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Deubiquitylating enzyme USP9x regulates hippo pathway
activity by controlling angiomotin protein turnover
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The Hippo pathway has been identified as a key barrier for tumorigenesis, acting through downregulation of YAP/TAZ
activity. Elevated YAP/TAZ activity has been documented in many human cancers. Ubiquitylation has been shown to play
a key role in regulating YAP/TAZ activity through downregulation of a number of Hippo pathway components. Several
ubiquitin ligase complexes have been implicated in this process, however, little is known about the deubiquitylating enzymes
that counteract these activities to regulate YAP/TAZ. Here we identify the deubiquitylating enzyme USP9x as a regulator
of YAP/TAZ activity. We demonstrate that USPx regulates ubiquitin-mediated turnover of the YAP inhibitor,
Angiomotin. USP9x acts to deubiquitylate Angiomotin at lysine 496, resulting in stabilization of Angiomotin and lower
YAP/TAZ activity. USP9x mRNA levels were reduced in several cancers. Clinically, USP9x mRNA levels were reduced in
several cancers with low USPx expression correlating with poor prognosis in renal clear cell carcinoma. Our data indicate
that USP9x may be a useful biomarker for renal clear cell carcinoma.
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Introduction

Regulation of the transcriptional co-activators
Yes-Associated Protein 1 (YAP1) and transcriptional
coactivator with PDZ-binding motif (TAZ) is a key
output of the Hippo signaling pathway in control
of cell proliferation, tissue repair and in tumor
progression (reviewed in reference 1). YAP and TAZ
bind to transcription factors including transcriptional
enhancer factor TEF-1 (TEAD), β-catenin and RUNX
family members, to regulate genes required for cell
proliferation and survival (reviewed in reference 2).
Increased YAP/TAZ expression through gene ampli-
fication or epigenetic regulation, as well as increased
YAP/TAZ activity by mutations in upstream Hippo

pathway components have been identified in human
cancers (reference 3, reviewed in references 4, 5).
Increased YAP activity has recently been reported to
replace the requirement for oncogenic K-Ras in
models of pancreatic and colon cancer, and in the
transformation of primary human cells to create cancer
cells [6–8]. YAP expression also contributes to the
acquisition of resistance to RAF and MEK-targeted
cancer therapies [9]. By limiting YAP/TAZ activity,
the Hippo pathway serves as a barrier to cellular
transformation. This negative regulation by Hippo can
be abrogated through concomitant expression of
oncogenic Ras [8], the viral small T oncoprotein [10] or
the Kaposi sarcoma-associated herpes virus [11].
As a consequence, the Hippo pathway is currently
considered a therapeutic target in cancer and several
clinical trials have been initiated to systematically
analyze the effects of YAP/TAZ inhibition on tumor
progression ([5, 12], ClinicalTrials.gov Identifier:
NCT02347163).
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Several lines of evidence suggest that regulation of
Hippo-pathway protein turnover may play an impor-
tant role in cancer. The core Hippo pathway is a kinase
cassette comprised of the Mammalian sterile-20-like
(MST1/2) and large tumor suppressor kinase 1/2
(LATS1/2) kinases. LATS kinases are activated by
MST leading to LATS-dependent phosphorylation of
YAP and TAZ. YAP and TAZ are subsequently
targeted for degradation by the βTrCP/SCF ubiquitin
ligase system [13, 14]. We have recently reported that
YAP protein turnover is regulated by the Ras pathway,
through regulation of the SOCS5/6 proteins, which
serve as substrate recognition factors recruiting YAP to
an elongin B/C-Cullin5 ubiquitin ligase complex [8].
While destruction of YAP and TAZ is central to the
tumor suppressor activity of the Hippo pathway,
evidence is emerging that ubiquitin-mediated protein
turnover acts at multiple nodes of the Hippo pathway.
The RING ligase PRAJA2 induces proteasome-
mediated degradation of MOB1, a regulator of
LATS kinases, and has been demonstrated to con-
tribute to the pathogenesis of glioblastoma [15]. The
E3 ubiquitin ligase ITCH has been shown to regulate
the abundance of LATS1 kinase. As a consequence of
increased destruction of LATS1, ITCH overexpression
is sufficient to promote tumorigenesis [16].

The importance of ubiquitylation in regulation of
Hippo-pathway activity prompted us to explore the
potential roles of deubiquitylating enzymes (DUBs) as
regulators of Hippo pathway activity. The activity of
ubiquitin ligases in promoting protein turnover can be
counteracted by DUBs, which catalytically remove
ubiquitin moieties from proteins. In a few instances,
DUBs have been found differentially expressed or
genetically altered in human cancers, suggesting their
potential roles as oncogenes and tumor suppressors
[17–20]. Here, using a cell-based RNAi screen for
YAP/TAZ activity, we have identified the DUBUSP9x
as a negative regulator of YAP/TAZ activity.
We report that USP9x regulates YAP/TAZ activity
indirectly by regulating the protein stability of the
YAP/TAZ inhibitor, Angiomotin (AMOT). AMOT
inhibits YAP/TAZ activity through direct physical
association with YAP thereby limiting YAP nuclear
localization [21, 22], and AMOT has been shown to be
targeted for degradation by a Nedd4 ubiquitin ligase
complex [23]. These findings provide a molecular
framework for the previous observation that USP9x is
downregulated in pancreatic ductal adenocarcinoma
(PDA) [20] and for the finding, presented here, that
low levels of USP9x expression correlate with poor
prognosis in renal clear cell carcinoma (ccRCC).

