2O2 treatment, followed by chlorite, illite, calcite, dolomite,
and feldspar, while quartz was almost unaffected as it showed a
mass change rate of only 0.035%. Overall, XRD, which has the
advantages of high accuracy, time-savings, and cheapness, is
preferred in the characterization of the inorganic mineral
composition of shale.
The advantages and disadvantages of indirect measurement

methods and their applicable occasions are listed in Table 3.
Experiments provide a somewhat objective representation of

adsorption levels on real shales, as well as allowing a more
comprehensive understanding of the pore structure. However,
there must be errors in the experimental process; for example,
the cores used in most of the adsorption experiments require
to be ground, leading to the destruction of the pore structure,
which causes errors in the adsorption capacity of the shale.
Obviously, adsorption simulations can avoid data errors due to
sample destruction and are free from safety issues in high-
temperature and high-pressure experimental environments. In
addition, molecular simulations are a time- and money-saving
tool that eliminates the need for experiment preparation time
and the cost of equipment and sample purchases. Nevertheless,
the accuracy of model construction is still dependent on real
shale characterization experiments. Simulations and experi-
ments are two effective means of conducting research, both of
which complement and validate each other.

Table 3. Comparison of Indirect Measurement Methods

indirect
methods

helium porosity
measurement low-pressure gas adsorption MICP NMR XRD

advantages 1. high accuracy 1. accurate identification of mesopores
(N2) and micropores (CO2)

1. simple operation 1. high accuracy 1. high accuracy
2.
nondestructive

2. cheap 2. nondestructive 2. time-saving
3. predicting molecular motion within
pores

3. cheap

disadvantages 1. relatively
time-
consuming

1. difficulty in covering the full-scale
pore size using single-gas adsorption

1. limitations on pore
size measurement

1. high cost and cumbersome
operation

1. highly influenced by the
degree of mineral
crystallization

applicable
occasions

1. shale porosity
measurement

1. measurement of pore structure
properties

1. shale porosity
measurement

1. pore structure detection and
molecular motion prediction within
pores

1. characterization of inorganic
mineral composition
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4. CONCLUSION
In this paper, different molecular models of shales, including
organic matter models and inorganic mineral models, are
reviewed, and the analysis of gas adsorption simulations on
these models is presented. These molecular models with partial
properties of real shales offer the possibility to study the
behaviors and mechanism of gas adsorption on shale organic
matter and inorganic minerals. Furthermore, in order to
estimate the true adsorption capacity of shale gas in shale, it is
necessary to understand the characteristics of the pore
structure. Therefore, the experimental characterization meth-
ods for shale microstructure analysis are reviewed. Ultimately,
the following conclusions were summarized for the above
review.

1. Simplified shale organic models, such as graphene,
CNTs, and nanoporous materials, can partially represent
the properties of shale organics, but the gas adsorption
simulations performed on them differ significantly from
the reality due to the absence of functional groups and
other elements in the real shale.

2. Kerogen unit models based on elemental and functional
group data of kerogen in real shales are the mainstream
of current research. The shale reservoirs are represented
by the kerogen matrix models in gas adsorption
simulations, and the kerogen slit models represent the
natural fractures in the real shale reservoirs, which cover
the entire shale pore size system. The gas adsorption
capacity on these models allows for estimation of shale
gas storage or some guidance on the amount of CO2
injection in CO2-EGR projects.

3. The studies of the gas adsorption in inorganic mineral
models have made significant progress. The establish-
ment of shale models that can accurately describe the
composition and structure of shale is essential to
perform molecular simulations of shale gas adsorption.
Thus, a composite shale model composed of kerogen
and inorganic minerals is fundamental to future
simulation research.

4. Among the direct imaging methods, FIB-SEM is
currently the most effective 2D and 3D imaging
technique for characterizing shale nanopores. The
following indirect methods, such as helium porosity
measurements, combined CO2 and nitrogen adsorption,
and the integrated NMR and MICP measurements, can
cover a range of pore sizes from micropores to
macropores in shale nanopores. XRD is an effective
technique for analyzing the mineral composition of
shales. To characterize complex shale pore systems,
multiple experimental characterization methods need to
be used in combination, which means the results of
direct imaging methods and indirect measurement
methods should be integrated.

5. There are still some aspects that have not been covered
in detail among the previous studies. Practical
applications require dynamic adsorption models that
reflect the influence of temporal parameters. In addition,
current adsorption models rarely consider the capillary
condensation phenomenon in which shale gas is mainly
stored in nanopores. Furthermore, experimental studies
of supercritical gas adsorption on intact shale cores are
scarce, and it requires correspondingly accurate super-

critical adsorption models to reveal the mechanism of
gas adsorption in shale.
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