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Abstract: Expansins play important roles in root growth and development, but investigation of
the expansin gene family has not yet been reported in Ipomoea trifida, and little is known regarding
storage root (SR) development. In this work, we identified a total of 37 expansins (ItrEXPs) in
our previously reported SR-forming I. trifida strain Y22 genome, which included 23 ItrEXPAs, 4
ItrEXPBs, 2 ItrEXLAs and 8 ItrEXLBs. The phylogenetic relationship, genome localization, subcellular
localization, gene and protein structure, promoter cis-regulating elements, and protein interaction
network were systematically analyzed to reveal the possible roles of ItrEXPs in the SR development of
I. trifida. The gene expression profiling in Y22 SR development revealed that ItrEXPAs and ItrEXLBs
were down-regulated, and ItrEXPBs were up-regulated while ItrEXLAs were not obviously changed
during the critical period of SR expansion, and might be beneficial to SR development. Combining
the tissue-specific expression in young SR transverse sections of Y22 and sweetpotato tissue, we
deduced that ItrEXLB05, ItrEXLB07 and ItrEXLB08 might be the key genes for initial SR formation
and enlargement, and ItrEXLA02 might be the key gene for root growth and development. This work
provides new insights into the functions of the expansin gene family members in I. trifida, especially
for EXLA and EXLB subfamilies genes in SR development.

Keywords: Ipomoea trifida; expansin; evolution; gene expression; storage root development

1. Introduction

Plant cell walls consist of cellulose microfibrils and matrix polysaccharides, and cell
walls serve as protective barriers, and provide structure supporting the size and shape of
the cells [1]. Expansins are cell wall-loosening proteins with non-enzymatic activity that
participate in the regulation of cell wall extension and relaxation by inducing the slippage
of cellulose microfibrils, thus promoting cell enlargement or development [2]. Plant ex-
pansins are typically 250–275 amino acids in length and are composed of DPBB_1 and
Pollen_allerg_1 domains preceded by a signal peptide (SP); on the basis of the phylogenetic
relationship of protein sequences, plant expansins can be divided into α-expansin (EXPA),
β-expansin (EXPB), expansin-like A (EXLA) and expansin-like B (EXLB) subfamilies [3].
EXPA and EXPB have been demonstrated to cause cell wall loosening, whereas little is
known about EXLA and EXLB [4].

Expansin genes have been identified in many plants, such as Arabidopsis thaliana,
rice, maize, and wheat [3,5] and many studies have focused on root elongation, root hair
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initiation and lateral root formation [6–10]. Sweetpotato (Ipomoea batatas), the seventh most
important food crop species worldwide, is harvested from its below-ground storage root
(SR) [11]. Sweetpotato is a hexaploid (B1B1B2B2B2B2) with 90 chromosomes, which has
a high degree of heterozygosity and high number of repetitive sequences [12,13], thus
hindering gene identification and functional research, especially those involved in SR
development. To date, only several genes have been reported involved in sweetpotato
SR development, such as IbEXP1, IbMADS1, SRD1, SRF1, KNOXI and IbBBX24 [14–18].
Among them, IbEXP1 is the first expansin gene that has been experimentally shown to
be involved in sweetpotato SR development [14]; and other two expansin genes, IbEXP2
and IbEXPL1, have also been reported to be related to sweetpotato SR development at
the transcriptional regulation level [15,16]. However, the function of other genes in the
expansin gene family is still unknown due to the limitation of sweetpotato genome research.
I. trifida is the putative progenitor of sweetpotato, and is a species complex with diploids to
hexaploids [19–21]. The diploid I. trifida has a relatively simple genome and has gradually
become a model for sweetpotato research, especially with respect to SR formation [22–26].
Therefore, research on expansin genes and their roles in SR development of I. trifida could
be helpful for an improved understanding of the mechanisms underlying SR development
in both I. trifida and sweetpotato.

In this work, the diploid I. trifida strain Y22 [25], which has typical SR-forming char-
acteristics, was used as material. The possible roles of the expansin gene family in SR
development were systematically identified and predicted. Combining different analyses,
we deduced that the expansin gene family might play an important role in initial SR for-
mation and SR swelling, ItrEXLB05, ItrEXLB07 and ItrEXLB08 might be the key genes for
initial SR formation and enlargement, and ItrEXLA02 might be the key gene for root growth
and development. Our work provides evidence for further studying the function of specific
expansin genes in I. trifida and could be helpful for further using in genetic improvement
of sweetpotato.