Results

Identification of DUBs regulating YAP/TAZ activity
To identify DUBs that affect YAP/TAZ activity, we

used a luciferase reporter containing eight copies of the
TEAD DNA-binding sequence (8×GTIIC, [24]).
HEK293T cells were transfected to express the
8×GTIIC-firefly luciferase reporter and a Renilla
luciferase control vector for normalization (Figure 1a).
As controls, we verified that short hairpin RNA
(shRNA)-mediated depletion of YAP reduced
8×GTIIC firefly luciferase reporter activity; that
overexpression of LATS2 or a dominant negative form
of TEAD [12] reduced reporter activity and that
shRNA-mediated depletion of LATS2 increased
reporter activity (Figure 1b). Having confirmed that
the reporter was sensitive to manipulation of Hippo
pathway activity, we screened 116 shRNA pools
designed to target 94 DUBs [19, 25] (Figure 1c).
Several shRNA pools affected YAP/TAZ activity by
more than threefold in at least three independent
experiments (Supplementary Table S1). The shRNA
pool targeting USP9x reproducibly increased TEAD
reporter activity (Figure 1d). This finding was con-
firmed using two independent shRNAs targeting
USP9x (Figure 1d and e). As a second test of the effects
of USP9x depletion, we examined a panel of known
YAP/TAZ target genes [26, 27]. Expression of AREG,
CTGF and IGFBP3 increased in cells treated with the
shRNA pool or with the individual shRNAs
(Figure 1f). Reciprocally, expression of these
transcripts decreased in cells overexpressing USP9x
(Figure 1f). Activation of YAP/TAZ is required for
anchorage independent growth of primary human
cells [10]. Depletion of USP9x increased soft agar
colony formation in HEK293T cells (Supplementary
Figure S1). These three lines of evidence suggest that
USP9x normally functions to limit YAP/TAZ activity.

USP9x targets AMOT and AMOT-like proteins
To determine how USP9x affects YAP/TAZ

activity, we examined the expression levels of elements
in the Hippo pathway (Figure 2a). HEK293T cells
were transfected to express shRNAs targeting USP9x
and with a scrambled control shRNA. An increase in
YAP/TAZ activity could result from an increase in the
amount of Yap or TAZ proteins, or from a change in
the activity of the upstream Hippo pathway kinases
MST and LATS1/2. We did not observe a significant
change in the amount of YAP or TAZ protein
(Figure 2a and b). Increased YAP activity could
result from reduced LATS-mediated phosphorylation.
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However, there was no reduction in phosphorylation of
YAP on S127, a readout of LATS activity (Figure 2a
and b). Consistent with this, there was no change in
the level of the LATS1 or LATS2 kinases, or in the
phosphorylation status of LATS1 (Figure 2a and b).
Nor was there any discernable change in the level or
phosphorylation status of the upstream LATS kinase,
MST1 (Figure 2a). Together, these findings suggest
that the change in YAP activity resulting from
depletion of USP9x is not mediated via regulation of
the Hippo pathway.

This prompted us to explore other mechanisms of
regulating YAP/TAZ activity, in search of USP9x
targets. AMOT has been identified as a regulator of
YAP/TAZ activity [21, 22]. The p130 form of
AMOT binds to YAP/TAZ, and when over-
expressed p130-AMOT can reduce YAP/TAZ activity.
Conversely, depletion of AMOT leads to elevated
YAP/TAZ activity. We found that endogenous AMOT
protein levels were strongly reduced in cells depleted of
UPSP9x (Figure 2a and b). Both the p130 and p80
forms of AMOT were affected (although p80 is not

Figure 1 Identification of USP9x as a regulator of YAP activity. (a) The 8×GTIIC_luc YAP/TAZ reporter contains eight
TEAD-binding sites, to control expression of firefly luciferase. CMV-Renilla luciferase provides a control to normalize for
transfection efficiency. YAP/TAZ activity was determined by the ratio of firefly/Renilla luciferase after co-transfection of the two
plasmids. (b) Luciferase reporter assays showing the effects of changes in Hippo pathway activity. HEK293T cells were
transfected to express the luciferase reporters together with shRNA vectors to deplete YAP, LATS2 or with control shRNAs. Cells
were also transfected to overexpress LATS2 or a dominant negative form of TEAD vs appropriate empty vectors as controls.
Data represent the mean of three independent transfection experiments± s.d. (c) Summary of the RNAi screen workflow.
(d) Luciferase reporter assays showing the effects of changes in USP9x activity. HEK293T cells were transfected to express the
firefly and luciferase reporters together with an shRNA pool and two individual shRNAs targeting USP9x. Data represent the
mean of three independent replicates± s.d. (e) Immunoblot showing the efficacy of shRNA-mediated depletion of USP9x protein.
Upper panel probed with anti-USP9x. Lower panel probed with anti-Actin to control for loading. (f) Quantitative PCR was used to
measure YAP target transcript levels in HEK293T cells transfected to express the indicated shRNAs. USP9x was depletion using
the shRNA pool and two individual shRNAs. shRNA-mediated depletion of LATS2 was used as a control for the effect of
increasing YAP/TAZ activity. RNA levels for UAP9x and LATS2 are shown to monitor shRNA efficiency. To test the effect of
USP9x overexpression, HEK293T cells were transfected to express V5-tagged USP9x or with an empty vector control. RNA was
harvested 36 h after transfection. GAPDH was used for normalization. YAP target levels increased, while YAP mRNA was
unchanged. Data represent the average of three independent experiments± s.d.

