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Abstract: Aim: To investigate for the first time the brain network in the Alzheimer’s disease (AD)
spectrum by implementing a high-density electroencephalography (HD-EEG - EGI GES 300) study
with 256 channels in order to seek if the brain connectome can be effectively used to distinguish
cognitive impairment in preclinical stages. Methods: Twenty participants with AD, 30 with mild
cognitive impairment (MCI), 20 with subjective cognitive decline (SCD) and 22 healthy controls
(HC) were examined with a detailed neuropsychological battery and 10 min resting state HD-EEG.
We extracted correlation matrices by using Pearson correlation coefficients for each subject and
constructed weighted undirected networks for calculating clustering coefficient (CC), strength (S)
and betweenness centrality (BC) at global (256 electrodes) and local levels (29 parietal electrodes).
Results: One-way ANOVA presented a statistically significant difference among the four groups
at local level in CC [F (3, 88) = 4.76, p = 0.004] and S [F (3, 88) = 4.69, p = 0.004]. However, no
statistically significant difference was found at a global level. According to the independent sample
t-test, local CC was higher for HC [M (SD) = 0.79 (0.07)] compared with SCD [M (SD) = 0.72 (0.09)];
t (40) = 2.39, p = 0.02, MCI [M (SD) = 0.71 (0.09)]; t (50) = 0.41, p = 0.004 and AD [M (SD) = 0.68 (0.11)];
t (40) = 3.62, p = 0.001 as well, while BC showed an increase at a local level but a decrease at a global
level as the disease progresses. These findings provide evidence that disruptions in brain networks in
parietal organization may potentially represent a key factor in the ability to distinguish people at
early stages of the AD continuum. Conclusions: The above findings reveal a dynamically disrupted
network organization of preclinical stages, showing that SCD exhibits network disorganization with
intermediate values between MCI and HC. Additionally, these pieces of evidence provide information
on the usefulness of the 256 HD-EEG in network construction.

Keywords: electroencephalography; subjective cognitive decline; brain connectivity; mild cognitive
impairment; Alzheimer’s disease; resting state; network analysis
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1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder which causes brain pathology and
functional changes 10–20 years before the first clinical manifestations [1]. The investigation of the
brain connectome in order to find any possible trigger mechanisms in people who will progress to AD,
is currently one of the most challengeable research topics in the neuroscience field [2–4]. Therefore,
the brain connectome could be very promising for shedding light on the potential associations of
preclinical stages, such as mild cognitive impairment (MCI) and subjective cognitive decline (SCD),
and future cognitive decline related to AD; by searching for similar connectivity disruptions that
commonly occur in the AD stage.

1.1. Clinical Validity of SCD in AD Continuum

When people age, some of them experience impairment in cognitive functions, without exhibiting
clinical manifestations of AD. This particular cognitive status, which is presented before severe
dementia, is named MCI [5], whereas the subjective concern of problems related to memory by the
elderly without indicative neuropsychological abnormal results is called SCD [6]. Both conditions are
linked with wide brain modifications, as well as cognitive decline related to dementia [7–13]. However,
it is unclear which of the SCD individuals will progress to MCI and AD [14,15]. On the other hand,
individuals with SCD present similar brain alterations and spatial profiles to more advanced stages of
the AD continuum [10,16–25]. The similarities between these alterations have been verified through the
use of brain connectivity networks of people with SCD [25–29] by exploring the brain connectome and
network metrics by using graph analysis [17,19,25,30–32]. Subsequently, it is imperative to investigate
and explore the neurophysiological, mental and cognitive impairment of individuals that should
be expected to be in cognitive and psychological statuses compatible with their age and education.
In this way, we will be able to acquire better information about AD, its transitional preclinical stages
and the associations with changes and disruptions in brain structure and function.