2. Materials and Methods
2.1. Identification of Expansin Genes in I. trifida

Y22 is a diploid I. trifida strain and has good SR-forming characteristics [25]. The
genome and annotation file (GFF3 format) of Y22 were provided by our research group [25].
The expansin protein sequences of Arabidopsis thaliana were obtained from TAIR (https://
www.arabidopsis.org/ (accessed on 4 December 2021)). Firstly, the longest protein sequence
of each gene was obtained by removing any alternatively spliced sequences based on the
genome annotation file (with a Perl script). Secondly, the whole genome protein sequences
of I. trifida were scanned as query sequences with BLASTP (evalue < 1 × 10−5) [27] against
the standard expansin protein sequences of A. thaliana, and then the homologous expansin
sequences were obtained. Thirdly, these protein sequences were validated with the two
protein families HMM models DPBB_1 (PF03330) and Pollen_allerg_1 (PF01357) in Pfam
database (33.1) [28] by HMMER (3.3.1) [29] (evalue < 1 × 10−5 and coverage of HMM model
≥ 0.25) method, and those protein sequences containing both DPBB_1 and Pollen_allerg_1
domains were retained. Finally, the candidate sequences were further confirmed using
SignalP-5.0 (https://services.healthtech.dtu.dk/service.php?SignalP-5.0 (accessed on 17
December 2021)), and the proteins containing an SP were considered as ItrEXPs. Then,
the chemical properties and subcellular localization of all expansins were predicted by
ExPASy [30] and Plant-mPLoc (2.0) [31], respectively.

2.2. Sequence Alignment and Phylogenetic Analysis

The expansin proteins from Y22, A. thaliana, Ipomoea nil [32] and Ipomoea triloba [24]
were subsequently included in the phylogenetic analysis. Multiple sequence alignment
and neighbor-joining (NJ) phylogenetic tree were performed by the MEGA X program with
default parameters. The phylogenetic tree was then visualized by the Evolview v3 [33].

https://www.arabidopsis.org/
https://www.arabidopsis.org/
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2.3. Chromosomal Localization and Gene Duplication Analysis

The chromosomal positions and collinearity of all the ItrEXPs were analyzed from the
GFF3 file. Synteny analysis within the Y22 genome was conducted by MCscan (Python
version) [34], after which TBtools (v1.098685) [35] was used to display the segmentally
duplicated ItrEXPs. To analyze the duplication events of all the ItrEXPs resulting from a
WGT event [24,25], the Coffea canephora genome sequence information [36] was downloaded
from the NCBI database (https://www.ncbi.nlm.nih.gov/ (accessed on 4 December 2021)).
The microsynteny between the C. canephora and Y22 genomes was analyzed and visualized
by MCscan (Python version) [34].

2.4. Conserved Motif, Gene Structure, and Promoter Analysis

The motifs were predicted by the MEME (5.4.1) (http://meme-suite.org/tools/meme
(accessed on 8 January 2022)). To gain insights into the gene structure, the GFF3 information
of all the ItrEXPs was extracted by a Perl script, and then GSDS (v2.0) [37] was used to
generate gene structure graphs. The potential cis-elements in the promoter region was
predicted by plantCARE [38], then visualized by TBtools (v1.098685) [35].

2.5. Prediction of Protein Interaction

The protein interaction networks of expansins were predicted by STRING [39] based
on A. thaliana homologous proteins, and the network map was modified by Adobe Illustra-
tor CS6.

2.6. RNA-Sequencing (RNA-Seq) and Analysis

The RNA-seq datas from samples taken at four typical stages of Y22 SR development,
including the adventitious root (AR, S0), initial storage root (ISR, S1, diameter ≤ 2 mm),
young storage root (YSR, S2, 5–8 mm), and mature storage root (MSR, S3, ≥20 mm) stages,
according to the reference [25]. Total RNA was extracted using InvitrogenTM TRIzolTM

reagent (Life Technologies Co., Carlsbad, CA, USA) and treated with RNase-free DNase
I (Promega Co., Madison, WI, USA), respectively. The RNA concentration and purity
were measured using a NanoDrop 2000 (Thermo Fisher Scientific, Co., Ltd., Waltham, MA,
USA). RNA integrity was assessed using RNA Nano 6000 Assay Kit of Agilent Bioanalyzer
2100 system (Agilent Technologies Co., Ltd., Palo Alto, CA, USA). A total amount of 1 µg
RNA per sample was used as input material for sequencing library. The libraries were
generated using the NEBNext Ultra RNA Library Prep Kit (New England BioLabs, Ltd.,
Ipswich, MA, USA) and sequenced by the HiSeq Xten (Illumina Inc., San Diego, CA, USA).
The RNA-seq raw reads was filtered and trimmed by Trimmomatic [40], the RNA-seq clean
reads mapping to Y22 genome was conducted by TopHat2 [41] with the same parameters
as the reference [25]. The RPKM (reads per kilobase per million mapped reads) value and
read count were calculated by StringTie2 [42] and HTSeq [43], respectively. Expression
count matrix files were used to analyze expression differences via DESeq2 [44] (p < 0.05).