Hung Thanh Nguyen et al.

3

Cell Discovery | www.nature.com/celldisc

http://www.nature.com/celldisc


thought to regulate YAP activity). To test the effects
of USP9x overexpression, HEK293T cells and U2OS
cells were transfected to express USP9x-V5-tagged
and hemagglutinin (HA)-tagged p130-AMOT. Over-
expressed USP9x increased the level of p130-AMOT
(Figure 2c). We also confirmed that shRNA-mediated
depletion of USP9x reduced HA-tagged p130-AMOT
in U2OS cells (Figure 2c). As an independent means to
test the effect of reduced USP9x activity, we treated
cells with the small molecule DUB inhibitor, WP130
[28]. WP130 treatment led to reduced AMOT protein
levels (Figure 2d). Together, these findings provide

evidence that USP9x can regulate AMOT protein
levels.

AMOT is a member of a family of related proteins
including AMOTL1 and AMOTL2 [21, 22, 29]. To ask
whether USP9x has a similar effect on the levels of the
other family members, we treated HEK293T cells with
siRNAs to deplete USP9x and monitored the level of
endogenous AMOT-like proteins by immunoblotting.
Endogenous AMOT and AMOTL1 were reduced in
cells depleted of USP9x (Figure 2e). Endogenous
AMOTL2 was not detectable with the available
antibodies. To examine AMOTL2, HEK293T cells

Figure 2 USP9x regulates AMOT levels. (a) Immunoblots of HEK293T cells transfected with shRNAs to deplete USP9x or with
control shRNAs or with an empty vector control. Blots were probed with the indicated antibodies. Anti-USP9x was directed to the
C terminus of the protein and recognizes the full length protein. Anti-Actin was used to control for loading. Note the low level of
p130AMOT in USP9x-depleted cells. (b) Immunoblots of HEK293T cells transfected with a pool of siRNAs to deplete USP9x or
with control siRNAs and probed with the indicated antibodies. (c) Immunoblots of HEK293T and U2OS cells transfected to
express HA-tagged AMOT p130 together with V5-tagged USp9x (OE) or with a pool of shRNAs to deplete USP9x. Blots were
probed with anti-HA to detect AMOT, anti-V5 to detect USP9x and anti-Actin as a loading control. (d) Immunoblots of
HEK293T cells treated with the DUB inhibitor WP130 at the indicated concentrations. Blots were probed with endogenous AMOT
and with anti-Actin as a loading control. (e) Immunoblots of HEK293T cells transfected with a pool of siRNAs to deplete USP9x or
with control siRNAs and probed with antibodies to p130AMOT and USP9x (C terminus). (f, g) Immunoblots of HEK293T cells
transfected to express HA-tagged p130-AMOT, AMOT-L1 or AMOT-L2 together with a pool of shRNAs to deplete USP9x or with
V5-tagged USp9x (or empty vector control). Blots were probed with anti-HA to detect the AMOT family proteins, with anti-USP9x
and with anti-Actin as a loading control. Antibody to the N terminus of USP9x detects two forms of the protein. The slower
migrating form is also detected by antibody specific to the C terminus of the protein. The faster migrating form is a cleavage
product, which has DUB activity (Supplementary Figure S2b). Cells were co-transfected to express GFP, and blots probed with
anti-GFP as a control for transfection efficiency. Depletion of USP9x did not reduce AMOT, AMOTL1 or AMOTL2 mRNA levels
(Supplementary Figure S3).
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were transfected to express HA-tagged AMOTL2.
HA-AMOTL2 levels decreased in cells depleted of
USP9x (Figure 2f). Reciprocally, HA-AMOTL2 levels
increased in cells overexpressing V5-tagged USP9x
(Figure 2f). Comparable results were obtained with
HA-AMOTL1 (Figure 2g). Thus all AMOT-like
family members appear to be similarly regulated
by USP9x.

To ask whether USP9x could potentially act
directly on AMOT proteins, we performed co-
immunoprecipitation (IP) assays. IP of HA-AMOT
recovered USP9x from HEK293T cells co-transfected
to express both proteins (Figure 3a). Reciprocally, IP
of V5-USP9x recovered HA-AMOT (Figure 3a).
Endogenous USP9x protein was recovered by co-IP
with endogenous AMOT protein using anti-AMOT
(Figure 3b). Recovery of endogenous USP9x protein
by IP was relatively inefficient, presumably due to poor
performance of the antibody in IP experiments.
Nonetheless, on longer exposure it was possible to
detect co-IP of endogenous AMOT with USP9x
(Figure 3b). HA-tagged forms of AMOT, AMOT-L1
and AMOT-L2 were recovered by IP with endo-
genous USP9x (Supplementary Figure S2a). These

experiments provide evidence that USP9x can physi-
cally interact with all the AMOT family members.

If USP9x act directly on AMOT, we would expect to
see elevated levels of ubiquitylated AMOT in cells
depleted of USP9x. HEK293T cells were transfected
to express HA-tagged p130-AMOT and Myc-tagged
Ubiquitin with or without shRNAs targeting USP9x.
Depletion of USP9x increased the incorporation of
ubiquitin into AMOT (Figure 3c). These findings
are consistent with a model in which USP9x-mediated
deubiquitylation increases AMOT stability. Consistent
with this, we observed that the effects of SUP9x on
AMOT stability were blocked in cells treated with
the proteasome inhibitor MG132 (Supplementary
Figure S3).

