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Abstract: In this work, semiconductor tin oxide (II) (SnO) nanoparticles and plates were synthesized
at room conditions via a hydrolysis procedure. X-ray diffraction (XRD) and transmission electron mi-
croscopy (TEM) confirmed the high crystallinity of the as-synthesized romarchite SnO nanoparticles
with dimensions ranging from 5 to 16 nm. The stability of the initial SnO and the controlled oxidation
to SnO2 was studied based on either thermal treatments or controlled laser irradiation using a UV
and a red laser in a confocal microscope. Thermal treatments induced the oxidation from SnO to
SnO2 without formation of intermediate SnOx, as confirmed by thermodiffraction measurements,
while by using UV or red laser irradiation the transition from SnO to SnO2 was controlled, assisted
by formation of intermediate Sn3O4, as confirmed by Raman spectroscopy. Photoluminescence and
Raman spectroscopy as a function of the laser excitation source, the laser power density, and the
irradiation duration were analyzed in order to gain insights in the formation of SnO2 from SnO.
Finally, a tailored spatial SnO/SnO2 micropatterning was achieved by controlled laser irradiation
with potential applicability in optoelectronics and sensing devices.
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1. Introduction

Tin oxide is a well-known semiconductor oxide that commonly appears in two crys-
talline forms, tin dioxide (SnO2, cassiterite) and tin monoxide (SnO, romarchite) [1], the
former being most commonly used because it is the stable polymorphic form. Despite the
potential applicability of SnO in some fields of research, its use is commonly hindered as
it is easily oxidized to the most stable SnO2, which is indeed one of the most extensively
used semiconducting oxides.

Tin dioxide (tin oxide II, stannic oxide) (SnO2, Sn4+) cassiterite possesses n-type elec-
tronic properties. Its space group corresponds to rutile structural type, tetragonal P42/mnm
(136), crystalline structure with lattice parameters a = b = 4.738 Å and c = 3.186 Å [2], and it
presents a wide band gap (EG~3.6 eV) at room temperature [3]. This versatile semiconduc-
tor oxide is commonly used in diverse fields, such as in gas sensors, catalysts, transparent
semiconductors in solar cells, and as active material in anodes for ion-Li batteries, among
others [2,4–6].

On the other hand, tin monoxide, (tin oxide II, stannous oxide) (SnO, Sn2+) romar-
chite, possesses p-type conductivity and often exhibits a layered structure with tetragonal
space group P4/nmn (129) with lattice parameters a = b = 3.803 Å and c = 4.838 Å,
corresponding to a litharge structure with a variable optical bandgap, ranging between
EG ~2.5–3.4 eV [1,3,7,8]. In recent years, SnO has generated increasing interest in photo-
catalysis [9,10] and as a potential thermoelectric material, supported by first principle
calculations [11,12] in part due to its low toxicity and abundance compared with other
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thermoelectric materials. However, its use is still under-explored due to limitations con-
cerning its synthesis in a pristine form without other Sn-based oxides and its easy oxidation
to SnO2. Different synthesis routes have been employed up to now for the synthesis of
SnO nanoparticles, such as the hydrothermal method [7,10,13] and microwave-assisted
synthesis [14], whereas other methods such co-precipitation and hydrolysis remain less
explored so far.

Despite SnO2 being considered a potential candidate for conductive material in ion-Li
battery anodes [2], some authors such as Gervillié et al. [15] affirm that SnO appears to
be a better candidate with regard to its irreversible capacities and coulombic efficiency,
whereas SnO2 possesses the best gravimetric capacity. Moreover, because of its layered
structure with sizeable c size, the use of SnO can overcome one of the main drawbacks in
Li-ion batteries, the lattice expansion, leading as well to improved Li diffusion [16] or Na
diffusion [17]. Furthermore, as one of the few p-type oxides, SnO is also considered as a
candidate for the hole injection layer in optoelectronic devices. However, it is unlikely to
be used as a high efficiency performing device if the SnO stability is not constant over time,
this being one of the main drawbacks for the widening of SnO-based applicability. SnO
naturally tends to oxidize to its allotropic and most stable SnO2 tetragonal rutile phase.
Actually, in most synthesis methods, a mix of both tin oxides is formed, while the achieve-
ment of pure SnO is not straightforward. Hence, understanding the thermodynamics
and limits of existence of this phase under different conditions (atmosphere, temperature,
UV irradiation) is fundamental in order to overcome some of the challenges that face the
applicability of SnO, which could then broaden the potential use of this oxide.

