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Abstract

Objective

Routinely collected health administrative data can be used to efficiently assess disease bur-

den in large populations, but it is important to evaluate the validity of these data. The objec-

tive of this study was to develop and validate International Classification of Disease 10th

revision (ICD -10) algorithms that identify laboratory-confirmed influenza or laboratory-con-

firmed respiratory syncytial virus (RSV) hospitalizations using population-based health

administrative data from Ontario, Canada.

Study design and setting

Influenza and RSV laboratory data from the 2014–15, 2015–16, 2016–17 and 2017–18

respiratory virus seasons were obtained from the Ontario Laboratories Information System

(OLIS) and were linked to hospital discharge abstract data to generate influenza and RSV

reference cohorts. These reference cohorts were used to assess the sensitivity, specificity,

positive predictive value (PPV) and negative predictive value (NPV) of the ICD-10 algo-

rithms. To minimize misclassification in future studies, we prioritized specificity and PPV in

selecting top-performing algorithms.

Results

83,638 and 61,117 hospitalized patients were included in the influenza and RSV reference

cohorts, respectively. The best influenza algorithm had a sensitivity of 73% (95% CI 72% to
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74%), specificity of 99% (95% CI 99% to 99%), PPV of 94% (95% CI 94% to 95%), and NPV

of 94% (95% CI 94% to 95%). The best RSV algorithm had a sensitivity of 69% (95% CI

68% to 70%), specificity of 99% (95% CI 99% to 99%), PPV of 91% (95% CI 90% to 91%)

and NPV of 97% (95% CI 97% to 97%).

Conclusion

We identified two highly specific algorithms that best ascertain patients hospitalized with

influenza or RSV. These algorithms may be applied to hospitalized patients if data on labo-

ratory tests are not available, and will thereby improve the power of future epidemiologic

studies of influenza, RSV, and potentially other severe acute respiratory infections.

Introduction

Routinely collected health administrative data are increasingly being used to assess disease

burden and aetiology [1,2]. Algorithms applied to International Classification of Disease

(ICD) codes documented in hospital discharge abstracts can be used to identify cases of a dis-

ease for the purposes of disease surveillance, but it is imperative to evaluate the validity of such

algorithms to limit misclassification bias in epidemiologic studies.

While several studies have assessed the validity of ICD codes for identifying influenza

and respiratory syncytial virus (RSV) within health administrative data [1–8], many of

those studies had limitations. Some studies could only examine correlative patterns

between true cases and ICD-coded cases at an aggregate level, because they could not link

data at the individual level [2,3,5,6]. Without individual-level data, there remains the risk of

misclassification of individual cases, as well as challenges in characterizing the sensitivity,

specificity, and predictive values of these algorithms. When individual-level data were avail-

able and validity parameters were reported, studies were generally limited by one or more

of: small numbers of study centres, restricted participant age ranges, or inclusion of few

respiratory virus seasons [1,4,7,8]. Consequently, the generalizability of these algorithms is

uncertain.

The objective of this study was to develop and validate more generalizable ICD 10th revision

(ICD-10) case-finding algorithms to identify patients hospitalized with laboratory-confirmed

influenza or laboratory-confirmed RSV using population-based health administrative data

from Ontario, Canada.

Methods

Ethical considerations

This study used laboratory and health administrative data from Ontario, Canada (popula-

tion 13.5 million in 2016) housed at ICES. ICES is a prescribed entity under section 45 of

Ontario’s Personal Health Information Protection Act (PHIPA). Section 45 authorizes ICES

to collect personal health information, without consent, for the purpose of analysis or com-

piling statistical information with respect to the management of, evaluation or monitoring

of, the allocation of resources to or planning for all or part of the health system. Projects con-

ducted under section 45, by definition, do not require review by a Research Ethics Board.

This project was conducted under section 45, and was approved by ICES’ Privacy and Legal

Office.
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Data sources

Ontario’s universal healthcare system captures virtually all healthcare interactions. To identify

eligible patients for this study, we used data from the Ontario Laboratories Information System

(OLIS), the Canadian Institute for Health Information’s Discharge Abstract Database (CIHI-

DAD), and the Registered Persons Database (RPDB). These datasets were linked using unique

encoded identifiers and analyzed at ICES.

OLIS is an electronic repository of Ontario’s laboratory test results, containing information

on laboratory orders, patient demographics, provider information, and test results. The system

captures data from hospital, commercial, and public health laboratories participating in OLIS.

OLIS excludes: tests performed for purposes other than providing direct care to patients; tests

that are ordered for out-of-province patients or providers; and tests for patients with health

cards that are recorded as lost, stolen, expired, or invalid.