Lysine 496 is a key target of USP9x in regulating
AMOT turnover

To investigate how USP9x interacts with AMOT,
we performed SILAC-based mass spectrometric
analysis on AMOT protein isolated from cells depleted
of USP9x by shRNA treatment. The design of the
SILAC experiment is shown in Figure 4a. Mass
spectrometric analysis of AMOT identified a

Figure 3 USP9x regulates AMOT ubiquitylation. (a) Immunoblots of HEK293T cells transfected to express HA-AMOT and
V5-tagged USP9x. Cell lysates were immunoprecipitated using anti-HA to pull down HA-p130-AMOT or with anti-V5 to pull down
V5 AMOT. Blots were probed with anti-V5 to detect USP9x-V5 (input) and with anti USP9x (IP). Note that the V5 antibody pulls
down predominantly the shorter form of USP9x. Both long and short forms of USP9x were recovered by IP with HA-AMOT.
(b) Immunoblots of HEK293T cell lysates immunoprecipitated using anti-AMOT or anti-USP9x or with non-immune IgG as a
control. Blots were probed with anti-AMOT and with anti-USP9x. The recovery of endogenous AMOT by IP was very efficient.
However, recovery of UPS9x by IP was very weak, which limits the sensitivity of detection of AMOT by USP9x IP.
(c) Immunoblots of HEK293T cells transfected to express HA-AMOT with Myc-tagged Ubiquitin, and shRNA vectors to deplete
USP9x or control shRNAs. Cells were treated with MG132 to block proteasome activity. Lysates were immunoprecipitated with
anti-HA to recover AMOT and blots were probed to detect Ubiquitin (anti-Myc), AMOT (anti-HA) or with anti-Actin to control for
loading. Anti-USP9x was used to monitor the efficiency of shRNA-mediated depletion in the total cell lysate. Depletion of USP9x
was efficient. Note that the total level of ubiquitylated protein in the cell was unchanged in the total cell lysates after USP9x
depletion. IP, immunoprecipitation.
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ubiquitylated peptide corresponding to lysine residue
K496 in p130-AMOT (Figure 4b). AMOT has pre-
viously been reported to be ubiquitylated on K481 by
Atrophin-1 Interacting Protein 4 [30]. Both K496 and
the adjacent K481 reside in a highly conserved
sequence string found in all vertebrate AMOT proteins

(Figure 4c). Ubiquitylation of K496 has not been
described previously. Supplementary Figure S4 shows
alignment of the corresponding region with AMOTL1
and AMOTL2.

To explore the relevance of K496, we asked whether
mutating K496 to Arginine would affect the ability

Figure 4 K496 is required for USP9x activity on AMOT. (a) Design of the SILAC-based mass spectrometry experiment to detect
ubiquitylation sites in AMOT. (b) Annotated tandem mass spectrum of ubiquitylated (di-Gly modified) peptide corresponding to
AMOT K496. (c) Sequence alignment of the region of AMOT containing residues K481 and K496 from the indicated species.
(d) Immunoblots of HEK293T cells transfected to express HA-tagged AMOT p130 with Myc-tagged Ubiquitin and shRNA vectors
to deplete USP9x or control shRNAs. Three forms of HA-AMOT were tested: native, K496R and K481R mutant. Cells
were treated with MG132. Lysates were immunoprecipitated with anti-HA to recover AMOT and blots were probed to detect
Ubiquitin (anti-Myc), AMOT (anti-HA) or with anti-Actin to control for loading. Anti-USP9x was used to show the efficiency of
shRNA-mediated depletion in the total cell lysate. (e) Immunoblots of HEK293T cells transfected to express HA-tagged native
AMOT or K496R mutant AMOT together with V5-tagged USP9x. Cells were treated with MG132 before harvesting cell lysates for
immunoprecipitation with anti-HA. Blots were probed with anti-HA to detect AMOT and with anti-V5 to detect USP9x. The
HA-AMOT and V5-USPx bands were analyzed using Image J (www.NIH.GOV) and the values are shown below, with the
AMOT-K496R mutant lane normalized to the adjacent native AMOT lane. K496R AMOT expression was somewhat lower than
the native protein, as shown in the total lysate panel (at left).

Regulation of YAP activity by USP9x

6

Cell Discovery | www.nature.com/celldisc

http://www.nature.com/celldisc


of USP9x to deubiquitylate AMOT. HEK293T cells
were transfected to express native or K496R mutant
HA-p130-AMOT and Myc-tagged Ubiquitin con-
structs together with a vector expressing control
shRNA or USP9x-specific shRNAs. AMOT was
immunoprecipitated using anti-HA and the blot was
probed to visualize Myc-tagged Ubiquitin (Figure 4d).
Depletion of USP9x increased the amount of Ubiquitin
recovered on native AMOT, but had little or no effect
on the amount of ubiquitylated K496R AMOT protein
(Figure 4d). K481R AMOT was sensitive to USP9x
depletion, though less than native AMOT (Figure 4d).
Proteome-wide ubiquitylation studies have described
a number of candidate ubiquitylation sites for
p130AMOT including K94, K156, K206, K215, K230,
K255, K355, K520, K535, K585 and K619 [31, 32].
Mutation of these Lysine residues to Arginine had
little or no effect on the sensitivity of the mutant
forms of AMOT to changes in USP9x expression
(Supplementary Figure S5a).