Moreover, the combination of n-type SnO2 and p-type SnO to form heterojunctions
has also been gaining increasing attention in recent years, especially in optoelectronics,
Li storage [18], and as chemiresistive sensor with enhanced sensibility for a variety of
gases, such as NO2 [19], H2 [20], acetone [21], or formaldehyde gas [22]. In those cases, the
variability of SnO geometries and hierarchical structures are fundamental to the optimal
performance of the devices, while the achievement of a controlled local oxidation from SnO
to SnO2 can also lead to the fabrication of p-n heterojunctions at the micro- and nanoscale
with improved performance.

The creation of such SnO2/SnO structures can be complex because SnO is not stable,
which may cause oxidation and diffusion processes between SnO and SnO2. Laser-assisted
processing has arisen as an alternative method to thermal treatment for tailoring metal
oxide semiconductors (MOs) that have been used in gas sensors, photocatalysts, solar cells,
or thermistors [23]. Several parameters, such the laser intensity, pulse, or scanning rate,
can be optimized to obtain the desired and controlled oxidation.

Herein, we report a combined study on both the stability under temperature and
laser irradiation of as-synthesized SnO via hydrolysis, as well as the achievement of
SnO2/SnO micropatterning via controlled laser irradiation. After the initial synthesis,
nanoparticles were stored in containers under room conditions for several months. A
complete study using transmission electron microscopy (TEM), X-ray diffraction (XRD),
and Raman spectroscopy was performed. In order to study in detail the stability of the SnO
oxidation to SnO2, thermo-XRD and controlled irradiation with a red or UV laser were
performed. In this last case, a clear patterning was generated on the samples, which opens
the field to micropatterning of complex SnO/SnO2 structures.

2. Materials and Methods
2.1. Synthesis of SnO Nanoparticles and Nanostructures

SnO nanostructures were synthesized following a soft chemistry route based on
hydrolysis [2,8], carried out at room conditions, in contraposition with previous studies
where Ar atmospheres were used [3]. Initially, the selected precursor SnCl2·2H2O (Sigma-
Aldrich purity 99.99%, Darmstadt, Germany) was dissolved in water with continuous
stirring at low temperature. Next, NH4OH (Sigma-Aldrich, Darmstadt, Germany) was
added until pH = 8 was reached and hydrolysis occurred. Then, the temperature was
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raised to 100 ◦C for 2 h. The final product was centrifuged and washed several times until
obtaining neutral pH; finally, it was dried at 50 ◦C for 12 h. The product was stored in
glass vessels.

2.2. Characterization Techniques

The structural characterization of the nanoparticles was carried out by X-ray diffrac-
tion (XRD) in PANanalytical X’Pert Powder equipment (PANanalytical, Malvern, United
Kingdom) using the copper Kα line λCu = 1.5404 Å. Thermo diffractograms were per-
formed with a X’Celerator detector in the range of 23.009◦ to 34.977◦, with a step of 0.017◦

at controlled temperatures in the range of 25–900 ◦C, in steps of 50 ◦C between 50–200 ◦C
(8 min rise, 4 min step), and in steps of 20 ◦C (4 min rise, 4 min step) between 200–800 ◦C,
returning to steps of 50 ◦C from 800–900 ◦C. The microstructural analysis was carried
out in a transmission electron microscope, by analyzing TEM images as well as selected
area (electron) diffraction patterns (SAED/TEM) on a JEOL JEM 1400 plus (Jeol, Japan).
Raman spectroscopy measurements were carried out at room temperature on a Horiba
Jobin-Yvon LabRam Hr800 (Horiba, Kyoto, Japan) using both continuous wave He-Ne laser
(λ = 633 nm) and He-Cd laser (λ = 325 nm). Different neutral filters were used to attenuate
the total laser intensity, when necessary, diminishing the laser intensity from the nominal
5 mW or 13 mW (I0), respectively, for the UV or red laser to approximately 0.5·I0 (D03),
0.25·I0 (D06), 0.1·I0 (D1), or 0.01·I0 (D2) with the use of neutral filters [24]. The laser was
focused onto the sample surface using a 40× objective (numerical aperture = 0.5, Thorlabs
LMU-40X-NUV), which led to a laser spot diameter around 1 µm for the UV laser and a
few microns for the red laser. The scattered light was collected with the same objective
and dispersed with a grating of 2400 L/mm for UV and 600 L/mm for VIS and finally
acquired with an air-cooled CCD detector Synapse. Photoluminescence (PL) was studied
at room temperature in the same confocal microscope with a He-Cd UV laser (λ = 325 nm)
as excitation source. The grating used for PL luminescence was 600 L/mm, using the same
objective and CCD detector.

