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We have previously reported that the absence of inhibins results in

impaired dendritic cell (DC) maturation and function, leading to decreased

T cell activation and diminished delayed-type hypersensitivity responses.

Here, we investigated the role of inhibins in peripheral regulatory T cell

(Treg) induction in vitro and in vivo. Inhibin deficient (Inha�/�) mice

showed an increased percentage of peripherally induced Tregs in colonic

lamina propria and mesenteric lymph nodes, compared to Inha+/+ mice,

which correlated with increased expression of PD-L1 in CD103+ and

CD8a+ DCs. Lipopolysaccharide-stimulated bone marrow-derived and

ex vivo spleen- and lymph node-purified CD11c+ Inha�/� DCs induced

higher Tregs in vitro. Moreover, in vivo anti-DEC205-ovalbumin (OVA)

DC targeting of mice with adoptively transferred OVA-specific T cells

showed enhanced induced peripheral Treg conversion in Inha�/� mice.

These data identify inhibins as key regulators of peripheral T cell tolerance.

Regulatory T cells (Tregs) play a key role in central

and peripheral T cell tolerance by preventing the

development of autoimmunity and restraining inflam-

matory immune responses to pathogens that may

result in immunopathology. The balance between

effector and regulatory T cells is critical for the main-

tenance of homeostasis (reviewed in [1]).

Tregs are a subset of CD4+ T cells characterized by

a high expression level of CD25 (interleukin (IL)-2a
chain receptor) and forkhead box P3 (FoxP3), a

transcription factor considered the master regulator of

Treg development and function [2]. Their ability to

suppress several immune cell responses has become

increasingly relevant to understanding and treating

several diseases and inflammatory responses [3]. Two

major Treg subsets have been identified, those origi-

nating in the thymus, referred to as thymic Tregs

(tTregs), and those induced in peripheral tissues from

na€ıve T cells, referred to as peripheral Tregs (pTregs)

(reviewed in [4]). Both populations share some
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phenotypic markers including FoxP3, CD25, GITR

and CTLA-4, although other markers, such as neu-

ropilin 1, CD73 and Helios, have been proposed as

specific for tTregs [5,6]. In addition, the signaling

events needed to induce pTregs are different from

those required for tTreg differentiation; transforming

growth factor b (TGFb) is a required cytokine for

FoxP3 induction in pTregs, as well as low levels of T

cell receptor (TCR) activation and low costimulatory

signals. In contrast, tTregs require strong TCR and

costimulatory signals and the presence of c chain

cytokines, such as IL-2 and/or IL-7. These different

requirements are associated with the transcriptional

regulation of the FoxP3 gene in tTregs versus pTregs

[7]. Concerning the functional relevance of Treg sub-

populations, tTregs have been shown to play a crucial

role in the control of autoimmune diseases [8], while

pTregs appear to be more relevant in restraining

immunopathology after an immune response and in

the context of intestinal homeostasis [9] (reviewed in

[10]). However, both tTregs and pTregs have been

shown to be necessary to prevent colitis, showing a

non-redundant role in the maintenance of peripheral

tolerance [11].

In addition to FoxP3+ Tregs, other regulatory T cell

subsets can be induced from na€ıve T cells, such as type

1 regulatory T (Tr1) cells and T helper 3 (Th3) cells

(reviewed in [12]). Compared with Tregs, Tr1 and Th3

cells normally do not express CD25 or FoxP3 [13,14].

Tr1 cells are characterized by the expression of CD49b,

LAG3 and the production of IL-10; their differentia-

tion is favored under suboptimal antigen stimulation in

the presence of IL-10 [15,16]. On the other hand, Th3

cells are characterized by the production of TGFb1
and the expression of CD69+ and LAP+ [14,17].