These findings suggest that K496 is a functionally
significant target of USP9x action on AMOT. To ask if
binding of USP9x to AMOT depends on K496,
HEK293T cells were transfected to express HA-tagged
AMOT or AMOT-K496R together with V5-tagged
USP9x, and cell lysates were immunoprecipitated with
anti-HA to recover AMOT protein. Recovery of
USP9x was considerably reduced by replacement of the
Lysine residue at K496 with Arginine (Figure 4e;
ratio = 0.24 after correcting for the reduced amount of
K496R recovered in the IP). This suggests that the
absence of lysine at position 496 as a potential sub-
strate reduced interaction with USP9x. Consistent with
this, AMOT-K496R was considerably less sensitive to
proteasome-mediated degradation than the native
protein (Supplementary Figure S5b). Together, these
findings suggest that K496 is an important target site
through which USP9x acts on AMOT to regulate
YAP/TAZ activity.

Low USP9x correlates with poor outcome in ccRCCs
Recent literature on the role of USP9x in cancer is

equivocal. One report has presented evidence that
USP9x can promote tumor cell survival through
stabilization of the pro-survival BCL2 family member
MCL1 in human follicular lymphomas and diffuse
large B-cell lymphoma and multiple myleomas [33].
A second report identified USP9x as a tumor
suppressor in a K-RAS mouse model of PDA [20].
In this report, PDA patients with low USP9x levels
showed poor survival and were more likely to have
metastatic disease compared with other patients.

Deletions or mutations in USP9x have been identified
in 4% of sequenced pancreatic adenocarcinomas
in the Cancer Genome atlas (TCGA) PAAD study
(www.cbioportal.org), but none were found in another
study [34].

To examine USP9x levels in other cancers, RNA
sequencing data and patient clinical information were
downloaded from the TCGA Data Coordination
Center. USP9x transcript levels were significantly
lower in several cancers compared with normal
controls, including breast, thyroid, prostate, liver
hepatocellular carcinoma, kidney papillary and ccRCC
(Figure 5a). Among these, disease-free survival was
significantly worse for ccRCCs patients with bottom
quartile USP9x expression compared with those with
median or top quartile USP9x expression (KIRC,
Figure 5b and Supplementary Figure S6).

There was no significant difference in the levels of
USP9x transcripts in ccRCC tumor samples comparing
metastatic and non-metastatic disease or comparing
low- vs high-grade tumors, but USP9x transcript levels
were slightly lower in advanced vs early stage samples
in the KIRC data set (Supplementary Figure S7).
The VHL and PBRM1 genes are among the most
frequently mutated in ccRCC[35]. There was no
significant difference in the level of USP9x transcripts
in samples separated by the mutational status of the
Von Hippel–Lindau tumor suppressor gene VHL,
but there was a small decrease in tumors mutant for
PBRM1, which encodes the chromatin regulator
Polybromo-1 (Supplementary Figure S7). This may
reflect effects on the global transcriptome of these
tumors.

As USP9x is involved in regulation of protein
degradation, we examined USP9x protein levels in
ccRCC samples paired with normal kidney tissue from
the same patient. Immunohistochemical labeling was
performed on tissue arrays containing matched pairs of
non-metastatic ccRCC tumors and normal tissue
(Supplementary Figure S8). Histological assessment
showed moderate to strong expression of USP9x in
the normal tissues and lower levels in their matched
tumors (Figure 5c and Supplementary Figure S8).
This difference was statistically significant using the
Wilcoxon matched pairs signed rank test (Po0.0001).

Discussion

YAP is a potent oncogene that drives cancer
progression through the upregulation of a number
of genes that promote cell growth and inhibition of
apoptosis. Two distinct mechanisms for regulation of
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YAP by ubiquitin-mediated degradation have been
reported [8, 36, 37]. The LATS kinases phosphorylate
YAP and target it for proteasome-mediated degrada-
tion. YAP activity is also controlled by interaction with
AMOT, which can limit YAP’s ability to function as a
transcriptional cofactor. Here we report that the
USP9x deubiquitylase regulates YAP activity by acting
on ubiquitylation of the YAP inhibitor, p130AMOT.
We demonstrate that loss of USP9x leads to increased
ubiquitylation of AMOT, resulting in reduced AMOT
levels. Lowering AMOT levels increases YAP/TAZ
activity (summarized in Figure 6).

The level of AMOT activity will depend on the
balance of the E3 ligases that add ubiquitin and the
DUBs that remove it. Several members of the NEDD4

family of E3 ligases, including ITCH have been
reported to ubiquitylate AMOT [23]. We have pro-
vided evidence that USP9x can act directly on AMOT
via residue K496. USP9x has also been reported to
remove ubiquitin from the ITCH and SMURF1
ubiquitin ligases, thereby protecting them from
degradation [38, 39]. Therefore reduced USP9x levels
should lead to lower E3 ligase activity, which would
thereby reduce the capacity to ubiquitylate AMOT.
However, we observed a net increase in AMOT
ubiquitylation in USP9x-depleted cells (Figure 2).
Thus, it appears that the direct effect of limiting
deubiquitylation of AMOT by USP9x offsets the
reduced potential for ubiquitylation due to lower E3
ligase levels.