2.7. Quantitative Real-Time PCR (qRT-PCR) Analysis

Total RNA isolated for RNA-seq was used for qRT-PCR analysis the expression of
random selected expansin genes in four typical stages of Y22 SR development. The YSR
from Y22 and sweetpotato cv. Nancy Hall were sliced transversely into five sections as in
the reference [25], for analysis the expression of ItrEXPs in the different sites of growing SR.
Total RNA was isolated as described above for RNA-Seq, and reverse transcribed using a
PrimeScript™ RT reagent Kit with gDNA Eraser (TaKaRa Biomedical Technology (Dalian)
Co., Ltd., Dalian, China) in accordance with the manufacturer’s instructions. qRT-PCR
was performed using a ChamQ Universal SYBR qPCR Master Mix (Vazyme Biotech Co.,
Ltd., Nanjing, China) in a Roche LightCycler 96 (Roche Diagnostics, Mannheim, Germany)
according to the manufacturer’s instructions. The PCR conditions were 5 min at 95 ◦C,
followed by 40 cycles of 10 s at 95 ◦C, 10 s at 58 ◦C and 10 s at 72 ◦C. I. trifida Actin gene was
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used as an internal control [25]. The primer pairs of selected genes are listed in Table S1.
The 2(-Delta Delta C(T)) method was used for calculating the gene relative expression [45].

2.8. Gene Expression Analysis of Development Responsive Interacted Proteins

The sequences of development related interaction proteins were extracted from
A. thaliana based on their protein IDs and used as standard sequences. The homologous of
the interaction proteins in Y22 genome were obtained by BLASTP (evalue < 1 × 10−5) [27]
against these standard protein sequences of A. thaliana. The gene expression was calculated
using the results of RNA-seq analysis by the homologous gene ID.

3. Results
3.1. Identification and Characterization of Expansin Family Members in Y22

Based on 36 A. thaliana expansin proteins from TAIR, a total of 37 ItrEXPs were
identified in Y22 genome, and all these ItrEXPs contain both the conserved domains of the
DPBB_1 (PF03330) and Pollen_allerg_1 (PF01357) and expansin SP. The 37 ItrEXPs were
classified into four subfamilies (ItrEXPA, ItrEXPB, ItrEXLA and ItrEXLB), of which there
were 23, 4, 2 and 8 members, respectively (Table 1). Further analysis revealed that the
number of amino acid (AA) residues varied between 238 and 310 with an average of 258;
the average molecular weight (MW) was 27.81 kD, ranging from 25.49 to 32.70 kD; and the
isoelectric point (pI) ranged from 4.62 to 10.42, with 14 proteins being acidic and 23 being
alkaline (Table 1). The subcellular localization results suggested that all the ItrEXPs were
located on the cell wall, indicating that their function is related to cell growth.

Table 1. Details of the 37 ItrEXPs in Y22 genome.

Subfamily Gene Name Gene ID pI Mw/kD Length/AA Subcellular
Localization

EXPA ItrEXPA01 Itr.Sc0000011.164 8.58 29.74 273 cell wall
EXPA ItrEXPA02 Itr.xfSc0000576.12 10.42 28.18 254 cell wall
EXPA ItrEXPA03 Itr.Sc0000007.290 9.48 27.92 257 cell wall
EXPA ItrEXPA04 Itr.Sc0000051.50 9.00 26.88 251 cell wall
EXPA ItrEXPA05 Itr.Sc0000046.34 9.34 26.05 248 cell wall
EXPA ItrEXPA06 Itr.Sc0000046.36 9.34 26.05 248 cell wall
EXPA ItrEXPA07 Itr.xfSc0000007.14 8.07 26.96 251 cell wall
EXPA ItrEXPA08 Itr.xfSc0000007.15 8.07 26.54 249 cell wall
EXPA ItrEXPA09 Itr.Sc0000078.10 9.38 28.29 260 cell wall
EXPA ItrEXPA10 Itr.Sc0000001.78 9.60 27.98 259 cell wall
EXPA ItrEXPA11 Itr.xfSc0000049.46 8.56 28.66 263 cell wall
EXPA ItrEXPA12 Itr.Sc0000003.235 9.28 27.58 258 cell wall
EXPA ItrEXPA13 Itr.Sc0000003.134 8.79 27.55 256 cell wall
EXPA ItrEXPA14 Itr.Sc0000025.53 8.81 26.02 246 cell wall
EXPA ItrEXPA15 Itr.Sc0000014.125 9.27 28.29 260 cell wall
EXPA ItrEXPA16 Itr.Sc0000087.3 6.28 31.91 305 cell wall
EXPA ItrEXPA17 Itr.Sc0000013.190 7.05 28.18 259 cell wall
EXPA ItrEXPA18 Itr.xpSc0079065.36 6.87 26.43 244 cell wall
EXPA ItrEXPA19 Itr.xpSc0079065.38 6.11 26.42 243 cell wall
EXPA ItrEXPA20 Itr.xpSc0079065.39 9.35 26.50 240 cell wall
EXPA ItrEXPA21 Itr.xpSc0079065.40 6.00 26.29 241 cell wall
EXPA ItrEXPA22 Itr.xfSc0000000.33 9.82 27.89 257 cell wall
EXPA ItrEXPA23 Itr.xfSc0001203.1 9.30 27.68 258 cell wall
EXPB ItrEXPB01 Itr.xfSc0000185.16 6.29 28.52 269 cell wall
EXPB ItrEXPB02 Itr.Sc0000024.30 8.74 28.41 262 cell wall
EXPB ItrEXPB03 Itr.xfSc0000047.33 6.19 28.09 263 cell wall
EXPB ItrEXPB04 Itr.xfSc0001448.1 6.92 28.04 263 cell wall
EXLA ItrEXLA01 Itr.Sc0000050.70 5.13 28.57 266 cell wall
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Table 1. Cont.

