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ABSTRACT: Pharmacophore modeling incorporates geo-
metric and chemical features of known inhibitors and/or
targeted binding sites to rationally identify and design new
drug leads. In this study, we have encoded a three-dimensional
pharmacophore matching similarity (FMS) scoring function
into the structure-based design program DOCK. Validation
and characterization of the method are presented through pose reproduction, crossdocking, and enrichment studies. When used
alone, FMS scoring dramatically improves pose reproduction success to 93.5% (∼20% increase) and reduces sampling failures to
3.7% (∼6% drop) compared to the standard energy score (SGE) across 1043 protein−ligand complexes. The combined FMS
+SGE function further improves success to 98.3%. Crossdocking experiments using FMS and FMS+SGE scoring, for six diverse
protein families, similarly showed improvements in success, provided proper pharmacophore references are employed. For
enrichment, incorporating pharmacophores during sampling and scoring, in most cases, also yield improved outcomes when
docking and rank-ordering libraries of known actives and decoys to 15 systems. Retrospective analyses of virtual screenings to
three clinical drug targets (EGFR, IGF-1R, and HIVgp41) using X-ray structures of known inhibitors as pharmacophore
references are also reported, including a customized FMS scoring protocol to bias on selected regions in the reference. Overall,
the results and fundamental insights gained from this study should benefit the docking community in general, particularly
researchers using the new FMS method to guide computational drug discovery with DOCK.

1. INTRODUCTION

Many docking and virtual screening programs, such as
DOCK,1,2 employ intermolecular interaction energy functions
that contain nonbonded van der Waals and electrostatic terms
to rank-order (i.e., score) small molecule binding geometries
(poses) generated in the context of a defined protein binding
site. Other physically reasonable scoring terms such as
intermolecular hydrogen-bonding, ligand desolvation, numbers
of ligand rotatable bonds, and buried surface area, among
others, have also been explored.3 In all cases, the objective is to
enrich for ligands with good geometric and chemical
compatibility with the target so that promising druglike leads
can be identified.4−6 Recently, Balius et al.7,8 reported a new
DOCK scoring method termed footprint similarity score which
can be used to identify compounds that match a specific
molecular interaction energy pattern (i.e., footprint) based on a
known reference ligand. Encouraged by the recent successes9,10

from our laboratory, in which “footprints” were used to identify
promising lead compounds, we have developed an analogous
similarity-based scoring method for DOCK that employs
“pharmacophores”. Both methods yield enhanced docking
outcomes but do so in an orthogonal sense (energy vs
geometry).
Historically, the concept of a pharmacophore is generally

attributed to Ehrilich11,12 and has evolved to include the three-
dimensional spatial arrangements of key chemical features
essential for compound affinity leading to a biological
effect.13,14 A thorough summary of the development of
pharmacophores and early works on modeling can be found
in a recent publication by Güner et al.13 Reviews by Leach et

al.,15 Yang,16 and Sanders et al.17 also discuss technological
advances and challenges of using different pharmacophore
methods in modern drug discovery. In practice, pharmacophore
features can be derived from known active ligand(s), a defined
binding site geometry, or a combination of both. Importantly,
the abundance of atomic-resolution structures publically
available in the protein data bank (PDB)18 can be used to
derive pharmacophore models for compounds with verified
experimental activity to help guide structure-based drug design.
A partial list of programs that incorporate pharmacophore
modeling includes CATALYST,19 GASP,20 LigandScout,21

PHASE,22 GALAHAD,23 PhDOCK,24,25 and MOE,26 among
others. While such prior efforts are important tools and
represent different approaches for modeling, the goal of the
present work is to provide a pharmacophore method that can
leverage DOCK’s powerful anchor-and-grow sampling strategy
while taking advantage of different combinations of scoring
functions.
The new DOCK pharmacophore scoring protocol termed

Pharmacophore Matching Similarity (FMS) encodes useful
chemical features, including hydrogen bond acceptors/donors,
hydrophobic groups, positively/negatively charged groups, and
aromatic/nonaromatic rings. Initial pharmacophore types are
generated based on atom type and chemical environment,
defined by neighboring atoms in the same ligand molecule, and
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are processed to create a pharmacophore feature set (ph4
model) with coordinates and directionality as shown in Figure
1 for three representative druglike compounds. Importantly, the
amount of overlap (termed FMS score) between a user
reference ligand pharmacophore and candidate pharmaco-
phores derived from docked compounds can be computed on-
the-fly during docking (or rescoring) without the need for a
separate preprocessing step. This enables large virtual screening
libraries to be sorted (i.e., rank-ordered) with the function in an
efficient manner.
Specific validation tests used in this work to evaluate the new

scoring protocol include pose reproduction, crossdocking, and
enrichment. All FMS results are compared relative to using the
standard DOCK single grid energy (SGE) approach, as well as
a combined scoring function (FMS+SGE) consisting of both
terms. In pose reproduction, crystallographic ligand positions
are used as a reference to test if a given method is capable of
reproducing nativelike poses (within 2 Å of the X-ray pose)
using the large SB2012 validation database (update of
SB2010)27 developed in our laboratory. In crossdocking, select
protein families from SB2012 (based on high sequence
homology), are employed to evaluate docking accuracy across
an N × N matrix when all ligands from a family are docked to
each individual receptor. In enrichment, active ligands and
accompanying decoy compounds taken from the DUD-E28

database are docked to 15 different targets to assess the ability
of the new scoring schemes to correctly rank-order active
ligands earlier than decoys. Finally, retrospective analyses of
three virtual screens to targets of pharmaceutical interest
(EGFR, IGF-1R, and HIVgp41) are shown in which FMS-
based scoring (FMS and FMS+SGE) was used as a data-mining
tool to identify compounds with high pharmacophore overlap
to small molecules or peptide ligand side chains. Overall, the
results of this comprehensive study suggest the new method
will be a useful addition to the growing number of scoring and
sampling methods available in DOCK.

2. THEORETICAL METHODS
2.1. Pharmacophore Definitions. Pharmacophore model-

ing in this study uses a two-step protocol involving: (1)
assignment of a pharmacophore type definition to each ligand
atom, followed by (2) construction of pharmacophore points

with pharmacophore labels based on the type definitions.
Inspired by chemical matching code previously developed for
DOCK,24,29 we employ a type definition model based on
SYBYL30 atom types and environment (neighboring atoms).
The finite list of pharmacophore type definitions is stored in
the ph4.defn parameter file (Table 1) and can be customized to
include other pharmacophore types. For clarity, it is important
to emphasize there is a distinction between pharmacophore
type definitions (for the individually typed atoms) and the
pharmacophore label definitions (for the final constructed
pharmacophore points) derived from the pharmacophore types.
In the atom environment definition list in Table 1, parentheses
( ) specify “atoms that must be bonded to the parent atom”,
while square brackets [ ] specify “atoms that must not be
bonded to the parent atom”.31 The integer in the definition
represents the number of atoms associated in the rule. For
example, the syntax “N.pl3 (2 *) [ H ]” specifies a trigonal
planar nitrogen connected to at least two other atoms and not
bound to any hydrogen atoms. For this work, eight
pharmacophore types are assigned to individual atoms as
outlined in Table 1: (1) null or no assignment, (2)
hydrophobic, (3) hydrogen bond donor, (4) hydrogen bond
acceptor, (5) aromatic ring member, (6) hydrogen bond
acceptor in an aromatic ring, (7) negatively charged species,
and (8) positively charged species. The resulting atom set is
postprocessed to generate pharmacophore points with
coordinates that specify the position of the pharmacophore
point center and vectors indicating the direction of potential
interactions.
Aromatic and nonaromatic rings are identified by checking

for closed loops formed by connected atoms. The coordinate of
the ring center, averaged over all ring member coordinates, is
computed and saved as the pharmacophore point (Figure 2).
The average normal vector of the plane defined by adjacent ring
center-to-vertex vectors (Figure 2, dashed blue lines) is
calculated and saved as the direction vector of the
pharmacophore point. If the individual normal vectors (Figure
2, solid blue lines) of the ring are all within an angle cutoff θc to
the average normal vector (Figure 2a, solid red lines) then the
pharmacophore point is marked as an aromatic ring (Figure
2a). Otherwise it is labeled as nonaromatic (Figure 2b). In
practice, θi is measured by directly computing the inner product

Figure 1. Two-dimensional (2D) representations for three approved drugs (top) and corresponding DOCK pharmacophore (ph4) models
(bottom). Features include: (i) hydrogen bond acceptor in red, (ii) hydrogen bond donor in blue, (iii) hydrophobic atom/group in cyan, (iv)
aromatic ring center and direction in orange, (v) nonaromatic ring center and direction in yellow, (vi) negatively charged group center in green, and
(vii) positively charged group center in magenta. Structures of nevirapine, erlotinib, and zanamivir from PDB codes 1VRT, 1M17, and 1A4G,
respectively.

The Journal of Physical Chemistry B Article

dx.doi.org/10.1021/jp506555w | J. Phys. Chem. B 2015, 119, 1083−11021084



of two vectors (xi) which is converted to degrees by the inverse
function of cosine as arccos(xi) = θi. On the basis of examining
crystallographic ligand coordinates containing aromatic and
nonaromatics rings, we use as a cutoff criteria arccos(0.99) ≈
8.11 degrees to determine if a ring is planar.