Implemented in 1988, CIHI-DAD captures administrative, clinical, and demographic

information on all hospitalization discharges. Following a patient’s discharge from hospital, a

trained medical coder codes the medical record with up to 25 ICD-10 diagnosis codes (1

“most responsible” diagnosis code and up to 24 additional diagnosis codes), all of which are

recorded in CIHI-DAD.

The RPDB provides basic demographic information on all individuals who have ever had

provincial health insurance, including birth date, sex and postal code of residence. Ontario

health insurance eligibility criteria are summarized in Table A of the S1 Appendix.

Generating influenza and RSV reference standard cohorts

Influenza and RSV polymerase chain reaction (PCR) laboratory data were obtained from OLIS

over 4 respiratory virus seasons ranging from 2014–15 to 2017–18. This time frame was

selected to include as many seasons as possible during a period when a relatively higher and

stable proportion of laboratories were reporting to OLIS. Respiratory virus seasonality was

defined to create the most inclusive time frames that would capture influenza and RSV sea-

sonal activity in Ontario between the 2014–15 and 2017–18 viral seasons according to data

provided by Public Health Ontario’s Respiratory Pathogen Bulletin [9]. Therefore, influenza

tests were collected from November to May and RSV tests were collected from November to

April. Only one test per person per season was included in the reference cohort. If an individ-

ual was tested multiple times per season, we included the first positive test, or the first negative

test if all tests were negative. Tests were excluded if they were linked to an individual who: was

missing information on birth date, sex, or postal code from the RPDB; was not eligible for pro-

vincial health insurance or resided out of province according to the RPDB; or had a death date

registered before the specimen collection date.

Laboratory data were then linked to CIHI-DAD hospitalization data using patients’ unique

encoded identifiers. Only patients with suspected community-acquired infections, defined as

specimen collection within 3 days before or after a hospital admission, were included in the

analysis. This definition ensured reference hospitalizations were more likely to be associated

with community-acquired influenza or RSV infection. Individuals with suspected nosocomial

infections, defined as hospitalizations associated with specimens collected more than 72 hours

post admission [10], were excluded from the reference cohorts for that respective season.

Overall, the “true positive” influenza and RSV reference cohorts comprised all hospitalized

patients who tested positive for influenza or RSV by PCR within 3 days of admission, respec-

tively, and the “true negative” influenza and RSV reference cohorts comprised all hospitalized

patients who tested negative for influenza or RSV by PCR within 3 days of admission,

respectively.
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Statistical analysis

The reference cohorts were used to assess the validity of influenza and RSV case-finding algo-

rithms. Algorithms were defined according to combinations of ICD-10 codes that have been

previously described in the literature [1,4,5] (see Table B in S1 Appendix for the detailed list of

ICD-10 codes). In brief, algorithms included virus-specific ICD-10 codes alone (influenza: J09,

J10.0, J10.1, J10.8; RSV: J12.1, J20.5, J21.0, B97.4) or in combination with common acute respi-

ratory infection outcome codes such as pneumonia (J12.8, J12.9), bronchitis (J20.8, J20.9), or

bronchiolitis (J21.8, J21.9).

The validity of each algorithm was evaluated by calculating sensitivity, specificity, positive

predictive value (PPV), and negative predictive value (NPV). First, validity parameters were

calculated by evaluating the “most responsible diagnosis” code in the discharge abstract. If an

ICD-10 code in the algorithm was recorded as the most responsible diagnosis in the discharge

abstract, then it was classified as an algorithm-positive record. Next, validity parameters were

calculated using all diagnosis codes available in the discharge abstract. If an ICD-10 code in

the algorithm was recorded as any diagnosis code on the discharge abstract, then it was classi-

fied as an algorithm-positive record. Algorithms applied to the most responsible diagnosis

code were consistently less accurate than the same algorithms applied to all diagnosis codes

(see Tables A–D in S2 Appendix). Therefore, we present the results of the latter analyses only.

To minimize false positive rates and minimize misclassification of algorithm-positive

cases, top-performing algorithms were selected according to specificity and PPV parameters

[11]. If multiple algorithms had similar specificity and PPV, we then prioritized sensitivity.

Since PPV and NPV are susceptible to changes in disease prevalence [12], and thus may vary

depending on patient age or month of hospital admission, we also validated the top-perform-

ing algorithms in the reference cohorts stratified by age and month of hospital admission. The

algorithms with consistently high specificity and PPV were selected as top-performing

algorithms.

We calculated 95% confidence intervals using the Clopper-Pearson exact method [13]. All

analyses were conducted using SAS version 9.4 (SAS Institute, Cary, NC, USA).

Results

Influenza and RSV reference cohorts

We identified 133,422 and 96,624 PCR testing events for influenza and RSV, respectively, in

OLIS during the 2014–15 to 2017–18 respiratory virus seasons (Fig 1). After exclusions, 83,638

(63%) and 61,117 (63%) events for influenza and RSV, respectively, were associated with a hos-

pitalization within 3 days of specimen collection and thus comprised the reference cohorts.