Figure 5 USP9x levels correlate with poor outcome in ccRCC. (a) Analysis of USP9x mRNA level comparing normal control
tissue and tumor samples from the indicated TCGA data sets. Gene expression values were normalized to a fixed upper quartile
value of 1 000 using RNA-Seq by Expectation maximization and represented as scatter plots. Statistical significance was
determined using Mann–Whitney tests. (b) Plot of disease-free survival for ccRCC patients as a function of USP9x transcript
level. Blue denotes patients with bottom quartile mRNA expression; red denotes patients with top quartile expression and black
denotes the middle 50% of patients. A new tumor diagnostic indicator or death was scored as events. Cox proportional hazards
regression model was used to calculate P-values. (c) Plot of the histopathology scores for USP9x protein staining of matched
normal and tumor samples. Individual tissue spots were examined by an experienced pathologist to confirm the tissue spot
identity and visually assigned a score of − (no staining),+ (weak staining of o10% of tissue), ++ (weak staining of 10–25% of
tissue), +++ (weak to moderate staining of up to 50% tissue), ++++ (moderate to strong staining of 50–75% of tissue), +++++
(moderate to strong staining of 475% of tissue). In the majority of normal samples and tumors, USP9x staining was localized
near the cell membrane, with little or no cytoplasmic staining. However, a small number of tumors showed predominantly
cytoplasmic USPx. ccRCC, renal clear cell carcinoma; TCGA, the Cancer Genome atlas.
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While our manuscript was in preparation, another
study provided evidence that USP9x can work via
regulation of AMOTL2 to regulate LATS-mediated
phosphorylation of YAP [40]. Our findings differ from
those of Kim et al. [40] in two respects: (1) We observed
that no change in YAP phosphorylation status on
USP9x depletion (Figure 2a and b), whereas Kim et al.
[40] report changes in LATS-mediated phosphoryla-
tion of YAP. Choice of cells or experimental design
might explain this difference: we examined endogenous
YAP/TAZ, whereas YAP and its cofactor TEAD were
overexpressed in the experiments reported by Kim et al
[40]. YAP overexpression triggers feedback regulation
via regulation of LATS expression and activity [41–43],
as well as through upregulation of AMOTL2 [42].
Changing the balance of regulation in this pathway
might influence how stabilization of AMOT proteins
affects YAP activity. For example, increased activity of
LATS kinases as a result of feedback regulation might
promote phosphorylation and stabilization of AMOT
proteins. Stabilized AMOT, in turn, can act as a
scaffold to promote phosphorylation of YAP by LATS
kinases [44–46]. Thus, the basal level of YAP/TAZ
could in principle influence the outcome of USP9x-
AMOT regulation. (2) Kim et al. [40] report increased
monoubiquitylation of AMOTL2 on lysine 437 as a
consequence of USP9x depletion. Lysine 437 corre-
sponds to Lysine 496 in AMOT (Supplementary Figure
S4). In the course of our experiments, we also observed
monoubiquitylation of AMOT, when AMOT was
strongly overexpressed (Supplementary Figure S9).
This contrasted with the effects of USP9x on cells with

moderate AMOT levels, in which AMOT was
polyubiquitylated and degraded in response to USP9x
depletion (Figures 3c and 4d). We suggest that mono-
ubiquitylation may be a consequence of saturating the
capacity of the cells to ubiquitylate AMOT. Further
work will be needed to explore the differences between
the mechanisms reported in these two studies.

USP9x in cancer
In addition to targeting the Hippo pathway

via regulation of AMOT, several other cancer-
relevant targets have been reported for the USP9x
deubiquitylase. USP9x has been reported to increase
SMAD4 activity by removing an inhibitory ubiquitin
moiety [47]. Thus loss of USP9x can increase TGFβ
signaling, potentially contributing to tumorigenesis.
USP9x activity has also been linked to stress-induced
activation of the JNK pathway through stabilization of
ASK1, a member of the MAPKKK family [48]. In this
scenario, low USP9x levels would lead to reduced JNK
activation and to reduced stress-induced apoptosis.
Reduced sensitivity to oxidative stress could be another
mechanism by which low USP9x levels contribute to
disease progression.

In contrast to solid tumors of epithelial origin,
hematological tumors consistently show reduced YAP
expression, which protects cells from DNA-damage
induced apoptosis [49]. Interestingly, USP9x has been
reported to have tumor-promoting activity, acting via
stabilization of the pro-survival protein MCL1 in
hematological tumors [33]. In this context it is note-
worthy that the effects of USP9x on stability of the E3

Figure 6 Schematic representation of USP9x activity. USP9x removes ubiquitin (Ub, green) from AMOT family proteins (purple),
increasing their stability. AMOT can then limit YAP/TAZ activity. In the absence of USP9x, AMOT is degraded more efficiently and
cannot limit YAP/TAZ activity (higher activity depicted in red shading).
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ligase ITCH were more potent in PDA cells grown in
suspension, than in substratum attached cells [20]. In
PDA cells, USP9x depletion had no effect on ITCH
targets known to be involved in cell survival [20]. It is
therefore tempting to speculate that changes in USP9x
activity might have a more significant effect on
ITCH activity in lymphoma. Possible roles of USP9x-
mediated regulation of AMOT in lymphoma remain to
be explored. It seems likely that the relationship
between USP9x levels and clinical outcome in different
cancers will reflect the balance of its activity on
multiple pathways.