Atoms with hydrophobic and positive/negative pharmaco-
phore type definitions are saved individually as pharmacophore
points inheriting the same type as their pharmacophore labels.
For these cases, default direction vectors (which do not affect
the score) are assigned to facilitate a common data structure.
For the hydrogen bond acceptor, the coordinate of the polar
atom is saved as the pharmacophore point. The average of
vectors pointing from all neighbor atoms to the acceptor atom
is saved as the direction vector, indicating the potential position
of the coupling hydrogen bond donor, as indicated by red
arrows in Table 2, which shows example pharmacophores

derived for several small organic molecules. The hydrogen
bond donor uses the coordinate of the hydrogen atom as that
of the pharmacophore point. Similarly, the vector pointing from
the donor hydrogen to the connecting polar atom is saved as a
normalized direction vector, indicated as blue arrows in Table
2. The combined set of all pharmacophore points is called the
molecular pharmacophore (ph4) model, which may include
hydrophobic (PHO), hydrogen bond donor (HBD), hydrogen
bond acceptor (HBA), aromatic ring (ARO), nonaromatic ring
(RNG), positively charged (POS), and negatively charged
(NEG) features (see Table 2).
To gauge how many pharmacophore features are present in

typically sized compounds, Figure 3 plots histograms derived

Table 1. Pharmacophore Type Definitions in DOCK

type namea environment definitionb

(1) null *
(2) hydrophobic C. [O.] [N.] [S.] [F] [P] (*)

C. (N.pl3 (2 C.)) (*)
N.pl3 (3 C.)

(3) donor H (O.)
H (N.)
H (S.)
H (F)

(4) acceptor O. (*)
N.1 (1 *)
N.2 [ 3 * ]
N.3 (3 *)
N.pl3 (2 *) [ H ]
S.2 [ O. ] [ N. ]
S.3 (2 *)
F (*)
Cl (*)

(5) aromatic C.ar
N.ar

(6) aroAcc N.ar [ H ] [ 3 * ] (*)
(7) negative C. (2 O.co2)

C.2 (O.2) (O.3 [ * ])
P. (4 O.) (O.3 [ * ])
S. (3 O.) (O.3 [ * ])
S. (4 O.) (O.3 [ * ])
F [ * ]
Cl [ * ]

(8) positive C.cat (*)
N.4 (*)
N.3 (4 *)
N.2 (3 *)
Zn [ * ]
Mg [ * ]
Ca [ * ]
Mn [ * ]
K [ * ]
Fe [ * ]

aTypes defined in DOCK ph4.defn parameter file. bEnvironments
based on SYBYL atom types and atom connectivities.

Figure 2. Pharmacophore feature assignment for rings: (a) aromatic
(close to planar) and (b) nonaromatic (not planar). Ring center-to-
vertex vectors shown as dashed blue lines, individual normal vector
shown as solid blue lines, and averaged normal vectors shown in solid
red lines. The angle between the blue and the red vectors are
compared to a threshold to determine the planarity of the ring.

Table 2. Examples of Pharmacophore Features Derived from
Small Molecules

aPHO in cyan, HBA (vertex and vector) in red, HBD vector in blue,
hydrogen vertex in gray, ARO (vertex and vector) in orange, RNG
(vertex and vector) in yellow, POS in magenta, and NEG in green.
Direction vectors are shown in arrows generated using Chimera32 bild
files. b2D Pictures generated with ChemSketch.33 cThree-dimensional
(3D) molecules and pharmacophore visualization generated with
Chimera
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from 1043 molecules in their X-ray pose taken from the
SB2012 testset used in this work to gauge pose reproduction
and crossdocking accuracy. As a reduced representation, the
pharmacophore model derived for each molecule contains (on
average) a much smaller number of pharmacophore points
(16.0) relative to the total number of atoms (49.2) as shown in
Figure 3 (panel b vs a). In terms of specific features, molecules
in SB2012 contain on average of 1.9 aromatic rings, 0.9
nonaromatic rings, 2.6 hydrophobic groups, 3.6 hydrogen bond
donors, and 4.6 hydrogen bond acceptors. Values for the two
latter features are indicative of the druglike characteristics of
many of the compounds in SB2012 for which ∼80% have less
than 5 hydrogen bond donors and ∼58% have less than 10
hydrogen bond acceptors in rough agreement with Lipinski-
like34 rules. About 1/4 of the testset contains molecules with
positively (199) or negatively (287) charged functionality.
In principle, given the smaller feature space, use of

pharmacophore models should yield faster run times than an
all-atom based scoring function. In terms of rescoring poses
without sampling, timing tests indicate that under the current
conditions, computing the pharmacophore matching similarity
(FMS) score between two molecules is faster than computing
the standard energy score by about 3.5 fold. Comparing
production times when using the FMS method to drive ligand
sampling is less straightforward, due to the much larger
numbers of poses generated when using FMS compared to
SGE (discussed further below). However, when normalized by
the size of the final pose ensemble retained using FMS or SGE
methods, time per pose with FMS is faster by about 1.5 fold.
2.2. Pharmacophore Matching Similarity (FMS) Scor-

ing Function. After computing the pharmacophore (ph4)
model using the protocol described above for both the
reference and candidate poses, molecular similarity between
the two poses is evaluated by the degree of pharmacophore
overlap, termed here pharmacophore matching similarity score
(FMS score). For each pharmacophore point A with

pharmacophore label a, Cartesian coordinate x ⃗ = [x1, x2, x3]
and direction vector v ⃗ = [v1, v2, v3] in the reference
pharmacophore, is compared to every pharmacophore point
Bi in the candidate pharmacophore in three steps: (i) label
check, (ii) distance check, and (iii) direction check. The
pharmacophore label a is used to eliminate pharmacophore
points in the candidate pharmacophore that have different
labels. The distance between A and the candidate pharmaco-
phore point Bi, computed as di = ∥x ⃗ − ⃗yi∥ = [Σj = 1

3 (xj − yj
i)2]1/2

where ⃗yi = [y1
i , y2

i , y3
i ] is the Cartesian coordinate of Bi, is

compared to a distance cutoff r. Only when di ≤ r will the
corresponding pharmacophore point Bi be further investigated.
A constant r value is assigned to all reference pharmacophore
points as a default parameter, but for a ring (aromatic or
nonaromatic) the radius of the ring is assigned as r. The scalar
projection of the normalized direction vector v ⃗ onto that of Bi,
w⃗i = [w1

i , w2
i , w3

i ] is calculated. The condition that the vector
projection v ⃗ · w⃗i = Σj = 1

3 vj × wj
i ≥ σ implies the angle between

the two direction vectors v ⃗ and w⃗i is within arccos σ, which
ensures that the two vectors are pointing in approximately the
same direction. A perfect vector overlap (when v ⃗ = w⃗i) between
two normalized direction vectors will be v ⃗ · w⃗i = ∥v∥⃗ = 1. By
default, a scalar projection cutoff of σ = cos(45°) ≈ 0.7071 is
used. Note that for hydrophobic and charged feature labeled
points, v ⃗ · w⃗i ≥ σ is always true, as the same default value of
(1,0,0) is assigned to both v ⃗ and w⃗i. For a ring, the absolute
value of the scalar projection |v ⃗ · w⃗i| is used to account for its
orientation (i.e., vectors above and below the plane of the ring).
If all of the above criteria are met then the two pharmacophore
points A and Bi are deemed a match.
In Figure 4, three ARO pharmacophore point pairs are

shown to illustrate how the three criteria (label, distance, and
direction) are used to identify matches in rings. The first
criterion (same label) is met by all three pairs as the

Figure 3. Number of pharmacophore features computed by DOCK FMS scoring function using the SB2012 docking testset (N = 1043 molecules).
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pharmacophore points shown are all labeled as aromatic rings
(ARO). The first pair (Figure 4a) has both a small distance (d
≤ r) and good directional agreement (|v ⃗ · w⃗i| > σ) and thus
represents a well-matched case. The second pair (Figure 4b),
although the ring vectors are well-aligned, is not matched due
to the large distance between the pharmacophore centers. For
the third pair (Figure 4c), although the distance between ring
centers is small, this case is also not considered a match due to
the large difference in ring vector orientation (|v ⃗ · w⃗i| < σ).
All matched point pairs between the reference and candidate

pharmacophore models are investigated by their geometric
relationships to obtain a quantitative measurement of matching.
The residual between two matched points is defined as δA

i =
[(di)

2/|v ⃗ · w⃗i|]
1/2 which takes into account both the distance and

overlap in direction. After comparing pharmacophore point A
with all candidate pharmacophore points Bi, the best matched
point B+ with the lowest matching residual δA

+ will be retained
for the pharmacophore matching similarity (FMS) score
calculation. If no match was found for A then it will not
contribute to the residual term of FMS score. The residual term
in combination with a match rate term defines the numerical
value of the FMS score via eq 1.

δ
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Here, k is a constant parameter; n stands for the total number
of matches (note that for each reference pose pharmacophore
point, one match is counted at most); N is the number of
pharmacophore points in the reference pharmacophore; and δAj

+

represents the best matching residual of a matched reference
pharmacophore point Aj. On the basis of similarity measure-
ments in graph theory,35,36 the FMS score uses the match rate
term k(1− n/N) to prioritize poses with higher numbers of
pharmacophore matches to the reference pose. Poses with
similar numbers of matches will be differentiated by their root-
mean-square matching residuals [Σj = 1

i (δAj

+ )2/n]1/2. Note that
the total number of matches n needs to be larger than zero for
eq 1 to give a reasonable value. When no match is identified (n

= 0), an arbitrary large score X is assigned (X is set to be larger
than the upper bound of FMS score value when n > 0). For any
reference and candidate pair of molecules, FMS score ranges
between 0 (perfect match) and X, which depend on choices for
k, distance cutoff r, and scalar projection cutoff σ. For
pharmacophore-based docking, lower FMS scores are more
desirable. Figure 5 outlines schematically the overall process
using DOCK.