Subfamily Gene Name Gene ID pI Mw/kD Length/AA Subcellular
Localization

EXLA ItrEXLA02 Itr.Sc0000020.14 6.96 29.41 268 cell wall
EXLB ItrEXLB01 Itr.xpSc0079072.22 7.99 27.39 251 cell wall
EXLB ItrEXLB02 Itr.xfSc0000061.14 5.71 25.49 238 cell wall
EXLB ItrEXLB03 Itr.xfSc0000061.13 6.73 28.99 259 cell wall
EXLB ItrEXLB04 Itr.xfSc0000239.16 8.96 26.56 248 cell wall
EXLB ItrEXLB05 Itr.Sc0000071.6 6.14 28.24 253 cell wall
EXLB ItrEXLB06 Itr.xfSc0000002.83.1 6.59 32.70 310 cell wall
EXLB ItrEXLB07 Itr.xfSc0000002.86 8.73 27.01 246 cell wall
EXLB ItrEXLB08 Itr.xfSc0000002.103 4.62 27.46 258 cell wall

3.2. Phylogenetic Analysis of Expansins

To analyze the evolutionary relationships of expansin proteins between I. trifida and
its wild relatives, the homologous proteins from Y22, I. nil [32] (Table S2), I. triloba [24]
(Table S2) and A. thaliana were used to construct an unrooted NJ phylogenetic tree (Figure 1).
According to the phylogenetic tree, the expansins could be divided into four clades, which
correspond to the EXPA, EXPB, EXLA and EXLB subfamilies, respectively. Compared with
I. triloba, Y22 has less members in EXPA, EXPB and EXLB subfamilies, and has similar
members in EXLA. Compared with I. nil, Y22 has one more member in EXLA and EXLB
subfamilies, respectively. In the phylogenetic tree, expansin members of Y22, I. triloba and I.
nil in subclass I and III of EXPA subfamily, and in EXPB and EXLA families, were together
in a small clade, respectively, which indicated that the neighboring expansin proteins of I.
trifida (Y22), I. nil and I. triloba have a more closely phylogenetical relationship (Figure 1).

3.3. Chromosomal Location and Gene Duplication

The genomic location results showed that the ItrEXPs were distributed unevenly on the
chromosomes of Y22, and the numbers of every chromosome was quite different. The chro-
mosome 15 (Chr15) with nine ItrEXPs had the highest density, but Chr10 had no ItrEXPs
(Figure 2a). To further reveal the duplication type of the ItrEXPs, synteny analysis within
the Y22 genome was conducted by MCscan [34]. The results showed that nine tandem
duplication genes were found to form four gene clusters (ItrEXPA05/ItrEXPA06 on Chr02,
ItrEXPA07/ItrEXPA08 on Chr04, ItrEXLB02/ItrEXLB03 on Chr08, ItrEXPA19/ItrEXPA20/
ItrEXPA21 on Chr15), and seven segmental duplication events with fourteen ItrEXPs were
discovered (Figure 2a, Table S3). These results indicated that not only tandem duplication
but also segmental duplication occurred throughout the evolution of ItrEXPs gene family.

To further explore the phylogenetic relationship of expansin genes resulting from the
WGT event [24,25], we compared the genome collinearity between Y22 and C. canephora.
Seventeen expansin genes of C. canephora exhibited a syntenic relationship with 18 Itr-
EXPs of Y22 (Table S4). Among them, there were one-to-one, one-to-two (i.e., gene-
GSCOC_T00016583001 to ItrEXPA13 and ItrEXPA17), and one-to-three (i.e., gene-GSCOC_
T00028253001 to ItrEXPA12, ItrEXPA10 and ItrEXPA15) syntenic genes between C. canephora
and Y22 (Figure 2b–d), indicating that there are some expansin family members of the
I. trifida (Y22) that underwent duplication or triplication in the WGT event throughout
evolutionary history. Besides, there were two-to-one (i.e., gene-GSCOC_T00000261001 and
gene-GSCOC_T00037639001 to ItrEXLB08) and four-to-one (i.e., gene-GSCOC_T00027140001,
gene-GSCOC_T00027139001, gene-GSCOC_T00027142001 and gene-GSCOC_T00027143001
to ItrEXLB03) syntenic genes between C. canephora and Y22 (Figure 2e,f), indicating that
gene loss may occur in the ItrEXP gene family within or after the WGT event.
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Figure 1. Phylogenetic tree of expansin proteins. The phylogenetic tree was constructed by using the
sequences of all expansin proteins in Y22 (Itr: 37), I. nil (Ini: 46) (Table S2), I. triloba (Ilb: 45) (Table S2)
and A. thaliana (AT: 35). The genes of the same species are highlighted by the same marker and color.
Red stars: Y22, Blue checkmarks: I. nil, Green empty triangles: I. triloba, Orange circles: A. thaliana.
The subclass labels I to IX of EXPA are alternately marked with dark green and green.
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Figure 2. Chromosomal distribution and syntenic relationships of Y22 ItrEXPs. (a) The syntenic
relationships of ItrEXPs in Y22 genome. The Chr0 means the scaffold that is unanchored to the
chromosome level. The gray lines show the syntenic regions. The genes located in syntenic regions
are marked with red lines; otherwise, they are marked with green lines. (b–f) Microsynteny analysis of
expansin genes between the Y22 and C. canephora genomes. The expansin genes and their orthologous
syntenic genes in C. canephora are linked by red lines, and the others are linked by gray lines. One-to-
one, one-to-two, one-to-three, two-to-one and four-to-one syntenic genes between C. canephora and
Y22 genomes are shown in (b), (c), (d), (e), and (f), respectively.