Reference cohort characteristics are summarized in Table 1. True positive cases, defined as

hospitalizations associated with a positive PCR test, comprised 17.6% of the influenza cohort

and 9.2% of the RSV cohort (Table 1). Patient age ranged from 0 to 105 years. In both refer-

ence cohorts, all age strata had at least 2,000 patients.

Algorithm validation

Most influenza and RSV ICD-10 algorithms had specificities�95% and NPVs�94%. Algo-

rithm sensitivities and PPVs were more variable, ranging from 69% to 91% and 20% to 94%

respectively (Tables 2 and 3). We established two highly accurate ICD-10 algorithms that iden-

tified influenza hospitalizations: one that found discharge abstracts with influenza-specific

codes accompanied by laboratory confirmation of influenza (FLU1; ICD-10 Codes: J09, J10.0,

J10.1, J10.8) and another that found discharge abstracts with influenza-specific codes with or
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without laboratory confirmation of influenza (FLU2; ICD-10 Codes: J09, J10.0, J10.1, J10.8,

J11.0, J11.1, J11.8). Specificity was�98% and PPV was�91% for both algorithms (Table 2).

Similarly, we established two highly accurate ICD-10 algorithms that identified RSV hospi-

talizations: one that found discharge abstracts with RSV-specific codes (RSV1; ICD-10 Codes:

J12.1, J20.5, J21.0, B97.4), and another that found discharge abstracts with RSV-specific codes

and unspecified acute lower respiratory tract infection codes (RSV2; ICD-10 Codes: J12.1, J20.5,

J21.0, B97.4, J22). Specificity was 99%, and PPV was�87% for both algorithms (Table 3).

Algorithm validation by age group and month of admission

Validity of the FLU1 and FLU2 algorithms did not vary substantially by age (Table 4). Both

algorithms had specificities�98% and PPVs�89% across all age strata. More variability in

FLU1 and FLU2 algorithm validity was observed when assessed by month of hospital admis-

sion (Table E in S2 Appendix). Specificity of both algorithms remained�98% during all

months, whereas sensitivity and PPV decreased in November and May.

RSV1 and RSV2 algorithm validity was more variable across age strata (Table 4). Algorithm

specificities were�94% across all age strata, while algorithm sensitivities were higher among

children aged 0–4 years (e.g. RSV1 Sensitivity = 76%) compared to adults (e.g. adults aged 20–

49 years, RSV1 Sensitivity = 49%). Further, PPVs declined among patients aged 5–19 years to

lows of 85% for RSV1 and 78% for RSV2. RSV1 and RSV2 algorithm validity also varied by

month of hospital admission (Table E in S2 Appendix). Algorithm specificities were�99% for

November through April, while algorithm sensitivities and PPVs declined in April (RSV1: Sen-

sitivity = 56% PPV = 89%; RSV2: Sensitivity = 57% PPV = 81%).

Fig 1. Flow diagram of patients included and excluded in the influenza and RSV algorithm development cohorts. PCR, polymerase chain reaction; OLIS, Ontario

Laboratory Information System; RSV, respiratory syncytial virus; OHIP, Ontario Health Insurance Plan. †Nosocomial infections were defined as hospitalizations

associated with specimen collection dates more than 3 days post hospital admission and before hospital discharge. Patients with nosocomial associated infections were

only excluded for the season in which their first positive test event was defined as a nosocomial infection.

https://doi.org/10.1371/journal.pone.0244746.g001
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Table 1. Characteristics of the influenza and RSV reference cohorts.

Characteristics Influenza Reference Cohort (N = 83,638) RSV Reference Cohort (N = 61,117)

Virus detected by PCR, n (%) 14,754 (17.6%) 5,614 (9.2%)

Season, n (%)

2014–2015 14,344 (17.2%) 9,267 (15.2%)

2015–2016 14,931 (17.9%) 9,435 (15.4%)

2016–2017 23,081 (27.6%) 20,360 (33.3%)

2017–2018 31,282 (37.4%) 22,055 (36.1%)

Age Group, n (%)

0–4 10,173 (12.2%) 7,260 (11.9%)

5–19 2,890 (3.5%) 2,058 (3.4%)

20–34 3,185 (3.8%) 2,400 (3.9%)

35–49 4,890 (5.8%) 3,661 (6.0%)

50–64 12,572 (15.0%) 9,297 (15.2%)

65–74 14,332 (17.1%) 10,695 (17.5%)

75–84 17,879 (21.4%) 12,999 (21.3%)

85+ 17,717 (21.2%) 12,747 (20.9%)

Sex on RPDB, n (%)

Female 41,997 (50.2%) 30,655 (50.2%)