To determine a default set of values for k, r, and σ in eq 1, we
performed a series of rescoring tests using ligand geometries
generated with the standard DOCK protocol, for comparison
with crystallographic references, and pose reproduction success
(defined in the next section) was determined. Four values for k
(1, 2, 5, and 10), three values for r (0.5 Å, 1.0 Å, and 1.5 Å),
and three values for σ (30°, 45°, and 60°) were examined. As a
general rule, use of stricter matching criteria (shorter distance
cutoff r, smaller angle cutoff σ) led to lower docking success
rates. In addition, the success rate increased as the matching
rate term weight k was increased from 1 to 5 but remained
relatively steady from k = 5 to 10. With these results taken into
consideration, the set comprising k = 5, r = 1 Å, σ = 45°, and X
= 20 yielded generally good pose reproduction success and had
values which were roughly in-between the different ranges
explored. Although other combinations might also have been
suitable, this set was ultimately employed for all subsequent
FMS sampling and scoring experiments used in this work.

3. VALIDATION METRICS AND COMPUTATIONAL
DETAILS
3.1. Pose Reproduction Details. In order to approximate

the accuracy of ligand poses predicted by a given protocol for
unknown systems, pose reproduction control experiments are
performed over a large number of crystallographic complex
structures. Ideally, the best-scored docked pose should agree
with the crystal pose. Following our previous work,27 docking
results are categorized as one of three outcomes: docking
success (success), scoring failures (score fail), and sampling
failures (sample fail). Over a large data set, the percentage of
success + score fail + sample fail =100%. Docking success is
defined when the RMSD between the best scored pose and
native (crystal) pose is ≤2 Å. A scoring failure is defined when a
close-to-native pose is sampled, but the best scored pose is >2
Å from the native pose. Finally, a sampling failure is defined if
none of the sampled poses are within 2 Å of the native pose.

Figure 4. Example pharmacophore matches for aromatic rings
showing: (a) well-matched case with the same labels, small distance,
and similar vector directions, (b) not matched case with the same
labels, large distance, and similar vector directions, and (c) not
matched case with the same labels, small distance, and different vector
directions.

Figure 5. Flowchart schematic outlining pharmacophore-based virtual
screening in DOCK.
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Representative visual examples of the three outcomes are
shown in Figure 6a. For ligands of druglike size, low RMSD
values also typically correspond to good visual overlap between
docked and reference ligand poses. All statistics reported in this
work make use of “symmetry corrected” RMSDs to account for
chemically identical functionality (i.e., symmetric ring flips,
carboxylate flips, etc.) or completely symmetric molecules,
adopting visually indistinguishable conformations as described
in detail previously.37 The updated pose reproduction database
termed SB2012 (an update of the SB2010 database)27 was used
for all pose reproduction and crossdocking (defined below)
experiments. The set, derived from complexes in the protein
databank (PDB), contains 1043 protein−ligand systems in
ready to DOCK format and is freely available online at www.
rizzolab.org.
All DOCK experiments in this work employed well-defined

receptor and ligand setup protocols, in conjunction with the
flexible ligand sampling protocol termed FLX, as previously
described.27 Briefly, in terms of receptor setup, several
accessory programs are used to compute a molecular surface
(DMS),38 generate docking spheres to guide sampling
(SPHGEN),39 and precompute the potential energy on a grid
which speeds up the docking calculations (GRID).40 Key setup
parameters include the use of 6−9 Lennard-Jones and distance
dependent dielectric (ε-4r), a 0.3 Å resolution, and a grid box
size extending 8 Å in all directions based on the docking
spheres (75 spheres max). Key docking parameters include use

of the on-the-fly anchor-and-grow algorithm to orient and
assemble ligands layer-by-layer, retaining a maximum of 5000
completely grown conformers to be ranked by the primary
scoring function and saving a maximum of 100 conformers
(after clustering to remove redundancy, RMSD ≤ 2 Å). Ligands
were energy-minimized at each stage of conformational search
(500 iterations per cycle per anchor/step max), and those
exceeding a total score cutoff of 100.0 were removed.
The different functions employed in this work include: (1)

single grid energy (SGE) score, (2) DOCK Cartesian energy
(DCE) score which is equivalent to SGE but in Cartesian space,
(3) pharmacophore matching similarity (FMS) score, and (4)
the combination of the two-termed FMS+SGE (or FMS+DCE)
score. For the combined function, the FMS score was weighted
by 10-fold so when summed together the FMS and SGE (or
DCE) terms would be more equally balanced.

3.2. Crossdocking Details. In addition to pose production
experiments, crossdocking was employed in which highly
homologous protein complexes, with nearly identical structure
and sequence (termed here a protein receptor family), are
aligned into a common reference frame and each ligand is
docked into each receptor as shown in Figure 6b. Such families
inherently contain variability due to different crystallization
conditions, cocrystallization with different ligands, as well as
receptor point mutations, among others. Nevertheless, the
hypothesis in crossdocking is that ligands should adopt similar
binding geometries in highly homologous receptors, provided

Figure 6. Validation metrics used to evaluate DOCK scoring functions. (a) Pose reproduction cases with different outcomes: Success (top, PDB
code 3CPA), Score Fail (middle, PDB code 1V2W), and Sample Fail (bottom, PDB code 1GKC). Crystal poses in orange, best scored poses in
magenta, best RMSD pose in cyan. (b) Representative crossdocking heatmap showing docking outcome as a function of docking all ligands (Lig1,
Lig2, ..., LigN) to all receptors (Rec1, Rec2, ..., RecN) for an aligned group of proteins with nearly identical sequence homology. (c) Hypothetical
database enrichment results showing a partitioning of data based on FMS score ranking (0 to 6) for a group of ligands (left bottom, magenta curve)
comprised of a known active ligand set (left middle, blue curve) and inactive decoy set (left top, red curve). The vertical dashed line represents a
hypothetical FMS score cutoff dividing the total group into (X) predicted positive and (Y) predicted negative sets which can be partitioned into four
quadrants (I−IV) defined respectively as true positives (TP, I), false positives (FP, II), true negatives (TN, III), and false negatives (FN, IV). Also
shown is an ROC curve, which for this example plots individual points which correspond to various FMS score cutoffs in the left panel. The
coordinate of each point is determined by the false positive rate and true positive rate at that FMS score cutoff.
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there are no large deformations in the binding site or
incompatible mutations. The results are expressed as a N ×
N heatmap (N = number of systems) with docking success
plotted in blue, sampling failures plotted in red, and scoring
failures plotted in green (Figure 6b). As before, a 2 Å RMSD
cutoff is used to evaluate success. The diagonal elements
(Figure 6b, white dots) represent cognate protein−ligand pairs
and thus represent experimental references. Off-diagonal
elements are “theoretical” protein−ligand pairs and the
reference, in some instances, may be incompatible. To identify
incompatible elements, we employ a clash matrix check,27

independent of the actual crossdocking experiment, in which all
matrix complexes (representing cognate and theoretical
references) are subject to a short restrained energy
minimization. If the minimized ligand pose moves >2 Å from
the starting pose, or the pose bears an unfavorable energy score
(>0 kcal/mol), the specific reference pair containing the clash is
not included is crossdocking success evaluations (Figure 6b,
black squares). All crossdocking studies employed the FLX
docking protocol, and results are reported for both the diagonal
and the entire matrix.
3.3. Enrichment Details. A third method used to evaluate

docking methods is enrichment (Figure 6c). Databases such as
the directory of useful decoys (DUD)41 and the newer
enhanced version called DUD-E28 contain large sets of
known active compounds (and property-matched decoys),
which are docked to a specific target and the results are rank-
ordered. Good enrichment is achieved when greater numbers
of actives are ranked earlier in the list compared to the decoys.
For more in-depth discussion on using DOCK to estimate
enrichment, interested readers should consult Brozell et al.42

Briefly, for this work, ranked results were visualized as receiver
operating characteristic (ROC) curves which plots how the true
positive rate (true positive/total positive) changes relative to
the false positive rate (false positive/total negative). Accom-
panying area under the curve (AUC) analysis was also
performed and used to estimate fold enrichment values (FE
= AUC/AUCrandom), relative to random, at 0.1%, 1%, 10%, and
100% of the database examined. For virtual screening, early
enrichment is of particular importance, as typical applications
will only focus on (i.e., purchase) small subsets of molecules
ranked very early (i.e., 0.1−1%) in the database. In the
theoretical example shown in Figure 6c, which employed FMS
score to rank active and decoy ligands shown in the left panels,
the ROC curve on the right represents a good enrichment case
relative to random (Figure 6c, magenta vs dashed line). By
specifying a specific score cutoff (Figure 6c left bottom panel,
dashed line) the data can also be partitioned into two groups
for which molecules with smaller scores (better overlap) are
defined as predicted positives (X) and molecules with higher
scores (worse overlap) defined as predicted negatives (Y). If, as
in the present example, the results are in fact known, this allows
ligands in the active group to be classified as true positive (I) or
false negative (IV), and ligands in the inactive (decoy) group
classified as false positive (II) and true negative (III). By
varying the cutoff, the number of molecules in the four subsets
I−IV will change accordingly.
Enrichment studies employed the 15 DUD-E systems shown

in Table 3.28 The receptor PDB files were already available in
SB2012 (same PDB code as DUD-E), and the active and decoy
ligands were downloaded from the DUD-E Web site and used
as is. It is important to note that some ligands (active and
decoys) for these systems contain multiple entries representing,

for example, different tautomers or protonation states. For all
enrichment analyses, in the case of duplicate id codes, only the
best-scored molecule was retained. For each system, the native
cognate ligand in the original PDB file is used as the
pharmacophore reference for FMS scoring. As in the pose
reproduction and crossdocking studies, the enrichment tests
also employed the FLX docking protocol. With this protocol,
predicted ligand poses with accompanying scores were obtained
for approximately all but 2% of the actives and decoys listed in
Table 3.