3.4. Protein Domains and Gene Structure Analysis

The analysis of motif diversity across all ItrEXPs in Y22 showed that a total of 15 differ-
ent motifs were identified (Table S5); the protein structure of each subfamily was relatively
conserved, but still had some differences (Figure 3a,b). Such as the ItrEXPA subfamily, the
compositon of motifs 1, 2, 3, 6 and 7 were conserved among the members; however, the
motifs 5, 8, 9, 10, 14 and 15 of ItrEXPA16, ItrEXPA18, ItrEXPA19, ItrEXPA20 and ItrEXPA21
were different. In the ItrEXPB subfamily, compared with ItrEXPB01, ItrEXPB03 and Itr-
EXPB04, ItrEXPB02 lacked motifs 7 and 12. All the results indicated that the ItrEXPs with
the same motifs may perform similar functions in I. trifida (Y22).

Furtherly, the intron/exon structural diversity of the ItrEXPs, was performed. The
results showed that the intron numbers of ItrEXPs ranged from zero to four (Figure 3c).
Seventeen of 23 ItrEXPA members had 2 introns, ItrEXPA12 and ItrEXPA23 had 1 intron,
but ItrEXPA21 had no introns; however, most of the ItrEXPB, ItrEXLA and ItrEXLB genes
had 3 introns except ItrEXLA02, and ItrEXLB08 had 4 introns, suggesting that there is a
tight evolutionary relationship between members in the same subfamily. These differences
in intron loss or gain may be due to the loss or acquisition of introns throughout long-
term evolution.
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Figure 3. Phylogenetic relationships, motif compositions and gene structure of expansins in Y22.
(a) Phylogenetic tree of 37 ItrEXPs in Y22. The expansins were classified into α-expansin (ItrEXPA),
β-expansin (ItrEXPB), expansin-like A (ItrEXLA) and expansin-like B (ItrEXPB) groups. (b) Different
motif compositions of ItrEXPs; the conserved motifs are represented by boxes with different colors,
and their protein sequences are listed in Supplementary Table S5. (c) Gene structure organization of
ItrEXPs; the introns and exons are also marked in the figure.

3.5. Potential Cis-Element Analysis in Gene Promoter Regions

To further reveal the function of ItrEXPs, the cis-elements in promoter regions were pre-
dicted by plantCARE [38]. The results showed that there were many types of cis-elements,
including core elements (CAAT-box and TATA-box) and binding sites, development-related,
hormone-related, light-related, and stress/defense-related elements. Eleven development-
responsive elements (A-box, TCA-element, RY-element, CAT-box, GCN4_motif, O2-site,
HD-Zip 1, CCAAT-box, circadian, SARE and MBSI) were found in most of the ItrEXPs
(Figure 4), indicating that most of the ItrEXPs might play a crucial role in development. In
addition, 8 hormone-responsive cis-elements (the auxin, JA, GA and ABA related elements)
(Figure 4), 24 light and 6 stress/defense responsive cis-elements (Figure S2) were found. A
previous study has shown that hormone, light and stress/defense response could change
the acid environments of cell wall, while expansins are ‘acid-induced growth’ proteins [2].
All the results indicated that ItrEXPs might be involved in the crosstalk between different
hormone and environment signaling pathways to change the acid environments of cell
walls, thus regulating growth and development.
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Figure 4. Potential cis-element prediction in the promoter regions of ItrEXPs. Left part shows
the locations of cis-elements in the promoter regions, right part shows the cis-element types and
their symbols.