Male 41,641 (49.8%) 30,462 (49.8%)

Neighborhood Income Quintile, n (%)

Missing Data 237 (0.3%) 179 (0.3%)

1 (lowest) 22,238 (26.6%) 16,145 (26.4%)

2 18,726 (22.4%) 13,998 (22.9%)

3 16,190 (19.4%) 12,107 (19.8%)

4 13,433 (16.1%) 9,580 (15.7%)

5 (highest) 12,814 (15.3%) 9,108 (14.9%)

Risk factors for serious viral infection, n (%)

Asthma 24,662 (29.5%) 18,239 (29.8%)

Chronic Obstructive Pulmonary Disease 23,812 (28.5%) 17,183 (28.1%)

Immunodeficiency 7,461 (8.9%) 5,693 (9.3%)

Cancer 9,920 (11.9%) 7,527 (12.3%)

Diabetes 29,384 (35.1%) 21,710 (35.5%)

Hypertension 52,656 (63.0%) 38,696 (63.3%)

Cardiac Ischemic Disease 17,065 (20.4%) 12,560 (20.6%)

Congestive Heart Failure 25,031 (29.9%) 18,525 (30.3%)

Ischemic Stroke or Transient Ischemic Attack 7,322 (8.8%) 5,408 (8.8%)

Advanced Liver Disease 2,958 (3.5%) 2,313 (3.8%)

Chronic Kidney Disease 19,316 (23.1%) 14,458 (23.7%)

Dementia or frailty score > 15, n (%) 21,508 (25.7%) 16,084 (26.3%)

LTC Home Resident, n (%)† 6,704 (8.0%) 5,001 (8.2%)

Received Influenza Vaccination, n (%)† 28,469 (34.0%) 20,450 (33.5%)

Prior Hospital Admissions, mean (SD) ‡ 1.77 (2.64) 1.84 (2.75)

Prior Physician Visits, mean (SD) § 14.71 (13.40) 15.09 (13.67)

Length of Hospital Stay, days, mean (SD) 8.94 (18.24) 9.22 (18.93)

(Continued)
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Table 1. (Continued)

Characteristics Influenza Reference Cohort (N = 83,638) RSV Reference Cohort (N = 61,117)

Spent time in ICU, n (%) 15,753 (18.8%) 11,728 (19.2%)

Continuous variables are expressed as means and standard deviations. Categorical variables are expressed as absolute numbers and percentages. One hospitalization per

person, per season was included in counts. RSV, respiratory syncytial virus; PCR, polymerase chain reaction; RPDB, Registered Persons Database; LTC, long-term care;

ICU, intensive care unit.

† As recorded in the same season as hospitalization.

‡ Mean prior hospital admissions in the past 3 years.

§ Mean prior physician visits in the past year.

https://doi.org/10.1371/journal.pone.0244746.t001

Table 2. Validation of ICD-10 algorithms to identify hospitalized individuals with influenza infection.

ICD-10 Algorithm TP FP FN TN Sensitivity (95%

CI)

Specificity (95%

CI)

PPV (95%

CI)

NPV (95%

CI)

Influenza-specific codesa, FLU1� 10,755 653 3,999 68,231 0.73(0.72–0.74) 0.99(0.99–0.99) 0.94(0.94–

0.95)

0.94(0.94–

0.95)

Influenza-specific + Influenza (virus not identified)b, FLU2� 12,245 1,201 2,509 67,683 0.83(0.82–0.84) 0.98(0.98–0.98) 0.91(0.91–

0.92)

0.96(0.96–

0.97)

Influenza-specific + ARI of multiple/unspecified sitesc 10,965 3,337 3,789 65,547 0.74(0.74–0.75) 0.95(0.95–0.95) 0.77(0.76–

0.77)

0.95(0.94–

0.95)

Influenza-specific + viral pneumoniad 10,819 1,341 3,935 67,543 0.73(0.73–0.74) 0.98(0.98–0.98) 0.89(0.88–

0.90)

0.94(0.94–

0.95)

Influenza-specific + bronchopneumoniae 11,517 18,690 3,237 50,194 0.78(0.77–0.79) 0.73(0.73–0.73) 0.38(0.38–

0.39)

0.94(0.94–

0.94)

Influenza-specific + acute bronchitisf 10,804 1,194 3,950 67,690 0.73(0.73–0.74) 0.98(0.98–0.98) 0.90(0.90–

0.91)

0.94(0.94–

0.95)

Influenza-specific + acute bronchiolitisg 10,792 2,117 3,962 66,767 0.73(0.72–0.74) 0.97(0.97–0.97) 0.84(0.83–

0.84)

0.94(0.94–

0.95)

Influenza-specific + ARI of multiple sites + acute bronchitis

+ acute bronchiolitis

12,321 3,201 2,433 65,683 0.84(0.83–0.84) 0.95(0.95–0.96) 0.79(0.79–

0.80)