4. RESULTS AND DISCUSSION
4.1. Pose Reproduction Results. Table 4 shows pose

reproduction outcomes computed for the three DOCK
protocols tested (SGE, FMS, and FMS+SGE), in which a
given function was used for both sampling and scoring
(diagonal blocks in gray box) or when rescored using the
other two scoring functions (off-diagonal blocks). All experi-
ments were performed under the same conditions except for
the sampling and/or scoring method employed. It is important
to emphasize that use of an alternative function to rerank an
ensemble of poses generated by any given method (Table 4,
off-diagonal blocks) will, in most cases, lead to a different group
of top-scored results, but the number of sampling failures
remains unchanged.
In general, the diagonal results (Table 4, gray boxes) using

the three different methods yield high percentages of success
across the 1043 systems in SB2012 with the FLX ligand
protocol. Importantly, the SGE success rate (72.5%) is
consistent with earlier work from our laboratory,7 using a
smaller data set (68.5%, N = 780), indicating good
reproducibility of DOCK. Overall, the diagonal results in
Table 4 reveal a clear trend in terms of outcome with success
following SGE < FMS < FMS+SGE and sampling and scoring
failures following SGE > FMS > FMS+SGE. The very high
success rates when using FMS (93.5%) or the combination
FMS+SGE (98.3%) is significant and represents a 20−25%
improvement over the standard DOCK method employing
SGE (72.5%). On one hand, such high success rates are
expected given that for any system the X-ray reference ligand
and docked ligand are the same molecule in terms of topology

Table 3. Systems Used for Enrichment Tests

PDB system #activesa #decoysa description

2HZI abl1 295 10885 tyrosine-protein kinase ABL
1E66 aces 664 26373 acetylcholinesterase
2VT4 adrb1 458 15958 beta-1 adrenergic receptor
1L2S ampc 62 2902 beta-lactamase
1BCD cah2 835 31710 carbonic anhydrase II
1R9O cp2c9 183 7574 cytochrome P450 2C9
2RGP egfr 832 35442 epidermal growth factor receptor

erbB1
1SJ0 esr1 627 20818 estrogen receptor alpha
3CCW hmdh 299 8884 HMG-CoA reductase
1UYG hs90a 125 4942 heat shock protein HSP 90-alpha
2AA2 mcr 193 5240 mineralocorticoid receptor
1KVO pa2ga 127 5216 phospholipase A2 group IIA
2GTK pparg 723 25867 peroxisome proliferator-activated

receptor gamma
1NJS pur2 201 2725 GAR transformylase
1C8K pygm 114 4045 muscle glycogen phosphorylase

aSystems taken from DUD-E database.28

The Journal of Physical Chemistry B Article

dx.doi.org/10.1021/jp506555w | J. Phys. Chem. B 2015, 119, 1083−11021089



and thus have the exact same number of pharmacophore
features. In actual practice, for virtual screening, the number of
features between a reference and candidate would change as
each new ligand was docked. Nevertheless, the good
correspondence in these validation tests provides strong
evidence the newly implemented DOCK pharmacophore
labeling, modeling, and overlap routines are behaving as
expected and yield robust results over a large pose reproduction
testset. Importantly, the FMS method is straightforward to use
and only requires that the user input a reference molecule
consisting of a single 3D conformation. The processing of the
candidate pose(s) to determine FMS scores is done automati-
cally and on-the-fly. Ongoing work to allow a text-based
pharmacophore reference to be used as a query will further
simplify the procedure of customizing inputs for FMS score
calculation.
Systems with Failures. Of the three methods tested, the

FMS+SGE protocol yields the lowest sampling (0.7%) and
scoring (1.1%) failure rates on the diagonal. In an attempt to
understand what led to the small subset of failures (N = 18),
docked poses for the group were examined. Out of the seven
sampling failures, one system did not complete growth, which,
although infrequent, can happen using DOCK under some
circumstances. And for the remaining 6 sampling failures, 4 are
relatively large molecules with up to 35 rotatable bonds and
thus extremely challenging for any docking protocol. In terms
of the 11 scoring failures, a noteworthy result (Figure 7) is that
7 out of the 11 systems (PDB codes: 1XLZ, 6TMN, 2ITX,

1O86, 1V2W, 1V2Q, and 5TMN) actually show good
correspondence both in terms of visual overlap as well as
RMSD (2.07−2.34 Å). Thus, these 7 can be classified as “near
misses” for which only a part of the ligand geometry adopts a
conformation different than the X-ray pose. Consistent with
expectation, in all but two cases (7CPA, 6CPA), geometries
corresponding to the best RMSD also have a lower FMS score.
The fact that the FMS+SGE protocol correctly identifies a
nativelike pose in nearly all 1043 cases is notable.

Rescoring. In terms of the off-diagonal blocks (Table 4),
rescoring the standard SGE results (72.5%) with FMS (82.5%)
or FMS+SGE (84.0%) reveals a similar trend with SGE < FMS
< FMS+SGE as in the diagonal experiments. Here, as rescoring
cannot “rescue” incorrectly sampled geometries, the maximum
success rate attainable is a function of the poses originally
sampled, which for SGE is 90.2% (e.g., 100% - 9.8% sampling
failures). This specific experiment is important as the
improvement in success when rescoring SGE-derived results
with FMS or FMS+SGE (10−11%) suggests the current
implementation is a viable way to postprocess docked poses
and identify those compounds with good pharmacophore
overlap to a reference. This procedure would be a particularly
useful tool to aid virtual screening as discussed further below.
Rescoring results for the group derived from FMS+SGE
sampling shows similar results, with FMS (99.2%) yielding a
significantly higher success rate than SGE (81.9%).
The most dramatic changes in terms of pose reproduction

involve using SGE (58.5%) or FMS+SGE (68.9%) to rescore

Table 4. Pose Reproduction Results Employing SGE, FMS, and FMS+SGE Scoring Functions

aSGE sampling size = 89083 poses, FMS sampling size = 337674 poses, FMS+SGE sampling size = 59237 poses.

Figure 7. Eleven scoring failures derived from FMS+SGE guided docking showing overlaid poses, PDB code identifier. RMSD in angstroms and
FMS scores in parentheses for the best FMS+SGE scored pose (first row, magenta) and the best FMS+SGE RMSD pose (second row, cyan) relative
to the crystal pose in orange.
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the pose ensembles derived from FMS-only sampling (93.5%).
These reduced success rates likely stem from the fact that the
FMS score accounts only for overlap between pharmacophore
features derived from the reference ligand structure and the
receptor is “invisible” during sampling. The end result is that
poses generated using FMS alone may clash with the target
protein when rescored in “energy space” despite high
pharmacophore overlap. However, as the pairing of energy
and pharmacophore overlap (FMS+SGE) leads to relatively
high success rates when rescored in SGE-space, as noted above,
the combined function is likely to be preferred when a receptor
structure is available. Nonetheless, the 58% success rate
obtained with SGE rescoring can be considered encouraging
considering that ligand sampling with the anchor-and-grow
algorithm was done in the absence of a receptor. Thus, for
ligand-only based design, the FMS protocol appears to be
capable of enriching for energetically favorable poses by
matching only to a reference pharmacophore. The caveat of
course is identifying suitable pharmacophores in the absence of
crystallographic information.
Ensemble Properties. A protocol designed to enrich for

ligands with poses close to a native structure should, in theory,
yield favorable scores using any reasonable scoring function. To
examine in more detail how properties of molecules generated
with one protocol may differ when rescored with another,
histograms of the resultant SGE and FMS scores were plotted
using each of the three different pose ensembles obtained with
SGE, FMS, or FMS+SGE methods. As expected, and consistent
with the rescoring results in Table 4, use of the FMS function
alone to derive poses does lead to overall less favorable DOCK
energies (Figure 8 top, red) when rescored in SGE-space

compared to FMS+SGE (Figure 8 top, green) or SGE (Figure
8 top, blue). The large positive peak at 200 kcal/mol (Figure 8
top, red) represents those systems for which large positive
energies were obtained due to geometric clashes occurring
between ligand and protein. However, an encouraging number
of the poses derived from FMS sampling do yield favorable
energies. At first glance, the fact that the SGE and FMS+SGE
energy histograms (Figure 8 top, blue and green) are nearly

superimposable is somewhat surprising, especially considering
the two ensembles yield substantially different success rates
(SGE = 72.5% vs FMS+SGE = 98.3%). However, given the
underlying complexity of binding energy landscapes, ligand
poses with distinctly different binding geometries may in fact
yield similar energy scores (and vice versa), thus the observed
SGE overlap in Figure 8 (top panel) is not unreasonable.
As shown in Figure 8 (bottom), FMS score distributions

show much greater separation, indicating greater sensitivity in
contrast to the SGE score distributions shown in Figure 8
(top). Here, SGE sampled poses yield a much wider almost
uniformly distributed range of FMS scores (Figure 8 bottom,
blue) compared to FMS (Figure 8 bottom, red) or FMS+SGE
(Figure 8 bottom, green) sampled poses which have large peaks
around 0.5, indicative of high pharmacophore overlap.
Importantly, the FMS+SGE combination containing both
geometric and energetic components to guide growth yields
energy scores on par with standard SGE-guided docking poses
(Figure 8 top, green vs blue) and matches the pharmacophore
models even better than FMS-only docking (Figure 8 bottom,
green vs red).