Dendritic cells (DCs) are a heterogeneous group of

professional antigen presenting cells that originate in

the bone marrow, principally from myeloid progeni-

tors that differentiate into Pre-DCs. Pre-DCs seed

peripheral tissues, where they complete their differenti-

ation to DCs, in the lymph node, where they are

known as resident DCs (rDCs), or in non-lymphoid

tissues, where they are known as migratory DCs

(mDCs) [18,19]. Both conventional DC (cDC) subsets

can be identified in lymph nodes as CD11chiMHC-

IImed and CD11cmedMHC-IIhi for rDCs or mDCs,

respectively [19]. DCs play an important role in

peripheral tolerance through several mechanisms

including clonal deletion, anergy and regulation. In

homeostasis, DCs capture self-antigens and present

them to na€ıve T cells, preventing the activation of self-

reactive clones and favoring the induction of Tregs

and T cell anergy. In this context, murine cDCs can be

subdivided into two main subtypes that are considered

independent cDC lineages: type 1 DCs (cDC1) for

CD8a+ rDCs and CD103+ mDCs, and type 2 DCs

(cDC2) for CD4+/CD11b+ rDCs and CD11b+ mDCs

(reviewed in [20]). CD103+ mDCs in mesenteric lymph

node (MLN) are considered as tolerogenic DCs due to

their low levels of costimulatory molecules (CD40,

CD80 and CD86), high levels of coinhibitory mole-

cules (PD-L1 and PD-L2) and the expression of IL-10,

retinoic acid (RA) and TGFb, which can lead to Tr1

and FoxP3+ pTreg induction [21,22]. In addition,

CD8a+ rDCs have also shown tolerogenic potential

through TGFb production, and targeting antigen to

CD205 (DEC205), leading to clonal deletion [23] and

Treg differentiation [24].

The TGFb family comprises several structurally

related proteins, including TGFb, bone morphogenetic

proteins (BMPs), activins and inhibins [25]. Inhibins

and activins were first characterized as hormones [26]

and are currently known to be involved in several

immunological processes [27]. The canonical signaling

pathway of this family is highly conserved and is

shared among TGFb, BMPs and activins. Briefly,

dimeric ligands bind their serine/threonine kinase

receptors (type I and II) and lead to phosphorylation

of receptor SMADs, which heterodimerize with the

common SMAD and translocate to the nucleus

thereby regulating gene expression [28]. Several mecha-

nisms have been proposed to explain the antagonistic

effect of inhibins on activin-mediated functions (re-

viewed in [29]); inhibins are known to bind type II

receptors through their b subunit and TGFb type III

coreceptor (TbRIII) through their a subunit, thus

inhibiting the recruitment of type I receptor to the

tertiary complex, interfering with SMAD-dependent

signaling. Consequently, inhibins were considered non-

signaling molecules; however, several reports support

the possibility that inhibins may signal through a dif-

ferent receptor, which has not been identified to date

(reviewed in [30]). This is supported by evidence show-

ing that inhibins do not always antagonize activin

functions. Specifically, inhibins and activins were

shown to similarly control specific checkpoints during

T cell development [31]; in addition, our group has

shown that inhibins can regulate tTreg cell differentia-

tion by controlling medullary/cortical thymic epithelial

cell differentiation and DC maturation within the thy-

mus [32]. Moreover, in recent work, we have demon-

strated that the absence of inhibins in DCs results in

an impaired maturation, characterized by low expres-

sion of major histocompatibility complex class II

(MHC-II) and costimulatory molecules, as well as

alterations in migration and, more importantly,
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diminished ability to initiate T cell responses, such as

in vitro proliferation of allogeneic CD4+ T cells and

delayed-type hypersensitivity responses [33].

Materials and methods

Mice

Inhibin a heterozygous mice (Inha+/�) in C57BL/6 back-

ground were donated by M. Matzuk (Baylor College of

Medicine, Houston, TX, USA) and have been previously

described [34]. FoxP3EGFP knock-in mice (B6.Cg-

Foxp3tm2Tch/J), CD45.1 and OT-II transgenic mice in

C57BL/6 background were purchased from The Jackson

Laboratory (Bar Harbor, ME, USA). Mice were intercrossed

to generate Inha+/+FoxP3EGFP, Inha�/� FoxP3EGFP and

CD45.1+OT-II+ mice. Mice were bred and maintained in

the animal facility of the Instituto de Investigaciones

Biom�edicas (IIB, UNAM, M�exico), in specific pathogen free

conditions, according to ethics guidelines. The study was

approved by the Comit�e para el Cuidado y Uso de Animales

de Laboratorio (CICUAL) of the IIB. For all experiments,

4-week-old female mice were used.

Preparation of lymphocyte suspensions from

colonic lamina propria, mesenteric lymph node,

peripheral lymph nodes or spleen

Lymphocytes from colonic lamina propria (LP) were iso-

lated using modified methods previously described [35].