3. Results
3.1. TEM and XRD

XRD results confirmed that the synthesized nanoparticles mainly consisted of high
crystalline romarchite SnO, with a dominant (101) peak. Only a weak maximum corre-
sponding to SnO2 (110) was observed at 26.5◦ in the XRD diffractograms due to natural
oxidation, while diffraction peaks related to metallic Sn or other Sn-based oxides were not
detected in this case. The as-synthesized SnO was stable under room conditions. Figure S1
shows the XRD patterns acquired from SnO as synthesized and after 1 or 2 years of storage,
when peaks from SnO still dominated the diffractograms after long storage and only a
weak maximum from SnO2 was observed at 26.5◦. In that time span, the weak contribution
corresponding to SnO (001) was quenched, which may have been related to the formation
of small domains of SnO2.

The lattice parameters a = 3.80 Å and c = 4.83 Å were estimated from the analysis of the
corresponding XRD patterns using the SnO planes (101) and (002), as indicated in Table 1.

Table 1. Averaged dimensions and lattice parameters for tin oxide (SnO) estimated from TEM and
XRD measurements.

D(nm) (By TEM) a(Å) (By XRD) c(Å) (By XRD)

9.14 ± 2.58 3.80(1) 4.83(7)

TEM observations (Figure 1a) confirmed the presence of nanoparticles and plates,
as described in a previous work [8]. Jaśkaniec et al. [16] recently suggested that solvent
polarity on the synthesis method is strongly related to these 2D morphology changes. As
an example, SnO can be obtained as platelets [8,17], rose-like particles [13,25,26], and other
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hierarchical architectures [9,10]. In our case, both plates and nanoparticles morphologies
were formed via hydrolysis.
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Figure 1. TEM image of the as-synthesized SnO nanopowder, showing (a) nanoparticles and (b) plate-like structures. Inset
in (a) shows the histogram with the average dimensions, while inset in (b) shows the corresponding selected area electron
diffraction (SAED) pattern.

From the low magnification TEM images analysis, it could be observed that the
dimensions of the nanoparticles ranged from 5 to 16 nm, with averaged dimensions around
9 nm, as confirmed in Figure 1a. In addition, larger plates with dimensions of hundreds
of nm could be also observed (Figure 1b). The SAED pattern included in the inset in Figure
1b confirmed that the nanocrystals corresponded to SnO, although a low amount of SnO2
was also observed in some regions, as confirmed by the weak spots in the SAED pattern, in
agreement with the XRD results.

3.2. Thermo XRD

To analyze the temperature stability of SnO and its oxidation to SnO2, XRD patterns
were acquired in situ during a controlled annealing process in air, as described in the
Materials and Methods section. Figure 2a shows the diffraction patterns acquired in the
range of angles 15–70◦ at two temperatures, 25 ◦C and 900 ◦C.

Figure 2b represents the contouring plot of the intensities from the XRD signal between
23–35◦ corresponding to the different steps in the annealing process from 25 to 900 ◦C. A
detailed graph with the diffractograms recorded at temperatures between 25 and 900 ◦C is
shown in Figure S2.

Peaks in the analyzed diffractograms corresponded only to SnO or SnO2 as they can be
indexed according to the Inorganic Crystal Structure Database (ICSD) files nº 01-072-1012
for SnO and nº 00-001-0625 for SnO2, respectively. Diffraction peaks from metallic Sn or
other oxides such as Sn2O3 and Sn3O4 were not detected in the analyzed range for the
annealing temperatures. Peaks at 39.4 and 45.8◦, marked with * in Figure 2a, correspond to
the Pt sample-holder. It could be observed that oxidation from the initial SnO nanopow-
der into SnO2 started at around 400 ◦C. This oxidation process was nearly completed at
temperatures above 800 ◦C, as observed in Figure 2b. Diverse authors also reported the
oxidation from SnO to SnO2 at temperatures in the range 400–700 ◦C, as a function of the
annealing parameters and the characteristic of the initial SnO nanopowder [13,14]. In gen-
eral, annealing at temperatures higher than 600 ◦C fully transforms the SnO nanoparticles
into the rutile SnO2 phase [27]. Moreover, in some cases an oxidation process involving the
formation of intermediate oxides such as Sn2O3 and Sn3O4 has been reported [28]. In the
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present work, based on the thermodiffraction measurements, a direct oxidation process
from unstable SnO to the more stable SnO2 phase occurred, probably by nucleation and
growth process, without forming intermediate oxides. The thermodynamic phase diagram
of the Sn-O system can be found in [1,29,30], which is in agreement with this work.
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Based on the results depicted in Figure 2b, it was observed that when increasing the
temperature up to 300 ◦C there was no strong oxidation or phase transition and, in addition
to a weak SnO2 (110) maximum at around 26.5◦, only minor shifts to lower angles in the
XRD peaks from SnO were observed, mainly the peak corresponding to the SnO (101)
planes. Actually, the (110) peak from SnO2 rutile appeared and became as significant as the
(101) maximum from SnO romarchite around 400 ◦C [27].