Ensemble Sizes. An additional interesting observation from
the results in Table 4 is the larger number of final docked poses
obtained using FMS (337674) compared to SGE (89083) or
FMS+SGE (59237). The much larger ensemble generated with
FMS corresponds to an increase in total docking time, which
could be of concern, although when normalized by the number
of poses kept, the FMS function is actually faster than SGE by
about 1.5 fold. The most likely explanation for the increased
size involves reduced pruning. Current experiments employed a
standard DOCK input file specifying a maximum score cutoff of
100.0, larger than the upper bound of the FMS function [0, 20].
Thus, poses are not as vigorously pruned during growth
compared to protocols that employ energy-based functions
(themselves not bounded). The significantly larger ensemble
from FMS-sampling also likely contributes to the reduction in
docking success rate associated with SGE rescoring because of
the greater number of alternative (decoy) poses associated with
system. Future studies to optimize the maximum score cutoff
parameter would be worthwhile.

4.2. Quadrant Partitioning Using FMS Score. Although
no score cutoffs were used to define success in the pose
reproduction tests in Table 4, if both a RMSD cutoff and score
cutoff are defined then the results can be classified in one of
four different quadrants (see Figure 9b) defined as (I) true
positive (TP), good score and low RMSD; (II) false positive
(FP), good score and high RMSD; (III) true negative (TN),
bad score and high RMSD; (IV) false negative (FN), bad score
and low RMSD. To highlight properties of the new DOCK
pharmacophore function, Figure 9 focuses on the results
derived using only the FMS-guided sampling protocol
discussed above (success = 93.5%, sampling failure = 3.7%,
scoring failure = 2.8%). Dashed green lines at RMSD = 2 Å and
FMS = 2 delineate the four quadrants.
Figure 9a plots the large “all poses” set consisting of 239486

ligand conformations with FMS < 20 out of the total sampled
space obtained with FMS sampling (337674 poses). Here, the
small separate cluster of points located in the TP region (lower
left quadrant), which shows roughly linear correlation with
RMSD, corresponds to mostly docking successes compared to
the highly populated TN region (upper right quadrant)
containing many thousands of points for which the correlation
between RMSD and FMS begins to diverge as FMS values

Figure 8. SGE (top) and FMS (bottom) score histograms using
ensembles derived from SGE (blue), FMS (red), or FMS+SGE
(green) driven sampling methods.
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increase. Unlike the standard SGE function, which typically
shows little correlation with RMSD, the FMS method behaves
more like RMSD given the geometric nature of the function.
Importantly, the results in Figure 9a indicate that the FMS
protocol is not only able to identify close-to-native ligand
conformation with favorable scores (region I) but also correctly
characterizes poses that are geometrically different from the
reference by assigning unfavorable scores (region III).
Figure 9b plots the “best poses” set consisting of 1041 ligand

conformations (1 system failed to dock, 1 system with FMS =
20 for the best score pose). As in Figure 9a, poses in the TP
region again show roughly linear correlation with RMSD. In
this case, however, as only a single pose for each system is
retained, unlike the “all poses” case, the TN region is sparse.
Ideally, a good function should maximize TP and minimize FP.
With the present RMSD (2.0 Å) and FMS (2) cutoffs, 949
points are classified as TP and 26 are classified as FN. The
remaining points (1042 − 975 = 67) are divided into 39 TN
cases and 28 FP cases. Overall, the 97.3% TP rate (949/975)
and 41.8% FP rate (28/67) indicates good quadrant
partitioning. And, as expected, use of a smaller score cutoff
will yield a reduction in TP but an improvement in FP. For
example, use of an FMS cutoff = 1.5 yields a TP rate = 91.4%
and a FP rate = 20.9%, and use of an FMS cutoff = 1.0 yields a
TP rate = 78.1% and FP rate = 9.8%. As a point of comparison,

comparable analysis by Balius et al.7 for a similar TP rate =
79.8% yielded a higher FP rate = 46.2% using DOCK’s
footprint similarity method with a 0.6 score cutoff (based on
normalized Euclidean distance) and 2 Å RMSD cutoff across
780 protein−ligand systems. In practice, the optimal choice of a
numerical value for score cutoff to employ in a study to yield
compounds with the desired properties is system-dependent.
For example, in typical virtual screening applications, FMS
score between candidate compounds and a reference would be
expected to be higher (i.e., less overlap) than under the present
pose reduction tests which compare compounds with identical
topologies but different conformations.

False Positive (FP) Cases with FMS. While FMS in general
yields excellent quadrant partitioning, an examination of the
results was undertaken to determine the underlying cause of FP
and FN classifications. Focusing on results from the “best
poses” set (Figure 9b), Figure 10 presents the ten out of
twenty-eight FP results (RMSD > 2 Å, FMS ≤ 2) with the
highest RMSD. Analogous to that observed with the FMS+SGE
scoring failures (Figure 7), FP poses derived with FMS-
sampling show, for the most part, remarkably high overlap
except for one end of the molecule. And in all ten cases, the
poorly overlapped groups contain rings, which are weighted
heavier by the RMSD function than FMS. System 1ODC is a
particularly interesting case. Here, the ligand pose is semi-

Figure 9. 2D Histograms of FMS score and RMSD for (a) all poses (N = 239486) and (b) best scored poses (N = 1041) generated using FMS
guided sampling of 1043 systems. Poses without matches (FMS = 20) not included in histograms. Color reflects density (population).

Figure 10. Ten out of twenty-eight FP poses derived from FMS-guided docking with the largest RMSD values. Crystal poses in orange, best scored
poses in magenta. RMSD in angstroms and FMS scores in parentheses.
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symmetric and flipped by ca. 180° relative to the reference
(magenta vs orange), resulting in overlap between two rings on
one end with three rings from the other. Although the
Hungarian algorithm used here in DOCK37 to compute
symmetry-corrected RMSD effectively accounts for the swap
of functionality having identical chemical properties, the
resultant value of 3.41 Å is still classified as a failure, largely
as a result of one ring on either end (8 atoms total) not being
matched. In contrast, the FMS score not only accounts for the
symmetry but the good overlap between four out of six ring
centers (and associated vector directions), which leads to a
relatively low FMS score of 1.48. Overall, visual examination of
these ten worst FP cases reveals a significant amount of
physically reasonable matches and minimal mismatch and the
classification of poses to this quadrant is, in most cases,
understandable.
False Negative (FN) Cases with FMS. In terms of the FN

examples (RMSD < 2 Å, FMS > 2), Figure 11 presents the ten
out of twenty-six poses with the highest FMS scores.
Immediately obvious compared to the FP examples is that
the molecules here contain fewer aromatic rings, for the most
part are larger and more extended, and have a higher number of
more loosely matched hydrogen-bonding functional groups
(most polar atoms in the FP cases are either tightly matched or
not matched at all). This latter point is particularly important as
relatively small changes in position of a hydrogen-bonding
functional group can lead to relatively large changes in FMS
overlap but minor effects on RMSD which is computed using
only heavy (non-hydrogen) atoms. Although our standard
preparation protocol for FMS scoring employs an energy
minimization step to relax any hydrogen atoms added to the
system, the positions adopted as a result of ligand sampling
during growth may result in the candidate and reference poses
having different hydrogen directions. This result highlights the
need for care when preparing a molecule to be used as a
“reference” for scoring candidate compounds. Despite being a
distinctly different type of function, a similar conclusion was
reached by employing the DOCK footprint function.7 Despite
this sensitivity, however, most of the FN cases have scores close
to 2 that could easily be rescued by a minor increase in FMS
cutoff to 2.5.
4.3. Crossdocking Results. In addition to pose repro-

duction, crossdocking experiments are a useful way to
determine if different protocols can reproduce nativelike

poses when ligands are docked to highly homologous protein
binding sites from different crystallographic structures (see
Figure 6b). Figure 12 displays outcomes across six protein

families: carbonic anhydrase (CA, N = 29), carboxypeptidase A
(CPA, N = 8), epidermal growth factor receptor (EGFR, N =
15), thermolysin (THERM, N = 26), HIV protease (HIVPR, N
= 60), and HIV reverse transcriptase (HIVRT, N = 21). For
comparison, both the diagonal (cognate protein−ligand pairs)
and the entire matrix (all combinations) are shown. As before,
three docking protocols were tested (SGE, FMS, and FMS
+SGE). As shown in Figure 12a, this is a particularly
challenging group of proteins with the standard SGE protocol
yielding low diagonal successes (34.5−60.0%) for 5 out of 6
families. The exception is HIVRT for which the SGE success
rate = 95.2%. In contrast, use of FMS (71.7−100.0%) or FMS
+SGE (75.0−100.0%) yields significant improvement for
cognate receptor−ligand pairs. Carbonic anhydrase is a
particularly noteworthy example as the SGE diagonal success

Figure 11. Ten out of twenty-six FN poses derived from FMS-guided docking with the largest FMS scores. Crystal poses in orange, best scored
poses in magenta. RMSD in angstroms and FMS scores in parentheses.