0.96(0.96–

0.97)

Influenza-specific + viral infection (unspecified site)h 10,904 2,518 3,850 66,366 0.74(0.73–0.75) 0.96(0.96–0.96) 0.81(0.81–

0.82)

0.95(0.94–

0.95)

Influenza-specific + unspecified acute lower respiratory tract

infectioni
10,792 1,033 3,962 67,851 0.73(0.72–0.74) 0.99(0.98–0.99) 0.91(0.91–

0.92)

0.94(0.94–

0.95)

Influenza-specific + all general ARI codesj 13,379 26,040 1,375 42,844 0.91(0.90–0.91) 0.62(0.62–0.63) 0.34(0.33–

0.34)

0.97(0.97–

0.97)

ICD-10, International Classification of Disease 10th Revision; ARI, acute respiratory infection; TP, true positive; FP, false positive; FN, false negative; TN, true negative;

PPV, positive predictive value; NPV, negative predictive value

�Identified as a top-performing algorithm.

a—Influenza-specific (virus identified) ICD-10 codes: J09, J10.0, J10.1, J10.8

b—Influenza (virus not identified) ICD-10 codes: J11.0, J11.1, J11.8

c—Acute upper respiratory infections of multiple unspecified sites (virus unspecified/not identified) ICD-10 codes: J06.0, J06.8, J06.9

d—Viral pneumonia (virus unspecified/not identified) ICD-10 codes: J12.8, J12.9

e—Bronchopneumonia (organism unspecified) ICD-10 codes: J18.0, J18.8, J18.9

f—Acute bronchitis (organism unspecified) ICD-10 codes: J20.8, J20.9

g—Acute bronchiolitis (organism unspecified) ICD-10 codes: J21.8, J21.9

h–Viral infection (unspecified site) ICD-10 code: B34

i—Unspecified acute lower respiratory tract infection ICD-10 code: J22

j—General ARI ICD-10 codes: J11.0 J11.1, J11.8, J06.0, J06.8, J06.9, J12.8, J12.9, J18.0, J18.8, J18.9, J20.8, J20.9, J21.8, J21.9, B34, J22

https://doi.org/10.1371/journal.pone.0244746.t002
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Overall, the FLU1 algorithm and the RSV1 algorithm maintained the highest specificity

and PPV across all age strata and months of admission, and were therefore classified as the

most valid algorithms to identify influenza and RSV hospitalizations.

Discussion

We established two highly specific ICD-10 algorithms to identify influenza and RSV hospitali-

zations using large, population-based reference cohorts of patients with laboratory-confirmed

hospitalizations over four respiratory virus seasons. Based on the criteria of specificity and

PPV, the most valid influenza algorithm included all influenza-specific ICD-10 codes that

included laboratory confirmation (FLU1), while the most valid RSV algorithm included all

RSV-specific ICD-10 codes (RSV1).

Table 3. Validation of ICD-10 algorithms to identify hospitalized individuals with RSV infection.

ICD-10 Algorithm TP FP FN TN Sensitivity (95%

CI)

Specificity (95%

CI)

PPV (95%

CI)

NPV (95%

CI)

RSV-specific codesa, RSV1� 3,881 403 1,733 55,100 0.69(0.68–0.70) 0.99(0.99–0.99) 0.91(0.90–

0.91)

0.97(0.97–

0.97)

RSV-specific + ARI of multiple/unspecified sitesb 4,038 2,079 1,576 53,424 0.72(0.71–0.73) 0.96(0.96–0.96) 0.66(0.65–

0.67)

0.97(0.97–

0.97)

RSV-specific + Influenza (virus not identified)c 3,895 1,551 1,719 53,952 0.69(0.68–0.71) 0.97(0.97–0.97) 0.72(0.70–

0.73)

0.97(0.97–

0.97)

RSV-specific + viral pneumoniad 3,938 867 1,676 54,636 0.70(0.69–0.71) 0.98(0.98–0.99) 0.82(0.81–

0.83)

0.97(0.97–

0.97)

RSV-specific + bronchopneumoniae 4,280 13,667 1,334 41,836 0.76(0.75–0.77) 0.75(0.75–0.76) 0.24(0.23–

0.24)

0.97(0.97–

0.97)

RSV-specific + acute bronchitisf 3,896 764 1,718 54,739 0.69(0.68–0.71) 0.99(0.99–0.99) 0.84(0.83–

0.85)

0.97(0.97–

0.97)

RSV-specific + acute bronchiolitisg 4,115 990 1,499 54,513 0.73(0.72–0.74) 0.98(0.98–0.98) 0.81(0.80–

0.82)

0.97(0.97–

0.97)