The (101) maximum from SnO observed at 29.9◦, which dominated the XRD pattern
at room temperature, suffered a shift to lower angles as the temperature increased. At
480 ◦C this peak was placed at 29.4◦ and then it shifted again toward higher angles, finally
reaching 29.9◦ at 800 ◦C, although at this high temperature the relative intensity of this
peak was drastically decreased. The shift to lower angles could be related to a thermal
lattice expansion up to 480 ◦C, where the SnO2 phase dominated the XRD pattern. During
the annealing and oxidation process an arrangement of the ions in the SnO lattice may
have taken place, leading to small variations in the lattice constants along to the formation
of SnO2. In this regard, the XRD maximum which exhibits more variation in its position
and intensity corresponds to the (101) planes in romarchite. F. Wang et al. [31] reported a
process in which the chemical coordination of the interstitials Sn cations becomes more
similar to that of cassiterite SnO2 during the oxidation process, which could be related to
the SnO (101) shift during annealing.

3.3. Raman Spectroscopy

In order to study the stability of SnO under irradiation and the possible laser-induced
formation of SnO2 from SnO, Raman spectra from SnO nanopowder were analyzed using
either a red (λ = 633 nm) or a UV (λ = 325 nm) laser, as well as variable laser intensity
based on the employed neutral filters and controlled irradiation exposure time. Tin dioxide
(SnO2) presented two active IR modes (A2u and Eu), four Raman active modes (A1g, B1g,
B2g, and Eg), and two inactive modes (A2g and B1u) [32]. It is commonly reported that Eg

(490 cm−1), A1g (640 cm−1), and B2g (760 cm−1) modes dominate the SnO2 Raman spectra.
These modes are associated with the movement of O anions along the c-axis (Eg) and
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elongation of O−Sn−O and movement of the anions in a symmetric (A1g) and asymmetric
manner (B2g) orthogonal to the c-axis [2].

SnO, often shows two main Raman modes at around 110 and 208 cm−1 which cor-
respond to the B1g and A1g modes, respectively [8,25]. However, there was still some
controversy in the assignment of the Raman modes, as some authors assign the first peak
to Eg based on frozen-phonon DFT calculations [33].

Figure 3a shows Raman spectra acquired with the UV laser in different spots on the
SnO sample using different neutral filters, which can tailor the laser power densities, and
using irradiation times of 60 s. Raman peaks from romarchite SnO were not observed
when irradiating with the UV laser, even with the lowest power density (0.1·I0), at least
within the resolution of the technique. As the laser power density increases, the Raman
signal obtained with the UV laser is dominated only by vibrational modes from SnO2,
the intensity of which rise, showing improved crystallinity of the formed SnO2. After the
UV irradiation, the Eg and A1g modes from SnO2 were clearly observed in the Raman
spectra, but the former was slightly displaced to lower wavenumbers 468 cm−1, probably
due to the initial lower crystallinity of the formed SnO2 or due to temperature shift of
the phonon modes. As the irradiation density and duration increased, not only did the
relative intensity of the Raman modes increase but also their positions were closer to the
expected for SnO2. This formation of SnO2 from SnO by laser irradiation was irreversible,
as expected, due to the higher stability of SnO2. Figure S3 shows Raman spectra acquired
using the same filter but with variable irradiation time (60 or 600 s) where peaks from SnO2
increased for longer irradiation.
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Figure 3. Raman spectra of the SnO sample with different energy density irradiations obtained with (a) UV laser (λ = 325 nm)
or a (b) red laser (λ = 633 nm). Inset in (b) shows zoomed the region between 375–800 cm−1.