Figure 12. Crossdocking outcomes averaged across the diagonal (left)
or total matrix (right) for six protein families: carbonic anhydrase
(CA), carboxy peptidase A (CPA), epidermal growth factor receptor
(EGFR), thermolysin (THERM), HIV protease (HIVPR), and HIV
reverse transcriptase (HIVRT) using SGE (top), FMS (middle), and
FMS+SGE (bottom) protocols. Success in blue, scoring failure in
green, and sampling failure in red.
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increases from only 34.5% to near 100.0% using the FMS or
FMS+SGE functions. Comparable enhancements in success for
carbonic anhydrase were also reported by Balius et al.7 when
using the DOCK footprint similarity scoring function (82.8%)
compared to SGE (31.0%).
As expected, for more challenging crossdocking experiments,

matrix success (Figure 12b) using any of the scoring functions
are in general significantly lower than their diagonal counter-
parts (Figure 12a). As a baseline, use of SGE yields an averaged
matrix success of 36.0% compared to the diagonal at 54.6%. In
contrast to the diagonal results, interestingly, use of FMS alone
for crossdocking shows improvement over SGE in only two
cases (CA and CPA). However, in all cases, the combined FMS
+SGE function always yields a better matrix success than does
SGE. Analogous to the diagonal results, the matrix outcomes
(Figure 12b) similarly reveal that carbonic anhydrase has the
lowest overall matrix SGE success rate (17.8%) which increased
the most among all systems tested when using FMS (48.8%) or
FMS+SGE (52.1%). Figure 13 compares the heatmaps for
carbonic anhydrase, derived from three independent docking
sets of size 29 × 29 = 841 combinations, using SGE, FMS, and
FMS+SGE methods. The maps visually highlight that SGE
failures are primarily due to scoring (green squares), pinpoint
which specific systems are involved, and indicate that FMS and
FMS+SGE protocols significantly improve docking outcomes
(more blue squares).
Additionally, visible in the FMS heatmap for carbonic

anhydrase (Figure 13, middle) is the appearance of previously
unseen sampling failures specifically localized to column 1BCD.
It is important to note that the RMSD calculations in both

diagonal and off-diagonal experiments always involve com-
pounds of the same topology. However, for pharmacophore
overlap calculations involving off-diagonal elements, the
pharmacophore reference and the candidate molecule being
docked are usually of different topology. In such cases, FMS-
guided docking may drive sampling in a direction that will not
necessarily agree with the RMSD reference. Calculation of the
pharmacophore overlap between all aligned crystallographic
references for carbonic anhydrase indeed shows 1BCD has the
poorest reference FMS scores (between the pharmacophore
reference and the RMSD reference) when averaged across all
columns (FMS = 5.15) or all rows (FMS = 5.51), which is
appreciably above the overall average (FMS = 3.38) across all
reference pairs. Inspection further revealed that the ligand from
1BCD has only one rotatable bond and a molecular weight of
148.1 g/mol, which is markedly smaller than the average ligand
in this family with 5.1 rotatable bonds and a molecular weight
of 339.7 g/mol. Thus, crossdocking of ligands to receptor
1BCD, using FMS alone, is not expected to be consistent with
the 1BCD reference sampling space, which leads to the
observed sampling failures.
Additionally, more dramatic examples of this phenomenon

manifest themselves in the heatmaps for thermolysin as shown
in Figure 14. Here, in contrast to carbonic anhydrase,
crossdocking with SGE yields a higher overall success rate of
38.2% (Figure 14 left, blue) but with a higher percentage of
sampling failures (29.1%, red). And, while the combined
function FMS+SGE yields the overall best docking success rate
(51.0%) for this family, use of FMS alone actually increases
sampling failures (47.5%) relative to SGE (Figure 14 left vs

Figure 13. Crossdocking heatmaps using SGE, FMS, and FMS+SGE protocols for carbonic anhydrase (29 × 29 = 841 combinations).

Figure 14. Crossdocking heatmaps using SGE, FMS, and FMS+SGE protocols for thermolysin (26 × 26 = 676 combinations).
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middle, red) which, as described below, likely involves poor
reference pharmacophore overlap. Close inspection of the
crossdocking heatmaps reveals submatrices of size 4 × 4,
defined here as group 1 (1PE5, 1PE7, 1PE8, 2TMN) and group
2 (1KJO, 1KL6, 1KS7, 1KKK), for which FMS sampling
relative to SGE: (i) maintains docking success and/or (ii)
rescues previously unsuccessful docking outcomes involving
systems within the same group, and (iii) introduces docking
failures for systems from different groups. To aid the discussion,
Figure 15 shows a heatmap of FMS scores (as opposed to
docking outcomes), derived from the X-ray references, with
diagonal and off-diagonal submatrix blocks for groups 1 and 2
outlined as black boxes.
The FMS scores computed between all reference pairs

indicate perfect overlap on the diagonal (FMS = 0, dark blue),

but for the most part the majority of pairs have poor overlap
(FMS = 3−8, green to dark red). A striking exception are the
cases defined by groups 1 and 2 (Figure 15, black boxes) which
all have relatively good reference FMS scores within the same
group (two blue submatrices near the diagonal) but poor FMS
scores between different groups (two green to yellow
submatrices on the off-diagonal). This observation helps
explain why FMS-guided docking yields 100% success across
the submatrices formed within the same group (Figure 14,
middle), but when using group 1 systems as a reference to
guide docking of ligands in group 2, no matrix success is
reported and only 1 success is obtained for the opposite case
(other symmetric block). Structurally, the molecular cluster
formed by ligands in group 1 occupies an extended space in the
thermolysin binding pocket (Figure 15b, left) and contain

Figure 15. (a) FMS heatmap, using all crystallographic reference poses for thermolysin, with perfect overlap in dark blue (FMS = 0) and poorest
overlap (FMS ≥ 8) in dark red. Group 1 submatrix defined by systems 1PE5, 1PE7, 1PE8, and 2TMN. Group 2 submatrix defined by systems 1KJO,
1KL6, 1KS7, and 1KKK. (b) Crystallographic reference overlays showing matched pharmacophore features for group 1 (left, orange), group 2 (right,
magenta), and group 1 vs group 2 (middle).
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additional hydrophobic groups compared to group 2 (Figure
15b, right). Group 2 ligands cluster into a more slender volume
anchored by an aromatic ring at one end and hydrogen bond
acceptor on the other. As a consequence, groups 1 and 2 share
only a few (1−3) matched pharmacophore points (Figure 15b,
middle), which explains the poor FMS scores between off-
diagonal reference ligands in addition to the poor docking
outcomes. Interestingly, the addition of the energy term to the
pharmacophore overlaps score (FMS+SGE score), using group
2 as a reference to dock group 1, yields 100% docking success.
In contrast, using group 1 as reference to dock group 2 yields
100% sampling failure (Figure 14, right panel).
Finally, the overall poorest matrix success results using FMS

(7.2%) or FMS+SGE (37.7%) docking is seen with HIVPR.
Although high ligand flexibility is expected to play a role in the
large number of sampling failures seen in the FMS matrix
(Figure 12b, red) relative to other systems (31/60 of ligands
have ≥15 rotatable bonds), the most likely cause is poor
pharmacophore overlap between all pairwise combinations.
Consistent with the discussions above, out of the 3600 pairwise
combinations in the HIVPR crossdocking reference FMS
matrix derived from crystallographic poses, only 220 pairs
yielded reasonable pharmacophore overlap (FMS ≤ 3). In
contrast, 2493 pairs have poor pharmacophore overlap (FMS ≥
4.5) which, interestingly in this case, is about the same as the
number of sampling failures (2816).
Overall, two key points have emerged from the current

crossdocking studies: (1) FMS-guided success rates, particular
for off-diagonal elements, are dependent on the similarity
between the pharmacophore reference and the RMSD
reference. (2) The FMS+SGE protocol generally improves
crossdocking performance, relative to SGE or FMS, by
integrating known binding profiles into the standard DOCK
energy score.

4.4. Enrichment Results. Results for enrichment experi-
ments, used to gauge how DOCK would perform in a virtual
screening using SGE, FMS, or FMS+SGE protocols are shown
in Figure 16 and Table 5. Receiver operating characteristic
(ROC) curves and area under the curve (AUC) analyses were
used to compute fold enrichment (FE = AUCcurve/AUCrandom)
values for docking active and decoy ligands taken from the
DUD-E database.28 For virtual screening applications, good
early enrichment is considered to be critically important, thus
FE was also computed at 0.1%, 1%, and 10% of the ranked
database. For the current tests, the overall shape of the ROC
curves vary from essentially perfect enrichment (1NJS) to
random enrichment (1C8K) with most systems exhibiting good
overall enrichment but with a visible dependence on which of
the three docking functions was used. For the majority of
systems, depending on which ROC region is examined, FMS
(red curves) shows higher enrichment than SGE (blue curves),
with FMS+SGE (green curves) being roughly in between
(Figure 16). Across different ranges of the database, based on
numerical AUC values, use of FMS or FMS+SGE consistently
yield higher FE rates relative to SGE (Table 5). For example, at
0.1% of the database, 11/15 FE values using FMS and 11/15
FE values using FMS+SGE are enhanced relative to SGE
(Table 5, column A). Similarly, at 1% of the database, 10/15 FE
values using FMS and 13/15 FE values using FMS+SGE are
enhanced relative to SGE (Table 5, column B). Comparable
results are obtained at 10% and 100% of the database.
The fact that use of FMS+SGE yields generally lower

enrichment outcomes than FMS is somewhat surprising given
that FMS+SGE yielded higher success rates than FMS in pose
reproduction experiments. However, it is important to note that
the role of the SGE term in FMS+SGE is fundamentally
different for pose reproduction given that different molecular
conformers, as opposed to the different chemical species for
enrichment, are what is rank-ordered. The most likely