3.6. Protein Interaction Network of Expansins

To explore the potential regulatory network of ItrEXPs in Y22, the protein interaction
networks were predicted by STRING [39]. The results showed that ItrEXPA07 might interact
with three ItrEXPAs, and ItrEXPA22 with five ItrEXPAs; notably, ItrEXLA01 might interact
with ItrEXLA02 and ItrEXLB08 (Figure 5a), suggesting that protein–protein interactions
occur not only within subfamilies, but also between subfamilies. We also found that ItrEXPs
might interact with some development-related proteins (i.e., HBI1, ATPMEPCRC, CEV1,
XTHs, XTR6, TCH4, EXO, EXL4, MGD2, VGD1, KIN13A). Among them, HBI1 may act as
a positive regulator of cell elongation downstream of multiple external and endogenous
signals by direct binding to the promoters and activation of the ItrEXPA21 [39]; XTHs,
XTR6 and TCH4 may interact with ItrEXPAs, ItrEXPBs and ItrEXLAs, which could cleave
and religate xyloglucan polymers and participate in cell wall construction (Figure 5b) [39];
KIN13A may interact with ItrEXLBs, which could participate in cell wall construction of
metaxylem vessel cells [39]. In addition, expansin proteins might interact with the pectin
lyase-like superfamily proteins (i.e., AT3G09540, AT3G27400, AT4G24780, PME5 and QRT3)
and regulating factors (i.e., GRF1, GRF5, AN3 and RALF1) (Figure 5b). These results
indicated that expansin proteins may participate in the extension and reconstruction of cell
wall and promote cell enlargement. It was noted that ten ItrEXPAs might interact with the
auxin-responsive proteins (AT2G21200, SAUR15, SAUR19 and IAA19) and GA-regulated
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proteins (GASA5 and GASA6) (Figure 5c), which could change the acid environments of
cell wall. Taken together, the results of protein interaction networks revealed that ItrEXPs
might involved in the extension and reconstruction of cell wall and participate in hormone
signaling pathways and play an important role in growth and development.
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Figure 5. The potential interaction network of ItrEXPs. (a) The potential interaction network be-
tween ItrEXPs. (b) The potential interaction network between ItrEXPs and development related
proteins. ATPMEPCRC, putative pectinesterase/pectinesterase inhibitor 26; AN3, arabidopsis grf1-
interacting factor 1; CEV1, cellulose synthase a catalytic subunit 3; GRF5, growth-regulating factor;
HBI1, basic helix-loop-helix (bhlh) DNA-binding superfamily protein; IRX14, nucleotide-diphospho-
sugar transferases superfamily protein; LBD18, LOB domain-containing protein 18; RALF1, rapid
alkalinization factor 1; sks17, SKU5 similar 17; XTH, xyloglucan endotransglucosylase/hydrolase
protein; AT3G09540, AT3G27400, AT4G24780, PME5, and QRT3, pectin lyase-like superfamily pro-
tein; XTR6, probable xyloglucan endotransglucosylase/hydrolase protein 23; TCH4, xyloglucan
endotransglucosylase/hydrolase family protein; EXO, phosphate-responsive 1 family protein; EXL4,
exordium like 4; MGD2, monogalactosyldiacylglycerol synthase 2; VGD1, plant invertase/pectin
methylesterase inhibitor superfamily; KIN13A, P-loop containing nucleoside triphosphate hydrolases
superfamily protein. (c) The potential interaction network between ItrEXPs and hormone related
proteins. AT2G21200, SAUR15, and SAUR19 belong to SAUR-like auxin-responsive protein family;
GASA5, GA-regulated protein 5; GASA6, GA-regulated family protein; IAA19, IAA inducible 1.
Lines between proteins represent protein-protein interaction.

3.7. Expression Analysis of ItrEXPs in Y22 SR Development

To determine the probable roles of ItrEXPs in Y22 SR development, roots at four
typical stages, including the AR, ISR, YSR and MSR stages, were sampled for RNA-seq
(Figure 6a). The results showed that 22 members out of the 37 ItrEXPs were expressed
(RPKM > 1) during Y22 SR development (Figure 6b). Among the 12 expressed ItrEXPAs,
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six genes were down-regulated, three genes were up-regulated slightly; two of the three
ItrEXPBs were up-regulated; and four of the six ItrEXLBs were down-regulated. The results
showed that the down-regulated expression of ItrEXPA and ItrEXLB subfamily genes might
be required during SR development, indicating that ItrEXPAs and ItrEXLBs might have
similar function, which are similar to the reported low expression of IbEXP1 to promote
SR enlargement [14]. While ItrEXPBs might have the opposite function from ItrEXPAs
and ItrEXLBs, requiring up-regulated expression during SR development. Notably, the
expression levels of ItrEXLB05, ItrEXLB07 and ItrEXLB08 in the AR stage were more than
ten times higher than those in the key stages of ISR, suggesting that these three genes might
play a key regulatory role in SR formation (Figure 6b). Interestingly, the expression level of
the ItrEXLA02 did not change significantly during the entire root development process, and
had been maintained at a high level, indicating that the maintenance of its high expression
may also play an important role in the formation, growth, and development of the root
(Figure 6b).
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Figure 6. Expression profiling of ItrEXPs during the SR development of Y22. (a) Four typical stages
(red arrows) of Y22 SR development. S0, AR stage; S1, ISR stage; S2, YSR stage; S3, MSR stage.
Bar = 2 cm. (b) Expression patterns of ItrEXPs expressed during SR development. The expression
value (RPKM) of expansin genes greater than 1 are showed in the heatmap. (c) qRT–PCR results of
the randomly selected ItrEXPs.