As irradiation with a UV laser induces the oxidation from SnO to SnO2, a red laser
was also employed to achieve a deeper understanding of the intermediate steps in the
transition from romarchite SnO to cassiterite SnO2. Raman spectra acquired with the red
laser (λ = 633 nm) and using diverse neutral filters to modify the laser power density are
shown in Figure 3b. An irradiation time of 200 s was used for the spectra acquisition.
In this case, when using the lowest laser power density (0.1·I0), the formation of SnO2
was avoided, as only Raman peaks from SnO centered at 110.5 cm−1 and 208.6 cm−1 [34]
could be clearly distinguished in the corresponding Raman spectrum. However, when
using higher laser power densities, in addition to these SnO vibrational modes, some
other new Raman peaks could be observed, mainly in the range 100–200 cm−1. Two main
peaks centered at 136 and 165 cm−1 were clearly distinguished either using higher power
intensity (I0) or increasing exposition time with lower power intensity (0.5·I0). Guillén
et al. [35] attribute these peaks to intermediate SnOx oxides, mainly to monoclinic Sn3O4,
as also confirmed by other authors [36]. These results point out an intermediate oxidation
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from SnO to SnO2 by the formation of intermediate Sn3O4 when the red laser power density
was not high enough. In addition, when the red laser power was maximum (I0), formation
of SnO2 was promoted as wide modes appeared in the region between 450–700 cm−1

(inset in Figure 3b), which could be attributed to the Eg and A1g modes from SnO2, also
observed by UV irradiation (Figure 3a), although with much lower intensity in this case.
It should be noted that contrary to the direct formation of SnO2 from SnO by thermal
annealing, confirmed by XRD analysis, in this case either complete transition to SnO2 or
formation of intermediate SnOx phases could be also promoted as a function of the laser
irradiation conditions.

3.4. Laser-Induced Phase Transition

Increasing UV laser irradiation was shown to induce a phase transition from SnO
to SnO2 with minimum exposure time. Increasing this time enhanced the oxidation
process and promoted SnO2 formation. SnO nanopowder was irradiated continuously
with a UV laser using a power density of 0.5·I0, while Raman spectra were acquired
in the same point each minute for 40 minutes. As observed in the inset in Figure 4a
continuous laser irradiation led to higher intensity spectra and narrow and well-centered
peaks corresponding to the SnO2 modes, such as A1g. Peak intensities as a function of the
irradiation duration in Figure 4a could be fitted to the Johnson–Mehl–Avrami–Kolmogorov
(JMAK) equation [37]:

X = 1 − exp(−Ktn)

where, X is referred to the volume fraction that is transformed in the irradiation zone, K
is the effective rate constant, and n is the Avrami exponent. This exponent depends on
the mechanism of nucleation and growth. In this case we considered that the volume
transformed was proportional to the measured Raman intensity obtained by subtraction of
a linear profile background.
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The JMAK equation has often been employed to describe laser-induced phase tran-
sitions from metastable phases [24] or to describe crystallization kinetics. In this case
the transformation from SnO to SnO2 could not be described with this equation as the
transformation for high laser energy densities occurred very fast. However, evolution and
crystallization of the SnO2 formed during the initial irradiation stages could be described
with the fit depicted in Figure 4b. In this case, the calculated Avrami exponent had a value
close to n = 1, which corresponds to a diffusion controlled bi-dimensional reaction with
nucleation site saturation. Hence, increasing irradiation time enhanced SnO2 crystallinity
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Advantage can be taken from the laser-induced oxidation from SnO to SnO2 in order
to achieve spatial controlled SnO/SnO2 micropatterning. Using a monitored stage, the
UV laser with the highest laser intensity I0 could irradiate different areas in the sample
with micrometric resolution as a function of the laser spot size, thus leading to a spatial
controlled formation of SnO2. Following this process, SnO or SnO2 regions could be
promoted in the samples as a function of the selected patterning. In this case, Figure 5a
shows the bright (SnO2) or dark (SnO) stripe-patterning formed on the surface of the
sample after a controlled irradiation with the UV laser only in the bright areas. After the
controlled UV irradiation, Raman spectra were acquired in selected points from the regions
in Figure 5a using the UV laser and the lowest power density (0.1·I0) to avoid formation
of SnO2 during measurements. The spectra acquired in region (i) corresponded with the
Raman signal from SnO2, confirming oxidation from SnO to SnO2 only in the irradiated
regions, as shown in Figure 5b. Therefore, the controlled UV laser irradiation could tailor
the oxidation process leading to either n-type SnO2 and/or p-type SnO spatial distribution
following a micrometric patterning. The availability of both n and p type conductivity in
Sn oxides allows the potential development of bipolar devices based on p-n heterojunctions
controlled at the microscale. Moreover, intermediate SnOx oxides could be also formed if
needed as a function of the irradiation conditions.
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3.5. Photoluminescence