1.2. Brain Connectome in SCD

Several neuroimaging studies, using Magnetic Resonance Imaging (MRI) as a neuroimaging tool,
have explored multiple network properties of people with multiple brain diseases [33,34] and in early
stages of the dementia spectrum (e.g., SCD and MCI) [17,19,25–32,35–48]. In particular, it has been
proposed that functional connectivity (FC) changes in people who may probably develop AD after
some time might occur before neuropsychological deficits and extensive structural and functional
brain interruptions [26,48–53] take place. Many studies have reported that people with AD, from
the pre-dementia to dementia stages, have significant hub-concentrated lesion distributions [54,55].
Additionally, there are pieces of evidence suggesting that the disruption of FC basically includes
areas of the posterior default mode network (DMN). More specifically, the posterior cingulate cortex,
which is considered as a “key hub of the DMN” is mostly interrupted in the earliest stages of AD
and MCI [42,56–59], underlying reduced FC among brain areas of the parietal and occipital regions.
Moreover, early existing research has found different brain alterations in healthy controls compared
to amnestic MCI and AD patients during the encoding process over the superior parietal lobe,
cingulate cortex, middle temporal lobe and precuneus [60–62]. Despite the fact that a wide variety of
the previous reported studies have found that connectivity over multiple brain regions was partially
interrupted in SCD compared to healthy controls, a great amount of network properties was widely
preserved in the first ones [63], which underlines that the brains of SCD individuals still maintain a few
network properties since their brains have not been completely damaged. These findings reveal that the
disintegrated strength of the DMN nodes of posterior and temporal brain areas, with a simultaneous
increase in nodal strength over anterior regions, is manifested in SCD individuals in a similar way as
in the more advanced dementia spectrum (e.g., MCI and AD) [64].
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1.3. Overview of Sections of the Manuscript

The following section (Section 2) presents the materials and methods of the cross-sectional study
on the four groups of people with cognitive impairment within the dementia spectrum, ranging from
SCD to AD, compared to HC. The first subsection (Section 2.1) describes the setting of the study and
the participants’ characteristics, while the two following subsections (Sections 2.2 and 2.3) present in
detail the neuropsychological assessment of the participants and the electroencephalography (EEG)
recording protocol. The fourth subsection (Section 2.4) presents the EEG network analysis, the connectivity
measures and network metrics (Section 2.5) we used and presents in detail the EEG acquisition process,
while Section 2.5.2 presents the statistical analysis we applied. Furthermore, Section 3 presents a detailed
description of the estimation methods and data analysis between the groups (Sections 3.1, 3.2 and 3.4),
while the sensitivity and specificity of the network metrics are also reported (Section 3.3). Section 4
underlines the main outcomes of the research and compares them with existing similar approaches, while
Section 5 underlines the main conclusion of the manuscript and presents future research questions.

1.4. Study Aim

To the best of our knowledge, the present study constitutes novel research focusing on utilizing
graph metrics as derived from electrophysiological data from high-density electroencephalography
(HD-EEG, EGI GES 300, CERTH-ITI, Thessaloniki, Greece), in order to investigate network differences
throughout multiple preclinical stages of the AD continuum, including SCD and MCI, as well as AD
compared to healthy control individuals (HC). It has been proven that brain localization using HD-EEG
with 256 or 128 arrays is more sensitive, providing sufficient results in brain disorders in contrast with
32-channel array EEG [65], while several existing studies have come to the conclusion that a spacing of
less than 2 cm between electrodes can provide insightful information about brain activity [65–68]. Thus,
we were interested in investigating whether network analysis with HD-EEG has clinical and scientific
importance as a neuroimaging tool to find any network disruptions among people at preclinical stages
of AD. Therefore, we implemented HD-EEG resting state activity and we constructed correlation
matrices and weighted undirected networks to precisely detect brain network properties across the
AD spectrum and compared the results with standard neuropsychological tests. Electrophysiological
metrics generated from neuroimaging tools, such as EEG, have been demonstrated as useful instruments
for detecting various pathological conditions affecting brain activity, such as AD [3,35,69–77]. In light
of previous research findings, in the present study, it was expected to find differences in network
properties among SCD individuals compared to HC. In particular, we hypothesized that the SCD
group would exhibit brain changes and network interruptions in a similar way to those displayed
in MCI, although to a lower extent, yielding an intermediate stage between HC and MCI.

Therefore, we aimed to explore the abovementioned assumption by testing the possible sensitivity
of three network metrics: (i) clustering coefficient, (ii) strength and (iii) betweenness centrality at
both global (whole-brain level) and local levels (parietal area) in several stages of the AD continuum,
including individuals with AD, MCI and SCD compared to HC. To the best of our knowledge, there is
no existing study that has explored the potential of these particular network metrics in the EEG resting
state activity of SCD populations [78].