RSV-specific + ARI of multiple sites + acute bronchitis + acute

bronchiolitis

4,276 3,007 1,338 52,496 0.76(0.75–0.77) 0.95(0.94–0.95) 0.59(0.58–

0.60)

0.98(0.97–

0.98)

RSV-specific + viral infection (unspecified site)h 3,944 1,650 1,670 53,853 0.70(0.69–0.71) 0.97(0.97–0.97) 0.71(0.69–

0.72)

0.97(0.97–

0.97)

RSV-specific + unspecified acute lower respiratory tract

infectioni, RSV2�
3,896 598 1,718 54,905 0.69(0.68–0.71) 0.99(0.99–0.99) 0.87(0.86–

0.88)

0.97(0.97–

0.97)

RSV-specific + all general ARI codesj 4,769 18,867 845 36,636 0.85(0.84–0.86) 0.66(0.66–0.66) 0.20(0.20–

0.21)

0.98(0.98–

0.98)

ICD-10, International Classification of Disease 10th Revision; RSV, respiratory syncytial virus; ARI, acute respiratory infection; TP, true positive; FP, false positive; FN,

false negative; TN, true negative; PPV, positive predictive value; NPV, negative predictive value.

�Identified as a top performing algorithm.

a—RSV-specific (virus identified) ICD-10 codes: J12.1, J20.5, J21.0, B97.4

b—Acute upper respiratory infections of multiple unspecified sites (virus unspecified/not identified) ICD-10 codes: J06.0, J06.8, J06.9

c—Influenza (virus not identified) ICD-10 codes: J11.0, J11.1, J11.8

d—Viral pneumonia (virus unspecified/not identified) ICD-10 codes: J12.8, J12.9

e—Bronchopneumonia (organism unspecified) ICD-10 codes: J18.0, J18.8, J18.9

f—Acute bronchitis (organism unspecified) ICD-10 codes: J20.8, J20.9

g—Acute bronchiolitis (organism unspecified) ICD-10 codes: J21.8, J21.9

h–Viral infection (unspecified site) ICD-10 code: B34

i—Unspecified acute lower respiratory tract infection ICD-10 code: J22

j—General ARI ICD-10 codes: J11.0 J11.1, J11.8, J06.0, J06.8, J06.9, J12.8, J12.9, J18.0, J18.8, J18.9, J20.8, J20.9, J21.8, J21.9, B34, J22

https://doi.org/10.1371/journal.pone.0244746.t003
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This finding was expected given our reference cohorts were defined using laboratory test

results. Medical coding is performed at discharge when testing results may be available; thus,

medical coding and laboratory data are not necessarily independent.

FLU1 and RSV1 maintained high specificity and PPV when the reference cohorts were

stratified by age. Thus, the algorithms can be applied to paediatric, adult, and elderly popula-

tions with low risk of misclassification bias. The specificity of the algorithms also remained

Table 4. Validation of top-performing ICD-10 influenza and RSV algorithms by age at hospital admission.

ICD-10 Algorithm TP FP FN TN Sensitivity (95% CI) Specificity (95% CI) PPV (95% CI) NPV (95% CI)

FLU1 Algorithma

0–4 751 69 378 8,975 0.67(0.64–0.69) 0.99(0.99–0.99) 0.92(0.89–0.93) 0.96(0.96–0.96)

5–19 379 24 223 2,264 0.63(0.59–0.67) 0.99(0.98–0.99) 0.94(0.91–0.96) 0.91(0.90–0.92)

20–34 295 15 156 2,719 0.65(0.61–0.70) 0.99(0.99–1.00) 0.95(0.92–0.97) 0.95(0.94–0.95)

35–49 518 28 228 4,116 0.69(0.66–0.73) 0.99(0.99–1.00) 0.95(0.93–0.97) 0.95(0.94–0.95)

50–64 1,405 78 544 10,545 0.72(0.70–0.74) 0.99(0.99–0.99) 0.95(0.93–0.96) 0.95(0.95–0.95)

65–74 1,772 115 652 11,793 0.73(0.71–0.75) 0.99(0.99–0.99) 0.94(0.93–0.95) 0.95(0.94–0.95)

75–84 2,683 160 931 14,105 0.74(0.73–0.76) 0.99(0.99–0.99) 0.94(0.93–0.95) 0.94(0.93–0.94)

85+ 2,952 164 887 13,714 0.77(0.76–0.78) 0.99(0.99–0.99) 0.95(0.94–0.95) 0.94(0.94–0.94)

FLU2 Algorithmb

0–4 844 104 285 8,940 0.75(0.72–0.77) 0.99(0.99–0.99) 0.89(0.87–0.91) 0.97(0.97–0.97)

5–19 438 39 164 2,249 0.73(0.69–0.76) 0.98(0.98–0.99) 0.92(0.89–0.94) 0.93(0.92–0.94)