Materials and Methods

Reagents
Antibodies to phospho-YAP Ser127 (#4911), YAP (#4912),

YAP/TAZ (#8418), phospho-MST1/2 (#3681), MST1 (#3682),
MST2 (#3952), LATS1 (#9153), LATS2 (#13646), pLATS1/2
Tr1079/1041 (#9159) and Myc Tag (#2278) were from Cell
Signaling Technology, Danvers, MA, USA. Antibodies to HA
(#sc-7392) and NF2 (#sc-332) were from Santa Cruz Bio-
technology, Dallas, TX, USA. Anti-AMOT was from
ABNOVA (Taipei City, China) Anti-AMOTL1 and anti-Actin
were from Sigma (Sigma-Aldrich, St Louis, MO, USA). USPx
and V5 antibodies were from Bethyl Laboratories Inc., Mon-
tgomery, TX, USA. Anti-HA, anti-V5 and Flag-conjugated
agarose beads were from Sigma. WP130 was obtained from
Selleck chemicals, Houston, TX, USA (#S2243).

Plasmids and cell culture
The shRNA library consists of 116 pools of 4 non-

overlapping shRNAs targeting known or putative human
DUBs as described [19] supplemented with 22 additional
shRNAs targeting newly identified DUBs (details available on
request). pBabe HA-LATS2, AMOT, AMOTL1 and AMOTL2
expression plasmids were from SW Chan (IMCB, Singapore).
Mutant versions of AMOT were made by PCR. 8×GTIIC-
luciferase was obtained from Addgene (Cambridge, MA, USA
plasmid # 34615). The pRL-CMV was purchased from
Promega, Madison, WI, USA (Renilla, #E2261). The Myc-
tagged ubiquitin expression vector was a gift from Hong Yi
(IMCB). 480SBY vector was generated by replacing the Blast
ORF of pRetrosuper-Blast [50] with a Blast-YFP fusion.
LATS2 and USPx shRNAs were cloned into the 480SBY vector.
LATS2 shRNA was described in reference 50. All constructs
were verified by DNA sequencing. Dharmacon
ON-TARGETplus USPx siRNA was obtained from GE
Healthcare, Park Brøndby, Denmark. U2OS, HEK293 and
HEK293T cells were obtained from ATCC, Wesel, Germany
and cultured in DMEM (Invitrogen, Naerum, Denmark) with
10% fetal calf serum (HyClone) and 1% penicillin-streptomycin.

Luciferase assays
HEK 293 T cells were seeded in 48-well plates (37 500 cells

per well) 24 h before transfection with 2 ng of pRL-CMV,
125 ng of 8 × -GTIIC TEAD reporter and 250 ng of individual

pools of DUB shRNAs per well, using the calcium-phosphate
method. Luciferase activity was measured 48 h after transfection
using a dual luciferase kit (Promega E1960). Firefly luciferase
activity was normalized to Renilla activity and the ratio of
firefly/Renilla was normalized to the empty vector controls.
Assays were replicated with at least three independent
transfections.

Viral transduction and soft agar assays
Amphotropic retroviruses were made as described previously

[51]. Supernatant from transfected Phoenix-Ampho cells
(NORDIC BIOSITE APS, Copenhagen, Denmark) was har-
vested at 36–48 h and frozen in aliquots. Cells were plated to
reach 70% confluence when infected with virus overnight in the
presence of 8 μg ml− 1 polybrene. Antibiotic selection was started
at 36 h. Stable cells were assessed for soft agar growth, as
described [10].

Quantitative real-time RT–PCR
RNA was extracted in TriZol (Invitrogen) and cDNA was

made using iScript (Bio-Rad Laboratories Inc., Hercules, CA,
USA) with random hexamer primers. At least two pairs of
qPCR primers were tested for specificity and sensitivity for each
mRNA. Real-time PCR used SyberGreen I Mix on a Quant-
Studio 6 Flex machine (ABI, Thermo Fisher Scientific, Waltham,
MA, USA). Primers are in Supplementary Table S2].

Immunoprecipitation
Transfected HEK293T cells were washed once with cold TBS

(20 mM Tris-HCl pH 7.5, 150 mM NaCl) and lysed with buffer
containing 50 mM HEPES pH 7.5, 150 mM NaCl, 5% Glycerol,
0.5% Triton X-100, 1.5 mM MgCl2, 1 mM EGTA supplemented
with 20 μg ml− 1 RNAase A, 1 mM DTT, 1 mM Na3VO4 and
protease inhibitor cocktail (Roche, Basel, Switzerland). Cell
lysates were immunoprecipitated for 2 h at 4 °C with anti-HA
agarose (#A2095, Sigma). Agarose beads were washed 4× with
lysis buffer and eluted as recommended by the manufacturer.

Immunoblotting and ubiquitylation assays
For total protein analysis and interaction studies, transfected

HEK 293 T cells were washed once with cold TBS and lysed
with phospholipase C buffer (Wells:2006ic) containing 50 mM

HEPES pH 7.5, 150 mMNaCl, 5%Glycerol, 0.5% Triton X-100,
1.5 mM MgCl2, 1 mM EGTA supplemented with 20 μg ml− 1

RNAase A, 1 mM DTT, 1 mM Na3VO4 and protease inhibitor
cocktail. Co-IP was performed using anti-HA agarose for 2 h at
4C on a rotator. Agarose bead was washed four times with lysis
buffer and immune complexes were eluted as recommended
by the manufacturer. Immune complexes were detected with
western Lightning Plus-ECL reagent (Perkin Elmer, Waltham,
MA, USA).