Briefly, the gut was flushed with PBS, opened longitudi-

nally and colon was cut into 5 mm pieces. The tissue was

incubated in calcium- and magnesium-free HBSS contain-

ing 2 mM EDTA and 1 mM dithiothreitol (Sigma-Aldrich,

St. Louis, MO, USA) for 30 min at 37 °C in a shaking

incubator. The remaining tissue was washed with PBS,

and incubated for 30 min more at 37 °C in RPMI supple-

mented with 100 U�mL�1 collagenase IV (Thermo Fisher

Scientific, Waltham, MA, USA). Cell suspensions were fil-

tered with 150 lm nylon mesh. MLNs, peripheral lymph

node (PLN) and spleen were harvested, mechanically dis-

aggregated, and filtered to obtain a cell suspension. In the

case of spleen, erythrocytes were lysed with Ammonium-

Chloride-Potassium lysing buffer. Cells were resuspended

in fluorescence-activated cell sorting (FACS) buffer for

phenotype analysis or PBS for FACS of na€ıve T cells.

Preparation of DCs from MLN, PLN or spleen

DCs were obtained after collagenase digestion from MLN,

PLN and spleen, as previously described [33]. Cells were

resuspended in FACS buffer for phenotype analysis.

CD11c+ magnetic-activated cell sorting-enriched DCs,

lipopolysaccharide (LPS)-stimulated (mCD11c+) or not

(iCD11c+), were used in the functional assays.

Flow cytometry

For phenotypic analysis, single cell suspensions were

stained as previously described [36]. For ex vivo Treg cell

analysis, anti-CD25-PECy5, anti-Helios-FITC, anti-CD8-PE

(from Biolegend, San Diego, CA, USA), anti-CD4-APC-

AF750 (from Thermo Fisher Scientific), and anti-FoxP3-

APC (from eBiosciences, San Diego, CA, USA) were used.

For in vitro induced Treg analysis, Zombie Aqua fixable

dye, anti-CD4-APC and anti-CD25-PECy5 from Biolegend

were used. For ex vivo DC analysis, cells were blocked with

purified anti-CD16/32, followed by staining with Zombie

Aqua, anti-I-A/I-E-AF488, anti-CD11c-AF700, anti-CD80-

PECy5 (from Biolegend), anti-CD3-PE, anti-TER119-

PE, anti-CD11b-VF450, anti-CD86-APC, anti-CD8-PECy7

(from Tonbo Biosciences, San Diego, CA, USA), anti-

CD19-PE, anti-CD49b-PE, streptavidin-APCCy7 (from BD

Biosciences, San Jose, CA, USA), anti-CD103-biotin and

anti-PD-L1-PerCP-eFluor710 (from eBiosciences) were

used.

For in vivo transfer experiments, anti-CD45.1-AF700,

anti-CD4-FITC, anti-CD25-PECy5, streptavidin-BV605

(from Biolegend), anti-Vb5-biotin (from BD Biosciences),

and anti-FoxP3-APC (from eBiosciences) were used for

staining ovalbumin (OVA)-specific T cells.

Samples were acquired in an Attune Acoustic Focusing

Flow Cytometer (Thermo Fisher Scientific) and analyzed using

FLOWJO 10.0 software (Tree Star Inc., Ashland, OR, USA).

Generation of bone marrow-derived DCs

Bone marrow derived DCs (BMDCs) were obtained from

femurs and tibias of mice, as previously described [33].

Cells were resuspended in RPMI supplemented with 10%

FBS, 100 U�mL�1 penicillin and 100 lg�mL�1 strepto-

mycin, and differentiated with granulocyte–monocyte col-

ony-stimulating factor. After 5 days of culture, mature

BMDCs (mBMDCs) were obtained after stimulation with

1 lg�mL�1 Escherichia coli 0111:B4 LPS for 24 h. At day

6, non-adherent cells were harvested, and CD11c+ cells

were purified by magnetic-activated cell sorting and used

for further experiments.

Treg cell induction

For in vitro cultures, na€ıve CD4+CD25�CD44lowCD62Lhi-

FoxP3-GFP� T cells were sorted from spleen and PLN

from FoxP3EGFP mice and cocultured with either CD11c+

BMDCs or spleen and PLN CD11c+ DCs, at different

DC : Tna€ıve ratios (1 : 1, 1 : 2, 1 : 4, 1 : 10, 1 : 20). Cul-

tures were stimulated with 0.1 lg�mL�1 anti-CD3 (Tonbo)

and 0.25 ng�mL�1 TGFb (R&D systems, Minneapolis,

MN, USA). Expression of FoxP3 and CD25 was evaluated

after 5 days by flow cytometry.