SnO bandgap is commonly reported to be between 2.5 eV (~496 nm) and 3.4 eV
(~364 nm), therefore, an UV laser of λ = 325 nm (~3.8 eV) was used as excitation source
in order to get information from all the luminescent processes. The oxidation to SnO2 by
UV irradiation took place very fast, as observed during Raman analysis; thus, the obtained
photoluminescence signal resembled the characteristic luminescence spectrum from SnO2.
In this case, neutral filters were also used to reduce the laser power intensity. Figure 6a
shows PL spectra from SnO acquired with the UV laser using 0.1·Io laser power density
in the same spot, before and after irradiating the sample with the maximum (Io) intensity
for 10 s.

The total intensity of the PL signal was increased when using higher laser power
densities, as expected. For the PL spectrum acquired with the highest laser intensity (I0), the
dominant emission was centered at around 2.25 eV, as shown in Figure 6a. Deconvolution
into Gaussian functions of the spectra shown in Figure 6a can be found in Figure S4.
Additionally, a shoulder at about 3 eV up to 3.5 eV, could be observed. This spectrum can
be attributed to SnO2, as this material normally shows characteristic emissions at 1.94 eV
and 2.25 eV associated with oxygen vacancies-related defects: ~2.50 eV due to surface
defect states [2,38] and ~3 eV due to transitions involving Vo” levels.
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Before the irradiation, the PL spectrum was characterized by two main emissions
centered at around 2 and 2.3 eV. These emissions could be due to high defective SnO2,
although the presence of SnO, not detected by UV Raman analysis, could not be completely
disregarded, as some authors reported emissions from SnO around 2 to 2.3 eV due to defects
such as Sn vacancies and O vacancies, and at ~3 eV related to band-edge emissions [8,39].
The differences on the PL spectra acquired using different filters is shown in Figure 6b,
represented as chromaticity coordinates calculated from the PL spectra according to the
Comission Internationale de l’Eclairage (CIE 1931) standard [40,41]. In any case, careful
attention should be paid during analysis of discussion of the PL signal from SnO, as
possible formation of SnO2 during irradiation should be considered.

4. Conclusions

Crystalline SnO nanoparticles and plates were synthesized via a hydrolysis method
that allowed achievement of a large amount of SnO nanopowder, avoiding an atmosphere-
control during the synthesis. The nanoparticles dimensions ranged from 5 to 16 nm, as
confirmed by TEM observations. XRD measurements confirmed the minor oxidation
and stability of the as-synthesized SnO nanopowder stored at room conditions for up
to 24 months. The oxidation from SnO to SnO2 was promoted by thermal annealing or
by controlled laser irradiation. Temperatures above 300 ◦C were required to initiate the
oxidation from SnO to SnO2 which was completed at 800 ◦C, following a nucleation and
growth process without formation of intermediate SnOx, as confirmed by thermodiffraction
measurements. On the contrary, by using UV or red laser irradiation the transition from
SnO to SnO2 could be controlled, assisted by the formation of intermediate Sn3O4, as
confirmed by Raman spectroscopy. Careful attention should be paid during the PL and
Raman analysis, as the use of the laser as excitation source can induce formation of SnO2
during measurement, thus leading to possibly misleading results and discussion. In this
work, the evolution from SnO to SnO2 was studied as a function of the laser excitation
source (UV and red laser), the laser power density (controlled by using neutral filters),
and the irradiation duration in order to achieve deeper knowledge and control of the
oxidation process. The evolution of the oxidation of the SnO2 promoted by UV laser
irradiation obeys Avrami behavior. Finally, advantage was taken from the controlled SnO
oxidation and a tailored spatial SnO/SnO2 micropatterning was developed based on a
controlled laser irradiation. This laser-induced micropatterning can be of potential interest
for the fabrication of p-n devices based in all Sn-oxides with applicability in electronic,
optoelectronic, and sensing devices.
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