Figure 16. ROC enrichment curves for 15 DUD-E systems using SGE, FMS, and FMS+SGE protocol.
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contributing factor as to why FMS scoring yields enhanced
enrichment involves the fact that use of a crystallographic
reference captures elements of what is important for activity for
at least one active ligand. Because rank-ordering of “actives”
using FMS scoring are biased toward the known binder, higher
enrichments can be obtained. With the addition of the SGE
term, sampling and rank-ordering using FMS+SGE will change

as a result of, for example MW bias, which leads to different
enrichment results (less-favorable in most cases for the present
tests). Overall, the enrichment tests validate the ability of FMS
and FMS+SGE protocols to enrich for true actives relative to
SGE alone by prioritizing molecules with similar binding
profiles as a known ligand. This strongly suggests use of a
pharmacophore reference to help guide virtual screening and is
a viable alternative to the standard DOCK protocol.
As an additional point, in general, good enrichment should

depend only on actives being ranked earlier than decoys
without regards to there being “similarity” among groups of
compounds. However, use of the FMS function might be
expected to yield higher early similarity, compared to the entire
set of actives as a whole, provided the composition of active
molecules in a given database does contain subsets with 2D
similarity, and a larger than average number of docked
compounds yield good 3D overlap with the reference
pharmacophore. To explore this issue, among rank-ordered
active compounds, we computed all possible pairwise Tanimoto
coefficients using the DOCK fingerprinting method motivated
by the MOLPRINT algorithm43,44 and plotted the data as
heatmaps (Figure 17).
While additional studies should be pursued, especially those

employing more than one reference per system as was done in
the current study, Figure 17 reveals that in a number of cases,
active molecules do in fact appear to have higher similarity
earlier in rank-ordered list when using FMS versus SGE scoring
(Figure 17, red/yellow vs blue, top vs bottom rows). Rank-
ordering with FMS also shows a tendency to cluster similar
molecules together. Particularly interesting examples include
1SJO, 1UYG, and 1L2S for which SGE shows poor (random in
two cases) enrichment compared to FMS as gauged by the
shape of the ROC curves in Figure 16.

4.5. Case Studies Targeting EGFR, IGF-1R, and
HIVgp41. To further gauge the utility of using FMS methods,
we rescored virtual screening results for three systems being
targeted in our laboratory: epidermal growth factor
(EGFR),45,46 insulin-like growth factor 1 receptor (IGF-1R),
and human immunodeficiency virus glycoprotein 41
(HIVgp41)9,47 and visually examined the number of
pharmacophore matches for top-ranked molecules under
different conditions (Figure 18). The FMS references
employed for EGFR (erlotinib) and IGF-1R (isoquinolinedione
analog) were based on known small molecule inhibitors, while
the HIVgp41 reference was based on four key amino acid side
chains (WWDI) from a known peptide inhibitor. The receptors
and accompanying references were derived from crystallo-
graphic structures (PDB codes 1M17, 2ZM3, and 1AIK,
respectively), and the molecules docked to each target were
taken from the publically available ZINC48 collection of
purchasable organic compounds. For each screen, the top
100000 ranked compounds obtained with the standard docking
protocol (grid score with FLX protocol) were retained and
then rescored and reranked using DOCK Cartesian energy
(DCE, which is comparable to SGE but in Cartesian space),
FMS, and FMS+DCE scoring protocols.
As shown in Figure 18, the number of pharmacophores

matched for the top 25 ranked compounds is relatively small
using DCE. In sharp contrast, use of FMS or FMS+DCE show,
for example, many more matched HBD (blue arrows), HBA
(red arrows), ARO (orange arrows), and PHO (cyan spheres)
features. It is important to note that the plots in Figure 18 show
how many “matched” pharmacophores were obtained, relative

Table 5. Fold Enrichment (FE) Results at Different
Percentages of the Database (DB) Screened

(A) FE @
0.1% of
DBb

(B) FE @
1% of
DBb

(C) FE @
10% of
DBb

(D) FE @
100% of
DBb

random 1.00 1.00 1.00 1.00
systema maximum 2000.00 200.00 20.00 2.00
1NJS SGE 0.00 111.36 19.05 1.99

FMS 1009.65 184.26 19.88 2.00
FMS+SGE 0.00 150.85 19.52 2.00

1SJ0 SGE 88.96 22.09 4.98 1.21
FMS 804.91 114.91 15.39 1.90
FMS+SGE 382.87 48.69 5.90 1.30

3CCW SGE 80.74 31.49 7.20 1.43
FMS 1167.99 144.49 15.46 1.77
FMS+SGE 932.51 116.07 12.68 1.61

2RGP SGE 218.33 41.28 6.76 1.40
FMS 225.70 46.36 11.77 1.77
FMS+SGE 517.05 67.51 9.90 1.59

2VT4 SGE 166.11 36.47 7.51 1.50
FMS 223.36 65.93 10.45 1.73
FMS+SGE 376.70 78.04 11.07 1.67

2GTK SGE 53.17 22.27 7.21 1.59
FMS 613.72 75.99 10.30 1.67
FMS+SGE 319.87 60.89 10.75 1.69

1BCD SGE 6.40 14.38 6.35 1.67
FMS 147.94 25.25 5.43 1.65
FMS+SGE 43.48 25.22 7.74 1.74

1UYG SGE 0.00 3.56 0.65 0.92
FMS 590.68 90.43 9.32 1.62
FMS+SGE 75.01 35.68 7.90 1.25

1L2S SGE 0.00 0.00 0.54 1.07
FMS 264.83 55.17 7.82 1.61
FMS+SGE 235.40 56.64 8.84 1.48

2HZI SGE 86.92 23.91 5.03 1.40
FMS 149.30 23.72 4.43 1.53
FMS+SGE 103.28 28.80 5.51 1.50

1KVO SGE 62.81 35.80 5.84 1.29
FMS 39.26 6.16 4.04 1.53
FMS+SGE 51.04 32.23 8.04 1.47

1R9O SGE 31.34 4.59 1.53 1.07
FMS 0.00 2.17 2.45 1.20
FMS+SGE 15.67 5.33 1.63 1.07

1E66 SGE 247.06 52.18 8.20 1.37
FMS 11.28 3.43 1.56 1.19
FMS+SGE 508.10 70.25 8.99 1.43

2AA2 SGE 4.13 5.00 0.74 0.45
FMS 190.19 26.71 3.32 1.17
FMS+SGE 62.02 7.07 0.90 0.64

1C8K SGE 0.00 0.00 0.63 0.98
FMS 0.00 0.00 0.47 0.83
FMS+SGE 0.00 0.00 0.82 1.00

aPDB codes used with accompanying DUD-E libraries (actives +
decoys). bFE = AUCcurve/AUCrandom thus baseline random selection
always yields a FE = 1.00.
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to the reference, but candidate compounds can contain
“unmatched features” that extend beyond the volume defined
by the reference compound; the functional form of eq 1 does
not necessarily penalize unmatched features relative to the
candidate. This behavior could be changed, for example, by
including simply a penalty term based on the number of
unmatched groups in the candidate; however, this was not
explored in great detail. Other functional forms besides eq 1
could also be investigated. In any event, the number of matched
and unmatched features, including types, for each docked pose,
are printed to the DOCK output, which can be useful to
determine whether particular characteristics have been satisfied.
As a specific example, an interesting result from the present

analysis is a lack of matched pharmacophore features to the Asp
carboxylate group in the HIVgp41 reference (Figure 18 row C).
An examination of ranked poses higher up the FMS and FMS
+DCE lists did indeed reveal compounds with overlap to the
reference carboxylate but they were not ranked as well as
compounds with multiple matches involving two Trp indole
rings and a hydrophobic Ile (Figure 18, row C). Given the
biological importance of the Asp group in this system, an
effective small molecule mimic would reasonably be expected to

contain a negatively charged or hydrogen-bonding group at this
position.49,50 A straightforward way to enforce this requirement
was devised by using a modified HIVgp41 reference that simply
included 5 copies of the Asp carboxylate which had the effect of
weighting this feature more heavily, as shown in Figure 18, row
D. For this particular test, weighting the Asp more highly had
the desired effect but at the expense of losing hydrophobic
matches to Ile (Figure 18, FMS and FMS+DCE, row C vs D).
As a general point, this example demonstrates the ease with
which specific pharmacophore features can be emphasized over
others using the current DOCK infrastructure.
Finally, in terms of additional ligand properties, Figure 19

plots results from the HIVgp41 screen for different groups of
top-ranked molecules (N = 500) each obtained by one of the
ranking protocols. Consistent with previous studies from our
laboratory, use of DCE (or SGE) shows a bias toward larger
molecules. In contrast, compounds ranked by FMS score are
smaller in size as demonstrated by ligands with lower molecular
weights (Figure 19d) and fewer numbers of rotatable bonds
(Figure 19e). As anticipated, use of FMS+DCE yields
molecular weights and numbers of rotatable bonds roughly
in-between DCE and FMS. For scoring, use of DCE results in

Figure 17. Pairwise Tanimoto heatmap for 15 DUD-E systems using FMS (top) and SGE (bottom) protocol. The color scheme in the heatmap
represents the magnitude of Tanimoto similarity, and the x/y axis represents the rank-ordered list (FMS or SGE) of unique active molecules for each
system.
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more favorable DCE energies (Figure 19a, blue vs red or
green), FMS results in more favorable FMS scores (Figure 19b,
red vs blue or green), and FMS+DCE results in more favorable
FMS+DCE scores (Figure 19c, green vs blue or red). And,
rescoring molecules obtained with one function with another
function leads to the expected results. For example, DCE score
distributions for top-ranked FMS+DCE molecules are in
between that of DCE and FMS (Figure 19a green), FMS
score distributions for top-ranked FMS+DCE molecules are in
between that of FMS and DCE (Figure 19b green), and FMS
+DCE score distributions for top-ranked FMS molecules are in
between that of FMS+DCE and DCE (Figure 19c red).
Importantly, use of the combined FMS+DCE function to
rescore virtual screening results yield both favorable FMS
scores and DOCK energies. This suggests use of a reference to
rescore screening results could also be a viable way to identify
compounds that make known interaction patterns, with
favorable interaction energies, while reducing molecular weight
bias.