For in vivo peripheral Treg induction, CD4+CD25� T

cells were sorted from PLN and spleen of OT-II 9 CD45.1
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mice; 4 9 106 cells were transferred intravenously to

CD45.2 Inha+/+ or Inha�/� mice. After 24 h, intradermal

immunization with anti-DEC205-OVA, anti-DEC205-

OVA+cholera toxin (CT), OVA or OVA+CT was per-

formed in the mouse ears. Seven days after immunization,

pTregs were analyzed as CD25+FoxP3+ within the popu-

lation of transferred OT-II cells (CD4+CD45.1+Vb5+) in

single cell suspensions obtained from draining lymph nodes

(dLN).

Statistical analysis

Data are presented as means � SEM. The significance of

results was calculated by paired or unpaired, one or two-

tailed Student’s t test, utilizing PRISM 6 statistical software

(GraphPad Software, La Jolla, CA, USA) P values < 0.05

were considered as statistically significant. P values > 0.05

and < 0.1 were considered as trends.

Results and discussion

Peripheral Tregs are increased in the absence of

inhibins

To investigate whether inhibins play a role in the

induction of Tregs in the periphery, we first evaluated

Treg cell subpopulations from the Inha�/� or Inha+/+

mice. Inha�/� is an a subunit null mouse where nei-

ther inhibin A nor inhibin B can be synthesized [34].

As shown in Fig. 1, in the absence of inhibins, the

numbers of CD25+FoxP3+ Tregs were significantly

increased in PLN, specifically those Tregs expressing

Helios, which correlates with our previous report

showing enhanced tTreg development in Inha�/� mice

[32]. However, when we evaluated Treg subpopulations

in MLN and colonic LP, we found an increased fre-

quency of CD25+FoxP3+Helios� Tregs which, under

homeostatic conditions, are considered pTregs [37].

These data suggest that inhibins regulate de novo gen-

eration, maintenance or recruitment of pTregs in the

gut mucosa under homeostatic conditions. As the gut

microenvironment provides a continuous stimulation

from commensal bacteria and dietary antigens, this

mucosa is particularly prone to tolerance induction by

means of production of anti-inflammatory cytokines

(IL-10, TGFb), which promote Tr1 and pTreg

conversion, while the production of RA by CD103+

DCs induced FoxP3 expression and gut homing mole-

cules CCR9 and a4b7 integrins, which retain Tregs in

the intestinal mucosa [10]. Indeed, experiments using

‘depletion of regulatory T cell’ (DEREG) mice

revealed that the constitutive presence of Tregs is

required for the prevention of autoimmune inflamma-

tion and colitis [38].

Mesenteric Inha�/� CD103+ DC display increased

levels of PD-L1

We have recently reported that, in the absence of

inhibins, DCs showed impaired maturation after

in vitro LPS stimulation, which correlated with reduced

capacity to induce CD4+ T cell proliferation in vitro

and lower delayed-type hypersensitivity responses

in vivo [33]. This ‘semi-mature’ phenotype has been

associated with the ability of DCs to promote tolero-

genic responses including FoxP3+ Treg generation

[39]. To understand whether the increased pTregs

observed in MLN and LP of Inha�/� mice were

related to differences in MLN DC subpopulations, we

analyzed the frequency and phenotype of DC subpop-

ulations as shown in Fig. S1. We analyzed resident

and mDCs, based on their expression of MHC-II and

CD11c, as CD11chiMHC-IIlo and CD11cloMHC-IIhi,

respectively. To further analyze DC subsets, we used

CD8a to discriminate CD8a+ and CD8a� rDCs, and

for mDCs we used CD11b and CD103 to discriminate

the following subpopulations: CD103+CD11b�,
CD103+CD11b+ and CD11b+CD103�. A minor sub-

population, CD11b�CD103�, can also be observed;