For ubiquitin assay and mass spectrometry (MS) detection of
the ubiquitylation of AMOT, HEK293 and HEK293T cells
were co-transfected to express Myc-tagged ubiquitin (2 μg per
10-cm dish), HA-tagged AMOT wild-type or mutant plasmids
(5 μg) and USPx shRNA (10 μg) or control vector as indicated
using the calcium-phosphate method. Forty eight hours later,
cells were washed with cold TBS and lysed in modified RIPA
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buffer containing 25 mM Tris/HCl, pH 7.5, 150 mM NaCl,
1% Nonidet NP40, 0.1% Na-deoxycholate, 1 mM EDTA,
5 mM NaF, 5 mM β-glycerophosphate, 1 mM Na3VO4, freshly
complemented with 10 mM NEM and protease inhibitor
cocktail. HA-AMOT was immunoprecipitated using anti-HA
agarose. Agarose bead was washed four times with lysis buffer
and complexes were eluted and subjected for detection of
ubiquitylated AMOT by western blotting or ubiquitylated
lysine by MS.

Sample preparation and MS
HEK cells were SILAC-labeled in medium containing

L-arginine and L-lysine or L-arginine-U-13C6-
15N4 and

L-lysine-U-13C6-
15N2 (Cambridge Isotope Laboratories, Tewks-

bury, MA, USA) as previously described [52]. Peptides were
analyzed on a quadrupole Orbitrap mass spectrometer (Q-
Exactive plus, Thermo Fisher Scientific, Waltham, MA, USA)
equipped with a nanoflow HPLC system (Thermo Scientific), as
previously described [53]. Peptides were loaded onto C18
reversed phase columns (15 cm length, 75 μm inner diameter)
and eluted with a linear gradient from 8–40% acetonitrile
containing 0.5% acetic acid. The mass spectrometer was oper-
ated in a data-dependent mode, automatically switching
between MS and MS/MS acquisition. Survey full scan MS
spectra (m/z 300–1 750) were acquired in the Orbitrap. The 10
most intense ions were sequentially isolated and fragmented by
higher-energy C-trap dissociation (HCD [54). An ion
selection threshold of 50 000 counts was used. Peptides with
unassigned charge states, as well as with charge state less than
+2 were excluded from fragmentation. Fragment spectra were
acquired in the Orbitrap mass analyzer (Thermo Fisher
Scientific).

Peptide identification and data analysis
Raw data were analyzed using MaxQuant (version 1.4.0.03,

[55]). A Uniprot database against human proteome obtained
from the UniProtKB (February 2012 release) was taken to
search for parent ion and MS/MS spectra using Andromeda
search engine [56]. Spectra were searched with a mass tolerance
of 6 p.p.m. in MS mode, 20 p.p.m. in HCD MS2 mode, strict
trypsin specificity and allowing maximally two missed cleavage
sites. Cysteine carbamidomethylation was searched as a fixed
modification, whereas N-terminal protein acetylation, methio-
nine oxidation and n-ethylmaleimide modification of cysteines
and di-glycine-lysine were searched as variable modifications.
Site localization probabilities were determined by MaxQuant
using the PTM scoring algorithm [55, 57]. The data set was
filtered based on posterior error probability to arrive at a
false discovery rate of o0.01 estimated using a target-decoy
approach [58].

Immunohistochemical analysis
Human kidney normal-tumor paired tissue arrays KD1503

and KD1504 representing tumors in duplicates from 98 kidney
clear cell carcinoma and their matched normal tissues were
obtained from US Biomax, Rockville, MD, USA. Immunos-
taining of tissue arrays was performed as described [59]. Sections
were dewaxed in xylene and rehydrated; antigen retrieval was

performed by boiling the slides in 10 mM citrate buffer pH 6.0 for
20 min after. Endogenous peroxidase activity was blocked by
treatment with 3% hydrogen peroxide in methanol for 15 min.
After four washes of Tris buffer saline (20 mM Tris, 200 mM

NaCl, pH 7.6), the sections were pre-incubated with Ultra V
Block solution (Thermo scientific) for 10 min and incubated for
2 h with USPx antibody. Immunohistochemistry was performed
using the streptavidin–biotin peroxidase complex method
according to the manufacturer’s instructions (UltraVision HRP
DAB system, Thermo scientific) using DAB as the chromogen.
Individual tissue spots were examined by an experienced
pathologist to confirm the tissue spot identity and visually
assigned a score of 0 (no staining), 1 (weak staining of o10% of
tissue), 2 (weak staining of 10–25% of tissue), 3 (weak to mod-
erate staining of up to 50% tissue), 4 (moderate to strong
staining of 50–75% of tissue) and 5 (moderate to strong staining
of 475% of tissue).

Gene expression and survival analysis in cancer patient
data

Publicly available RNA sequencing data and patient clinical
information was downloaded from TCGA Data Coordination
Center (DCC) data server and assembled using TCGA
assembler version 1.0.3. on 27 February 2015 [60]. Gene
expression values were normalized to a fixed upper quartile
value of 1 000 using RSEM (RNA-Seq by Expectation
maximization). Statistical analysis was done in R software
(http://www.r-project.org). Statistical significance was deter-
mined using Mann–Whitney tests. To calculate comparisons
between multiple groups, pairwise Wilcoxon tests with
Bonferroni corrections for multiple testing were applied. For
progression free survival analysis, new tumor event diagnostic
indicator or death was used as an event. For this analysis, gene
expression was split into groups by upper and lower quartile.
Cox proportional hazards regression model was used to
calculate P-values. TCGA KIRC gene level non-silent somatic
mutation data (broad automated) was downloaded from UCSC
Cancer Genome Browser website (https://genome-cancer.ucsc.
edu) on 24 February 2015.
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