2. Materials and Methods

2.1. Settings and Participants

In total, 112 participants were recruited from the memory and dementia clinic of the Greek
Association of Alzheimer’s Disease and Related Disorders (GAADRD) and the 1st Department of
Neurology, U.H. AHEPA, Aristotle University of Thessaloniki, Greece. The study was carried out in
accordance with the Declaration of Helsinki and received approval by the Scientific and Ethic Committee
of GAADRD (No56_27/11/2016), and written informed consent was obtained from all participants prior
to their participation in the study. The diagnosis of AD was done by a neuropsychiatrist (MT) according
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to the medical history, neuropsychological tests, structural magnetic resonance imaging (MRI) and
clinical and neurological examinations. Twenty individuals had several head or eye movement artifacts,
and hence were excluded from further EEG data analysis, yielding 92 participants for the final inclusion
in the study.

In detail, the SCD group consisted of 20 participants (mean ± SD: age = 64.9 ± 7.92), the MCI
group consisted of 30 participants (mean ± SD: age = 70.40 ± 5.96), the AD group consisted of
20 participants (mean ± SD: age = 73.20 ± 8.17), while 22 HCs were also included, having a similar
range of ages (mean ± SD: age = 67.22 ± 4.03). Each participant from the four groups was over
60 years old [79–81]. Table 1 presents the average age with the standard deviation for each group of
participants. Participants with AD fulfilled the National Institute of Neurological and Communication
Disorders and Stroke/Alzheimer’s Disease and Related Disorders Association (NINCDS-ADRDA)
criteria for probable AD [82], as well as the Diagnostic and Statistical Manual of Mental Disorders
(DSM-V) criteria for dementia of Alzheimer’s type (American Psychological Association, 1994).
On the other hand, the MCI participants fulfilled the Petersen criteria [83], while the SCD group met
International Working Group -2 guidelines [84] and the recent National Institute on Aging-Alzheimer’s
Association workgroups on diagnostic guidelines for Alzheimer’s disease (NI-AA) [85], as well as
the SCD-I Working Group instructions [86]. Regarding the preclinical stage of SCD, we tried to
eliminate possible confounding factors based on blood tests (hormonal disorders, vitamin deficiency,
etc.), structural MRI (vascular/demyelinating lesions, tumors, anatomical variations, etc.) and the
qualitative evaluation of the resting state EEG. All the above were taken under consideration for
the group recruitment process, as they could have affected our sample performance and our signal
elicitation. The criteria for recruiting SCD participants were in accordance with the latest suggestions
proposed by the SCD-I Working Group [86]. Moreover, we additionally strived to exclude participants
where other etiologies could explain self-perceived memory deficits, including vascular (examination
of ischemic lesions of MRI, blood testing), psychiatric (interview, depression scale, psychoactive
drugs, etc.) or other systematic etiologies, by carefully evaluating laboratory results, including blood
samples, structural MRI, the patient’s medical history and additional questionnaires following the
SCD-I Working Group criteria.

Table 1. The table presents mean ± SD (standard deviation) of demographic characteristics among
participants (HC = 22, SCD = 20, MCI = 30, AD = 20).

Groups

HC SCD MCI AD

Age 67.22 (4.03) 64.90 (7.92) 70.40 (5.96) 73.20 (8.17)

Gender (M:F) 8:14 7:13 8:22 8:12

Years of Education 13.16 (4.59) 13.75 (3.29) 11.45 (4.06) 9.77 (5.51)

The identification of SCD participants further included a set of criteria, which were administered
in our previous study [10], as well in other similar approaches [11,23,87] including: “self-perceived
memory decline compared to other cognitive functions, and in reference to others of the same age,
occurring during the past five years as determined by the individual’s medical history and
psychological report, at an age cut-off of 60”. Additional inclusion criteria for the SCD and HC
subjects were to have a normal general medical, neurological and neuropsychological examinations.
Exclusion criteria included: (i) severe physical, psychiatric or other neurological disorder illness or
any other somatic disorder which may cause cognitive impairment, (ii) history of drug or alcohol
consumption and the use of neuro-modifying drugs, except cholinesterase inhibitors or memantine for
AD and (iv) left handedness.
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2.2. Neuropsychological Assessment