20–34 347 38 104 2,696 0.77(0.73–0.81) 0.99(0.98–0.99) 0.90(0.87–0.93) 0.96(0.96–0.97)

35–49 598 64 148 4,080 0.80(0.77–0.83) 0.98(0.98–0.99) 0.90(0.88–0.92) 0.97(0.96–0.97)

50–64 1,595 173 354 10,450 0.82(0.80–0.84) 0.98(0.98–0.99) 0.90(0.89–0.92) 0.97(0.96–0.97)

65–74 2,003 213 421 11,695 0.83(0.81–0.84) 0.98(0.98–0.98) 0.90(0.89–0.92) 0.97(0.96–0.97)

75–84 3,078 275 536 13,990 0.85(0.84–0.86) 0.98(0.98–0.98) 0.92(0.91–0.93) 0.96(0.96–0.97)

85+ 3,342 295 497 13,583 0.87(0.86–0.88) 0.98(0.98–0.98) 0.92(0.91–0.93) 0.96(0.96–0.97)

RSV1 Algorithmc

0–4 2,072 241 639 4,308 0.76(0.75–0.78) 0.95(0.94–0.95) 0.90(0.88–0.91) 0.87(0.86–0.88)

5–19 71 13 71 1,903 0.50(0.42–0.59) 0.99(0.99–1.00) 0.85(0.75–0.91) 0.96(0.95–0.97)

20–49 98 13 100 5,850 0.49(0.42–0.57) 1.00(1.00–1.00) 0.88(0.81–0.94) 0.98(0.98–0.99)

50–64 257 25 190 8,825 0.57(0.53–0.62) 1.00(1.00–1.00) 0.91(0.87–0.94) 0.98(0.98–0.98)

65–74 353 31 233 10,078 0.60(0.56–0.64) 1.00(1.00–1.00) 0.92(0.89–0.94) 0.98(0.97–0.98)

75–84 470 52 261 12,216 0.64(0.61–0.68) 1.00(0.99–1.00) 0.90(0.87–0.92) 0.98(0.98–0.98)

85+ 560 28 239 11,920 0.70(0.67–0.73) 1.00(1.00–1.00) 0.95(0.93–0.97) 0.98(0.98–0.98)

RSV2 Algorithmd

0–4 2,079 271 632 4,278 0.77(0.75–0.78) 0.94(0.93–0.95) 0.88(0.87–0.90) 0.87(0.86–0.88)

5–19 72 20 70 1,896 0.51(0.42–0.59) 0.99(0.98–0.99) 0.78(0.68–0.86) 0.96(0.96–0.97)

20–49 100 24 98 5,839 0.51(0.43–0.58) 1.00(0.99–1.00) 0.81(0.73–0.87) 0.98(0.98–0.99)

50–64 257 52 190 8,798 0.57(0.53–0.62) 0.99(0.99–1.00) 0.83(0.79–0.87) 0.98(0.98–0.98)

65–74 353 69 233 10,040 0.60(0.56–0.64) 0.99(0.99–0.99) 0.84(0.80–0.87) 0.98(0.97–0.98)

75–84 472 93 259 12,175 0.65(0.61–0.68) 0.99(0.99–0.99) 0.84(0.80–0.87) 0.98(0.98–0.98)

85+ 563 69 236 11,879 0.70(0.67–0.74) 0.99(0.99–1.00) 0.89(0.86–0.91) 0.98(0.98–0.98)

ICD-10, International Classification of Disease 10th Revision; RSV, respiratory syncytial virus; TP, true positive; FP, false positive; FN, false negative; TN, true negative;

PPV, positive predictive value; NPV, negative predictive value.

a—Influenza-specific ICD-10 codes with virus identified: J09, J10.0, J10.1, J10.8

b—Influenza-specific ICD-10 codes with and without virus identified: J09, J10.0, J10.1, J10.8, J11.0, J11.1, J11.8

c—RSV-specific ICD-10 codes with virus identified: J12.1, J20.5, J21.0, B97.4

d—RSV-specific ICD-10 codes with virus identified + unspecified acute lower respiratory tract infection ICD-10 code: J12.1, J20.5, J21.0, B97.4, J22

https://doi.org/10.1371/journal.pone.0244746.t004
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high when assessed by month of hospitalization, although PPV was more variable. The PPV of

FLU1 dropped to lows of 87% in November and 86% in May, while the PPV of RSV1 dropped

to a low of 89% in April. These decreases were expected, as PPV is dependent on disease preva-

lence, and the decreases were concordant with typical declines in respiratory virus prevalence

and activity in Ontario during those months [14]. Notably, the absolute number of false posi-

tives generated during times of low viral activity made up<8% of overall FLU1 false positives

and<7% of overall RSV1 false positives. Therefore, while PPV declined during months of

lower viral activity, the overall algorithm validity was not impacted.