however, this subset has not been further characterized

[40]. Frequency and numbers of DC subsets analyzed

were not altered in the absence of inhibins (not

shown); however, Inha�/� DCs in MLN showed a

diminished expression of MHC-II in all DC subsets

(Fig. 2A, upper graphs), similarly to our previous

report showing lower MHC-II expression on Inha�/�

epidermal Langerhans cells [33]. Interestingly, when we

evaluated the expression of costimulatory/inhibitory

molecules in MLN DC subsets we found a signifi-

cantly increased expression of the coinhibitory mole-

cule PD-L1 in CD8a+ rDCs and in CD103+CD11b�

mDCs and a trend towards an increase of PD-L1 in

CD103+CD11b+ mDCs from Inha�/� mice. These

CD103+ DC subpopulations have been reported to

play a key role in tolerance induction in the gut, as

they produce high levels of RA and TGFb, which are

key mediators of FoxP3 induction in the intestinal

microenvironment [41,42]. In fact, it has been previ-

ously shown that CD103+CD11b�PD-L1hi DC are

high inducers of pTregs [43], in agreement with the

reported effect of PD-L1 during Treg conversion from

na€ıve T cells by immature DCs in vitro [44].

Despite the lower expression of MHC-II, we

observed an increase in CD80 and CD86 in CD8a+

rDCs and CD103�CD11b� mDCs. In this context,

CD80 and CD86 do not exclusively act as costimula-

tory molecules, as they can bind coinhibitory receptors

such as CTLA-4 and PD-L1 with high affinity,
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favoring tolerance induction, by competing with

costimulatory receptors (CD28) for T cell activation

and inhibiting T cell proliferation [45,46]. Interest-

ingly, a recent report has shown that expression of

PD-L1 can bind CD80 in cis on the same cell, block-

ing the binding of CD80 to its ligand [47]. Therefore,

coexpression of these molecules in vivo could promote

a tolerogenic response.

As we observed an increase in ‘tolerogenic’ DCs in

MLN of Inha�/� mice, we next evaluated whether

spleen DCs were prone to differentiate into tolero-

genic DCs in the absence of inhibins. As shown in

Fig. 2B, LPS-stimulated ex vivo Inha�/� CD11c+

splenic DCs showed decreased upregulation of

MHC-II and CD80 in comparison with Inha�/�

counterparts (Fig. 2B). In summary, the tolerogenic

phenotype of Inha�/� DCs may explain the enhanced

pTreg generation in MLN. Alternatively, we cannot

exclude an intrinsic effect of inhibins on T cells,

since Inha�/� T cells appear to express different

levels of TbRIII compared to Inha+/+ T cells in

response to TCR stimulation (S. Ortega-Francisco,

M. de la Fuente-Granada, R. Olguı́n-Alor, L. C.

Bonifaz & G. Soldevila, manuscript in preparation).

In this context, TbRIII acts as a coreceptor that

potentiates TGFb-mediated signals [48] and most

recently, our group has shown that it promotes Treg

induction in vitro [36].

Fig. 1. Tregs are incremented in the periphery in the absence of inhibin. Inha+/+ and Inha�/� mice were analyzed for Tregs

(CD4+CD25+FoxP3+), thymic (Helios+) or peripheral (Helios�). (A) Gate strategy for Treg analysis. (B) Frequency (top) and number (bottom)

in colonic lamina propria (LP) (left), mesenteric lymph node (MLN) (center), and peripheral lymph node (PLN) (right). Mean � SEM, n = 3–5

mice. Statistical significance was determined by two-tailed unpaired Student’s t test. *P ≤ 0.05.
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Inhibins regulate DC-mediated induction of Tregs

in vitro

Na€ıve T cell differentiation towards an effector or reg-

ulatory phenotype requires several signals derived from

the interaction between the T cell and the antigen pre-

senting cell, including TCR–MHC, costimulation/coin-

hibition and cytokine mediated signals (reviewed in

[21]). Since MHC-II, CD80 and PD-L1 are altered in

Inha�/� DCs, we next investigated whether inhibin

expression by DCs could impact in vitro Treg

conversion. In respect to this, we have previously

reported that BMDCs express significant levels of inhi-

bin A in response to LPS stimulation [33]. As

expected, Inha�/� did not produce detectable levels of

inhibin A (Fig. S2). LPS-stimulated Inha�/� BMDCs

(mBMDCs) or non-stimulated BMDCs (iBMDCs)

were cocultured with na€ıve T cells in the presence of

suboptimal concentrations of anti-CD3 and TGFb. We

found that Inha�/� mBMDCs induced a higher per-

centage of CD25+FoxP3+ Tregs compared to Inha+/+

mBMDCs (1 : 10 DC : T na€ıve ratio) (Fig. 3A).