To validate the RNA-Seq results, 13 members randomly selected from the expressed
ItrEXPs were further analyzed by qRT-PCR analysis. The results showed that the gene
expression patterns were consistent with the results of RNA-seq (Figure 6b,c).



Genes 2022, 13, 1043 12 of 17

3.8. Expression Analysis of ItrEXPs in Different Tissues of SR inY22 and Sweetpotato

To determine the probable roles of predicted key ItrEXPs in the enlargement of SR,
the YSR from Y22 and sweetpotato cv. Nancy Hall (NH) were sliced transversely and
divided into five sections (Figure 7a). Several representative genes from each subfamily
were selected for gene expression analysis in different sections of SR. On the whole, the
expression levels of ItrEXPAs, ItrEXPBs and ItrEXLBs were higher, at least 10-fold, in Y22
than those in NH, while the ItrEXLA02 in Y22 was similar to NH (Figure 7b–i); in spite
of this, these genes exhibited similar expression patterns in both Y22 and sweetpotato,
suggesting that relatively low expression of ItrEXPAs, ItrEXPBs and ItrEXLBs might be
more beneficial to SR growth and expansion, while ItrEXLA02 had little correlation with
SR expansion and might play a role in maintaining SR growth. Notably, the expression
levels of ItrEXPAs and ItrEXPBs were higher in Section 2 (SC2) than those in other parts,
while ItrEXLA02 and ItrEXLBs showed higher expression in Section 3 (SC3) to Section 5
(SC5) (Figure 7b–i). The results indicated that ItrEXPs showed tissue-specific expression
in YSR, and the main roles of ItrEXPAs and ItrEXPBs might be in the cambium, while the
main roles of ItrEXLA02 and ItrEXLBs might be in the stele.
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Figure 7. The expression of eight ItrEXPs in SR. (a) The YSRs of I. trifida (Y22) and sweetpotato cv.
Nancy Hall (NH). Red bar, 1 cm. The number represents the SC1, SC2, SC3, SC4 and SC5, respectively.
SC1: the outer section of the cortex; SC2: the inner part of the cortex and outermost part of the stele;
SC3: the outer part of the stele; SC4: the middle part of the stele; SC5: the inner part of the stele.
(b–i) The relative expression of ItrEXPA03, ItrEXPA08, ItrEXPA15, ItrEXPB01, ItrEXLA02, ItrEXLB05,
ItrEXLB07 and ItrEXLB08 in the SRs of Y22 and NH, respectively.

4. Discussion

Among the 600–700 species of the genus Ipomoea, at least 63 have been recorded as hav-
ing SR, several of which are edible and some of which are larger than those of sweetpotato;
however, I. trifida is not among these 63 species [21]. On the basis of a phylogenetic analysis
together with morphological studies, DNA barcodes and high-throughput sequencing,
I. trifida has been determined to be the closest wild relative of sweetpotato, and sweetpotato
may have diverged from I. trifida more than one million years ago [19–21]. Compared
with sweetpotato, the diploid I. trifida has much smaller genome size and chromosome
number, and the genome structure is also simpler. Therefore, the diploid I. trifida has been
used as a model plant species for gene exploring and identification in sweetpotato SR
development [22–26]. However, diploid I. trifida reported before had no SR, only one report
about SR-like I. trifida [46], which seriously limited the study on the development of SR in
I. trifida. The diploid I. trifida strain Y22, which our group had identified, can produce good
SR [25], is a specific and valuable material for sweetpotato SR research. In this work, we
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chose the Y22 as material, identified its expansin gene family and analyzed their functions
involved in SR formation, which could be helpful for further understanding the mechanism
of SR development and functional studies of specific expansin genes.

Expansins have been characterized in many plants, but the investigations of the
expansin gene family have not yet been reported in I. trifida. In this work, we identified
37 ItrEXPs in Y22 genome, which was classified into ItrEXPA, ItrEXPB, ItrEXLA and ItrEXLB
subfamilies. The members of ItrEXPA, ItrEXPB and ItrEXLB subfamilies were fewer than
those of I. triloba, which indicated that the gene family contracted in these subfamilies. Gene
duplication may be another important driving force for species evolution [47] and cause
some redundant genes. In this work, we found evidence of not only duplication of expansin
genes but also triplication as well as gene loss which occurred in or after the previous WGT
event [24,25]. In addition, we also found gene function redundancy occurred after gene
duplication, ItrEXPA10, ItrEXPA12 and ItrEXPA15 might have evolved from one gene in the
syntenic relationship (Figure 2d), while only ItrEXPA10 and ItrEXPA15 expressed during
SR development (Figure S1), which means ItrEXPA12 may have function redundancy in
the evolutionary history, that may constitute an important driving force for SR formation.
The potential cis-elements analysis showed that ItrEXPs might be involved in the crosstalk
between different signaling pathways to regulate the SR growth and development.