Our findings concur with previous literature indicating that ICD-10 codes have high speci-

ficity and moderate sensitivity for identifying influenza and RSV hospitalizations using health

administrative data [1,4,7,8]. Where direct comparisons are possible, our quantitative mea-

sures of specificity align with previous findings, while our measures of sensitivity are lower.

For example, Moore et al. found that an algorithm that included codes for influenza with or

without laboratory confirmation (J10.0-J10.9, J11.0-J11.9) had a specificity of 98.6% and a sen-

sitivity of 86.1% for children aged 0–9 years, whereas our FLU2 algorithm had a specificity of

99% and a sensitivity of 73–75% for children aged 0–19 years [4]. Furthermore, Pisesky et al.

found that an algorithm comprising RSV-specific codes (J12.1, J20.5, J21.0, B97.4) had a speci-

ficity of 99.6% and a sensitivity of 97.9% for children aged 0–3 years, whereas our RSV1 algo-

rithm had corresponding values of 95% and 76% for children aged 0–4 years [1].

Distinctions between our study populations may explain the differences in sensitivity

observed. Pisesky et al. studied a population from a specialized hospital in Ottawa, Ontario [1],

while Moore et al. studied a Western Australian population [4]. In contrast, our study was con-

ducted in a larger cohort of patients using data from hospitals across the entire province of

Ontario. ICD-10 codes may be used more or less frequently across jurisdictions and institu-

tions resulting in variable algorithm sensitivity. The discrepancies highlight the importance of

validating algorithms within distinct populations.

While we established two highly specific algorithms that identify influenza and RSV hospi-

talizations, some limitations must be considered. First, our reference cohorts only included

hospitalized patients who were tested by PCR for the respective pathogens and did not include

patients who were not tested. Untested patients with suspected respiratory infections may dif-

fer from the tested population of patients. They may have less severe symptoms at hospitaliza-

tion, may be more likely to live in long-term care facilities where outbreaks have occurred, or

may be more likely to live in less-resourced settings where testing is limited. Untested patients

may have had more pressing medical concerns at hospitalization and therefore testing was not

a priority, or they may have been hospitalized at an overcrowded, high-volume site. Testing

may further depend on the age of the patient at admission or the protocols in place at the hos-

pital. By including hospitals across the entire province of Ontario we aimed to mitigate hospi-

tal-specific variability that may have affected the generalizability of our results. However,

variability between untested and tested patients must be considered when using the algorithms

to assess certain risk factors that may be associated with propensity to receive a test. For exam-

ple, risk factors such as age, symptom severity, comorbidities, and residence in long-term care

facilities may be associated with propensity to receive a PCR test, and thus may have biased

estimates of effect when using these algorithms. Caution must also be applied when assessing

risk factors in specific settings that have differing testing practises compared to general Ontario

hospitals.

Another limitation is that our top-performing algorithms were selected to maximize speci-

ficity and PPV. This approach was taken to minimize misclassification of cases rather than

non-cases. Depending on future study objectives, it may be more important to maximize sensi-

tivity. For example, our algorithms significantly underestimate the number of true influenza
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and RSV cases in the Ontario population, and thus would not be suitable to estimate popula-

tion burden of influenza or RSV. Therefore, validity parameters have been reported for all

algorithms tested to facilitate the selection of the best algorithm(s) for particular studies.

Use of these algorithms in non-Ontario-based cohorts also warrants caution. PPV and

NPV are highly susceptible to changes in disease prevalence [12]. Coding practises and testing

practises may vary across jurisdictions, affecting all validity measures reported [15,16]. Thus, it

may be necessary to re-validate these algorithms when applying them to other populations.

Our findings have important implications for future studies that aim to assess the aetiology

of severe outcomes for influenza and RSV hospitalizations using broad health administrative

data. Not all hospitals across Ontario currently submit laboratory data to OLIS. Further, OLIS

data collection was limited between 2007 and 2012 as laboratories only gradually started sub-

mitting data upon implementation of OLIS in 2007. As CIHI-DAD is available for all hospitals

across Ontario, these algorithms will allow us to create larger and more representative cohorts

of patients hospitalized with influenza or RSV, increasing the power of future aetiological stud-

ies. Lastly, since historical CIHI-DAD data are available as early as 1988, these algorithms

could be used to assess changes in disease prevalence and aetiology over time.

Conclusion

Using a population-based cohort of patients tested for influenza and RSV, we identified two

highly specific algorithms that best ascertain paediatric, adult, and elderly patients hospitalized

with influenza or RSV. These algorithms will improve future efforts to evaluate prognostic and

aetiologic factors associated with influenza and RSV when reporting of laboratory data is lim-

ited. The same principles may be applicable for other severe acute respiratory infections.
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