Fig. 2. Inha�/� DC subsets have differential expression of MHC-II, CD80 and PD-L1 in MLN compared to Inha�/�. Inha+/+ and Inha�/� mice

were analyzed for cDC subpopulations in MLN. (A) MHC-II, CD80, CD86 and PD-L1 expression within the resident DC (Lin�CD11chiMHC-

II+CD8+, Lin�CD11chiMHC-II+CD8�) (left) and migratory DC (Lin�CD11c+MHC-IIhiCD103+CD11b�, Lin�CD11c+MHC-IIhiCD103+CD11b+,

Lin�CD11c+MHC-IIhiCD103�CD11b+, Lin�CD11c+MHC-IIhiCD103+CD11b�) (right) subpopulations. (B) Analysis of MHC-II, CD80 and CD86 in

LPS-stimulated splenic CD11c+ DC. Bar graphs represent relative expression of mean fluorescence intensity (MFI) compared to

unstimulated splenic CD11c+ Inha+/+ DCs. Relative expression was calculated as the ratio: MFI of LPS-stimulated DCs/MFI of unstimulated

DCs, for both Inha+/+ and Inha�/� DCs. Mean � SEM, n = 5 mice. Statistical significance was determined by the two-tailed unpaired

Student’s t test. *P ≤ 0.05, **P ≤ 0.01.
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These differences may be in part explained by the

upregulation of PD-L1 and the ‘semi-mature’ pheno-

type found in LPS-stimulated Inha�/� BMDCs [33].

The enhanced Treg conversion was accompanied by

an increased CD25 and FoxP3 expression (Fig. 3B),

suggesting that these induced Tregs might present an

increased suppressive function [49]. In this context, we

have observed that total FoxP3+ Tregs purified from

Inha�/� mice show increased suppressive activity

towards polyclonally activated CD4+ T cells, in correla-

tion with higher CD25 expression (data not shown).

Moreover, LPS-stimulated CD11c+ DCs (mCD11c+)

from spleen and PLN of Inha�/� mice cocultured with

na€ıve T cells, in the presence of suboptimal anti-CD3

crosslinking and TGFb, also induced a significantly

higher generation of Tregs in vitro compared to their

Inha+/+ counterparts, indicating that Inha�/� DCs

have an intrinsic enhanced capacity to promote

peripheral T cell tolerance (Fig. 3C). No differences

in the expression levels of CD25 or FoxP3 were

observed between in vitro induced FoxP3+ Tregs in

the presence of Inha�/� DCs compared to WT DCs

(Fig. 3D).

Inha�/� DCs enhance the induction of pTregs

in vivo

To analyze the relevance of these findings in vivo, we

used a strategy to directly deliver antigen to DCs,

using anti-DEC205-OVA (a-DEC-OVA) DC targeting

Fig. 3. Inhibin controls DC-dependent Treg

cell induction in vitro. BMDC (A,B) or

splenic and PLN CD11c+ DCs (C,D) were

cocultivated with na€ıve T cells in presence

of anti-CD3 (0.1 lg�mL�1) and TGFb

(0.25 ng�mL�1). After 5 days, induction of

Tre (CD4+CD25+FoxP3+) was evaluated.

(A) Treg conversion from na€ıve T cells in

the presence of wild-type (WT) or Inha�/�

iBMDCs or mBMDCs at different ratios.

Graphs represent frequency (left) and total

numbers (right) of Treg population. (B)

CD25 (left) and FoxP3 (right) expression at

induced Treg population are shown. (C)

Treg conversion from na€ıve T cells in the

presence of splenic and PLN iCD11c+ or

mCD11c+ DCs, WT or Inha�/�, at 1 : 5

ratio. Graphs represent frequencies (left)

and total numbers (right) of Treg

population. (D) CD25 (left) and FoxP3

(right) expression at induced Treg

population as in (B). Bar graphs of CD25

and FoxP3 represent relative expression of

MFI compared to Inha+/+ mice.

Mean � SEM, n = 3. Statistical

significance was determined by the two-

tailed paired Student’s t test. *P ≤ 0.05,

**P ≤ 0.01.
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[23,50] and evaluated the response of adoptively trans-

ferred OT-II (OVA specific) TCR transgenic T cells.