In cucumber (Cucumis sativus L.), the yeast two-hybrid assay demonstrated that the
putative auxin transporter (numerous spine (NS)) could be interacted with CsEXLA2, which
is involved in the development of numerous spines [48]. In cotton (Gossypium hirsutum L.),
GA treated the cultured ovules correlated with enhanced expression of XTH and expansin
and promoted the fiber elongation [49]. These former studies implied that expansins
could be interacted with development responsive proteins, auxin-responsive proteins
and GA-regulated proteins. Here, the protein interaction networks showed that ItrEXPs
might interact with different type of proteins (Figure 5). Among them, the development
responsive proteins might be one of the most important interaction factors, which could
cleave (such as XTHs, PME5, QRT3, XTR6) and synthesize (such as CEV1s, KIN13A and
part of XTHs) the cell walls (Figure 5b), and the expression of these genes in Y22 SR
development exhibited up-regulation (Figure 8), therefore we deduced that ItrEXPs might
combine with cell wall broken related proteins to degrade the pectin and glycan and
separate the cellulose microfibrils, then the biosynthesis related proteins participated in the
cell wall extension and reconstruction [2,39], thereby cell expansion and SR enlargement.
This characterized analysis could be enrich our understanding about expansin gene family
in I. trifida.

Expansins are cell wall-related proteins and play important roles in plant growth
and development. In A. thaliana, overexpression of soybean GmEXLB1 was shown to
promote the growth of lateral roots [50], AtEXPA7, AtEXPA17, AtEXPA18 and AtEXLA2
were also reported to be involved in the root growth and development [6,7], and OsEXPA8,
OsEXPA10 and OsEXPB2 were related to the root hair growth and root elongation in
rice [8–10]. However, there is little research on expansins in SR development. In this work,
we found, during SR development in the Y22, 22 of 37 expansin gene family members
expressed (Figure 6b), ItrEXPAs and ItrEXLBs were down-regulated, and ItrEXPBs were
up-regulated while ItrEXLAs not obviously changed, indicating that the expansin gene
family might play an important role in SR development, and different subfamilies might
have different functions. Notably, ItrEXPs showed tissue-specific expression in YSR, and
the main roles of ItrEXPAs and ItrEXPBs might be in the cambium, while the ItrEXLA02
and ItrEXLBs in the stele. The anatomic structures of Y22 SRs in our former work showed
that the cell proliferation was surrounding the vessels and then the cell expansion along
with starch accumulation, while the meristem was located nearby the vessels in the stele
(Figure 4 of the reference) [25], therefore the higher expressions of ItrEXLBs in stele might
be good at SR enlargement.
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Figure 8. Gene expression of development related proteins that interacted with expansins in Y22 SR
development. The gene ID of I. trifida (Y22) added later at protein gene name was the protein gene
name of I. trifida (Y22).

AR can develop into pencil root, fibrous root or SR, and AR developing into ISR
is the key stage for SR formation and continuous enlargement. The SR was formed by
secondary thickening of AR formed on the belowground nodes of transplanted stem
cuttings [18,25]. In Y22, compare with ISR stages, the expression levels of ItrEXLB05,
ItrEXLB07 and ItrEXLB08 in the AR stage were more than ten times higher (Figure 6b,c),
indicating that the higher expression of these genes in the AR stage may play a key role for
AR swelling to ISR, and this laid a foundation for continuous swelling and SR formation.
The pencil root has thicker cortex and fibrotic small stele [51], while ItrEXLBs were more
expressed in stele than in cambium, which might be beneficial to prevent stele fibrosis and
promote cell expansion and starch accumulation, contributing to SR enlargement. Besides,
we found ItrEXLA02 and sweetpotato IbEXPL1 were highly homologous, and clustered
together in the phylogenetic tree (Figure S1). IbEXPL1 has been reported to be related to
sweetpotato SR development [16]. The expression level of ItrEXLA02 remained high during
Y22 SR development (Figure 6b) and had a similar expression pattern in each part of the
YSRs of Y22 and sweetpotato (Figure 7f). All the results indicated that ItrEXLA02 might
be involved in SR growth and development. Taken together, our research enriched our
understanding the functions of EXLA and EXLB subfamilies genes, especially for their roles
in SR development, which is valuable for further research.

Above all, the systematic analysis of our work provides new insights into the structure,
evolution, and predicted function of the expansin gene family members in I. trifida, could
promote the study of specific expansin genes involved in SR development, and could be
helpful for further use in sweetpotato genetic enhancement.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/genes13061043/s1, Figure S1: The phylogenetic relationships of expansin
proteins between sweetpotato and Y22; Figure S2: Potential light and stress/defense cis-elements in
the promoter region of expansin genes; Table S1: The primer pairs of selected genes for qRT-PCR;
Table S2: The expansin genes of I. nil and I. triloba; Table S3: The duplication type of expansin genes
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