5. CONCLUSION
In conclusion, the primary goal of this study was to develop,
implement, and thoroughly test a pharmacophore-based
scoring function for the docking program DOCK. The resulting
method, termed pharmacophore matching similarity (FMS)
score, was validated using experiments that help gauge accuracy
relative to the standard DOCK single-energy grid (SGE)
protocol, and the combination score FMS+SGE. Three groups
of validation experiments were performed: (i) pose reproduc-
tion (Figures 7−11 and Table 4), (ii) crossdocking (Figures
12−15), and (iii) enrichment (Figure 16 and Table 5).
Importantly, in terms of pose reproduction, use of FMS
(93.5%) or FMS+SGE (98.3%) functions yielded significantly
higher success rates than the standard SGE (72.5%) method
when evaluated using 1043 systems in the SB2012 testset. The
nearly perfect success rate obtained with the combined FMS
+SGE function, which biases sampling to match a reference
while simultaneously including energetic constraints imposed
by a binding site, is notable and strongly suggests the method
will have applicability for structure-based drug design provided
a “suitable” reference can be identified. Tests using FMS alone

Figure 18. References (orange sticks, gray surface) used to rescore virtual screening results targeting (A) EGFR, (B) IGF-1R, (C) HIVgp41, and (D)
HIVgp41 with Asp side chain weighted 5 times. Matched pharmacophore features include: PHO in cyan, HBA (vertex and vector) in red, HBD
vector in blue, hydrogen vertex in gray, ARO (vertex and vector) in orange, POS in magenta, and NEG in green (see Theoretical Methods for
definitions).
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for pose reproduction showed relatively few ligand poses falling
into false positive (FP) and false negative (FN) regions defined
by quadrant partition using specific RMSD and FMS score
cutoff criteria (Figure 9). Interestingly, visual examination of
the worst FP cases (Figure 10) revealed, in most instances, that
the candidate and references poses were in fact well-overlaid
and that only one part of the molecule was not well-matched.
Unlike the standard DOCK energy function, the geometry-
based FMS scores show reasonable correlation with RMSD.
For crossdocking, while use of FMS scoring alone showed

significant improvement with regards to systems on the
diagonal (cognate protein−ligand pairs), the overall matrix
success rate in 4 out of 6 cases was significantly lower than
SGE. Examination of the underlying reference structures
showed that FMS docking success is highly dependent on
how well the pharmacophore reference overlays with the
RMSD reference (Figures 12−15). Thus, while use of FMS
scoring alone to drive sampling of a ligand using a reference
without possibilities for good overlap yields poor results, such
behavior makes physical sense. More importantly, the results
dramatically emphasize that the FMS function works best when
the goal is identification of molecules that resemble the
reference, as was the original intent. As expected, use of the
combined FMS+SGE function provides more of a balance and
yields the highest crossdocking matrix success rates (Figure
12).
In terms of enrichment, receiver operator characteristic

(ROC), area under the curve (AUC), and fold enrichment
(FE) analyses, in general, showed that FMS and FMS+SGE
functions yield better performance than SGE alone (and
random selection) for both early and total enrichment (Figure
16 and Table 5) when evaluated over 15 systems taken from
the DUD-E database. For several systems, FMS+SGE enrich-
ment appears roughly in between that obtained using FMS or
SGE alone (Figure 16). Importantly, FE values computed very
early in rank-ordered lists (0.1% and 1%) showed using FMS
and FMS+SGE yielded 10−13 out of 15 FE values enhanced
relative to the standard protocol SGE (Table 5, columns A and
B) despite the fact that only a “single” reference (cognate
ligand) was used to guide sampling of compounds. Future

studies should evaluate enrichment outcomes using multiple
FMS references.
In terms of virtual screening, rescoring results obtained from

standard docking to three target of pharmaceutical interest
(EGFR, IGF-1R, and HIVgp41) showed that the FMS and
FMS+DCE (equivalent to FMS+SGE) methods yielded more
compounds with greater numbers of pharmacophore matches
when the top 25 compounds from each method were examined
(Figure 18). The example also demonstrated how FMS scoring
could utilize small organic molecules or noncontiguous protein
side chains as a reference. For gp41 in particular, examination
of top poses revealed that none of the compounds matched an
important Asp side chain in the initial pharmacophore model. A
simple modification of the reference to include multiple copies
of the Asp weighted this functionality more highly, and when
rescored, yielded top-ranked compounds with the desired
interaction. Importantly, this result further establishes the
importance of the FMS “reference” in addition to demonstrat-
ing how pharmacophores could be customized.
Finally, the current results suggest several directions for

future research, including exploring other functional forms of
the main FMS equation (eq 1), testing FMS score in
combination with other scoring functions (i.e., footprint similar
scoring), development of a receptor-based51 as opposed to the
current ligand-based method, and implementation of routines
to address multiple pharmacophore references simultane-
ously.52 Ongoing work involves incorporation of FMS scoring
into a de novo design version of DOCK, currently under
development in our laboratory, to allow pharmacophore-guided
de novo growth of new ligands from scratch having similar
binding profiles as a known reference.

■ AUTHOR INFORMATION

Corresponding Author
*E-mail: rizzorc@gmail.com.

Notes
The authors declare no competing financial interest.

Figure 19. Histograms of rescoring results for the top 500 molecules selected from virtual screening targeting HIVgp41.

The Journal of Physical Chemistry B Article

dx.doi.org/10.1021/jp506555w | J. Phys. Chem. B 2015, 119, 1083−11021100

mailto:rizzorc@gmail.com


■ ACKNOWLEDGMENTS

Gratitude is expressed to Trent E. Balius for help in early code
development and computational assistance, to Yulin Huang for
computational assistance, and to William J. Allen for helpful
discussions and critical reading of the manuscript. The research
utilized resources at the New York Center for Computational
Sciences at Stony Brook University/Brookhaven National
Laboratory, which is supported by the U.S. Department of
Energy under Contract DE-AC02-98CH10886 and by the State
of New York. The work was supported by the National
Institutes of Health, Grant R01GM083669.

■ REFERENCES
(1) Lang, P. T.; Brozell, S. R.; Mukherjee, S.; Pettersen, E. F.; Meng,
E. C.; Thomas, V.; Rizzo, R. C.; Case, D. A.; James, T. L.; Kuntz, I. D.
DOCK 6: Combining Techniques to Model RNA-Small Molecule
Complexes. RNA 2009, 15, 1219−1230.
(2) Moustakas, D. T.; Lang, P. T.; Pegg, S.; Pettersen, E.; Kuntz, I.
D.; Brooijmans, N.; Rizzo, R. C. Development and Validation of a
Modular, Extensible Docking Program: Dock 5. J. Comput.-Aided Mol.
Des. 2006, 20, 601−619.
(3) Klebe, G. Virtual Ligand Screening: Strategies, Perspectives and
Limitations. Drug Discovery Today 2006, 11, 580−594.
(4) Kuntz, I. D. Structure-based Strategies for Drug Design and
Discovery. Science 1992, 257, 1078−1082.
(5) Jorgensen, W. L. The Many Roles of Computation in Drug
Discovery. Science 2004, 303, 1813−1818.
(6) Shoichet, B. K. Virtual Screening of Chemical Libraries. Nature
2004, 432, 862−865.
(7) Balius, T. E.; Mukherjee, S.; Rizzo, R. C. Implementation and
Evaluation of a Docking-rescoring Method Using Molecular Footprint
Comparisons. J. Comput. Chem. 2011, 32, 2273−2289.
(8) Balius, T. E.; Allen, W. J.; Mukherjee, S.; Rizzo, R. C. Grid-Based
Molecular Footprint Comparison Method for Docking and De Novo
Design: Application to HIVgp41. J. Comput. Chem. 2013, 34, 1226−
1240.
(9) Holden, P. M.; Kaur, H.; Goyal, R.; Gochin, M.; Rizzo, R. C.
Footprint-Based Identification of Viral Entry Inhibitors Targeting
HIVgp41. Bioorg. Med. Chem. Lett. 2012, 22, 3011−3016.
(10) Berger, W. T.; Ralph, B. P.; Kaczocha, M.; Sun, J.; Balius, T. E.;
Rizzo, R. C.; Haj-Dahmane, S.; Ojima, I.; Deutsch, D. G. Targeting
Fatty Acid Binding Protein (FABP) Anandamide Transporters: A
Novel Strategy for Development of Anti-Inflammatory and Anti-
Nociceptive Drugs. PLoS One 2012, 7, e50968.
(11) Ehrilich, P. Uber die Constitution des Diphtheriegiftes. Deut.
Med. Wochenschr. 1898, 24, 597−600.
(12) Ehrilich, P. Uber den Jetzigen Stand der Chemotherapie. Ber.
Dtsch. Chem. Ges. 1909, 42, 17−47.
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