This system has been reported to generate either

tolerogenic or immunogenic responses, depending on

the adjuvant used during the a-DEC205 targeting [23].

Specifically, the use of CT as adjuvant induces effec-

tive Th1 and Th17 responses after intradermal immu-

nization [23], while in the absence of adjuvant,

a-DEC205 antigen targeting promotes a tolerogenic

response, by a mechanism that involves FoxP3+ Treg

generation [51].

CD4+CD25�OT-II+CD45.1+ na€ıve T cells were

transferred intravenously to Inha�/� or Inha+/+

CD45.2+ mice, and 24 h later they were immunized in

the ear with soluble OVA or OVA-targeted to DC

through DEC205 (a-DEC-OVA), either with or without

CT as adjuvant. Analysis of T cell responses in the dLN

showed that immunization with OVA+CT resulted in a

lower percentage and total numbers of transferred

OVA-specific (Vb5+) CD4+ T cells in Inha�/� recipient

mice compared to Inha+/+ (Fig. 4A,B), suggesting that

inhibins may regulate CD4+ T cell expansion, through

the modulation of MHC-II and costimulatory/coin-

hibitory molecules. Furthermore, we found a significant

increase in the number of OT-II+CD45.1+FoxP3+

pTregs in Inha�/� mice immunized with a-DEC-OVA

compared to Inha+/+, while Inha�/� mice immunized

with a-DEC-OVA+CT showed a trend towards an

increase in the number of pTregs compared to the

Inha+/+ counterparts, indicating that Inha�/� DCs are

more prone to induce a tolerogenic response in vivo even

in the presence of adjuvant.

The fact that PD-L1 is upregulated in the absence

of inhibins suggests that they could be a target to pre-

vent tolerance induction in clinical protocols destined

to boost the immune response, as PD-1 blockage had

been shown effective in anti-tumor immunotherapy

(reviewed in [52]). In contrast, engagement of the PD-

L1/PD-1 coinhibitory pathway is important for con-

trolling several autoimmune diseases (reviewed in [53]).

Therefore, to understand how the expression of this

coinhibitory molecule can be regulated is crucial for

future clinical approaches.

In summary, our data demonstrate that inhibins

regulate peripheral T cell tolerance by directly restrain-

ing pTreg generation in vivo through modulation of

DC function. Our results are relevant for immunother-

apy, identifying inhibins as new potential targets

Fig. 4. Antigen target of Inha�/� DCs through anti-DEC205-OVA induces an increased number of peripherally induced Tregs (pTregs) in vivo.

OT-II+CD45.1+ na€ıve T cells were transferred into Inha+/+ or Inha�/� mice, and 24 h later mice were immunized intradermally in the ear,

with anti-DEC205-OVA (a-DEC-OVA) or OVA, either with or without CT as adjuvant. Evaluation of pTregs was performed 7 days after

immunization. (A) Representative dot plots of transferred cells (CD45.1+Vb5+; top) and pTregs (CD25+FoxP3+; bottom) are shown for Inha+/

+ and Inha�/� receptor mice. (B) Percentage (left) and number (right) of CD4+ T cells (top), transferred cells (middle), and pTregs (bottom).

Mean � SEM, n = 3. Statistical significance was determined by two-tailed unpaired Student’s t test. *P ≤ 0.05, **P ≤ 0.01.
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for immune intervention. By enhancing or blocking

their effects, it would be possible promote immuno-

genic or tolerogenic responses in different pathological

settings.
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Fig. S1. Ex vivo analysis of DC subpopulations in MLN.

Gating strategy to define DC subsets in MLN. Within

the cells suspensions, CD19�CD3�TER119�NK1.1� sin-

gle live cells were selected for further analysis. The

CD11chiMHC-IIInt population represents lymphoid rDCs

and can be further divided into CD8a+ and CD8a�

DCs. CD11cIntMHC-IIhi population represents mDCs,

which can be further divided into CD103+CD11b�,
CD103+CD11b+, CD11b+CD103� and CD11b�

CD103�.
Fig. S2. Inhibin A is produced by wild-type DCs upon

LPS stimulation but not by inhibin-deficient (Inha�/�)
DCs. Time course of inhibin A from supernatants of

wild-type (Inha+/+) or Inha�/� BMDC cultures were

quantified by ELISA. Detection limit of the ELISA kit

is represented by a blue line.
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