All participants underwent a detailed neuropsychological assessment, which included a
standardized neuropsychological examination, an insightful psychological interview using the
Structured Clinical Interview for DSM-IV Axis I Disorders Clinical Version (SCID-CV) [88] and
a medical history, as well as physical and neurological examinations. In particular, the following
neuropsychological batteries were implemented in order to comprehensively evaluate working memory,
executive functioning, attention and memory and language to assess cognitive status: (a) Global
Deterioration Scale (GDS) [89], (b) Brief Cognitive Rating Scale (BCRS) [90], (c) the Greek version of
the Mini Mental State Examination (MMSE) [91], (d) Rey–Osterrieth Complex Figure Test copy and
delay recall (ROCFT copy and delayed recall) [92], (e) Rivermead Behavioral Memory Test (RBMT)
story direct and delayed recall [93], (f) Rey Auditory Verbal Learning Test (RAVLT), (g) F.A.S [94],
(h) Trail Making Test part B [95], (i) Functional Rating Scale for Dementia (FRSSD) and (j) Functional
and Cognitive Assessment Test (FUCAS) [96]. The evaluation of mood and behaviour was carried
out using both the interview data and the participants’ answers to the relative brief self-report tools,
the Neuropsychiatric Inventory (NPI) [97] and the Perceived Stress Scale (PSS) [98].

2.3. Resting State EEG Recording

Fifteen-minute resting EEG activity was recorded for all the participants. For the whole duration
of the resting state EEG recording, participants were advised to keep themselves relaxed as much
as possible, close their eyes and open them after the researcher’s demand, sit still, minimize blinking
or mouth movements and let their mind wander. The experimental procedure was monitored by
a research assistant aiming to identify cases of horizontal eye movements, continued blinking or
excessive movement by visually inspecting the EEG traces during the experiment. More specifically,
an EEG was registered for both resting conditions (eyes open, EO and eyes closed, EC) for at least
2–3 min for each period.

2.4. EEG Data Acquisition and Network Construction

We followed the same protocol as we did in our previous research efforts [10]. In particular,
the EEG data were collected by using the EGI 300 Geodesic EEG system (GES 300, CERTH-ITI,
Thessaloniki, Greece) with a 256-channel HydroCel Geodesic Sensor Net (HCGSN) and a sampling
rate of 250 Hz (EGI Eugene, OR). Moreover, the researcher placed the electrodes in accordance with
the 256 HCGSN adult 1.0 montage system, while the signals were recorded relative to a vertex
reference electrode (Cz), with AFz as the ground electrode with the electrodes’ impedance below
50 kΩ throughout the experimental procedure, as recommended [99] for the high-input impedance
amplifier. In detail, the HD-EEG data were analyzed offline in order to detect any artifact, as well as
to conduct pre-processing (filtering, segmentation, bad channel replacement) using Net Station 4.3
software (EGI). Figure 1 illustrates the pipeline process for data acquisition, the construction of the
weighted undirected networks and the extraction of the metrics derived from the correlation matrices
of the resting state EEG.

Moreover, HD-EEG data were initially filtered with 5th-order bandpass Butterworth IIR filter of
0.3–75 Hz and then segmented using a 500-sample non-overlapping window. We examined only the
eyes closed period. Once the segmentation was completed, the detection of artefacts was performed
by using the Net Station artefact detection tool for the automatic detection of excessive eye blinking
and movement. The detection of “bad” segments was executed by marking those segments with
amplitudes more than 100 µV. Additionally, signals from the rejected (bad) electrodes were replaced
using an interpolation process provided by the “bad channel replacement” algorithm (Net Station 4.3).
Afterwards, the signals were baseline corrected using 200 msec before the start of the experiment
period and average re-referenced to transform them into reference-independent values. The brain
network analysis was conducted at first in a personalized fashion, deriving the individual weighted
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correlation matrices (absolute values) over broadband activity upon all trials. Then the averaged
profiles (i.e., group-averaged to demonstrate them for comparison purposes) were estimated for every
group (HC, SCD, MCI and AD) and were considered as the input matrices (static brain networks) for
the estimation of the network metrics (strength, clustering coefficient and betweenness centrality) from
fully weighted networks. Besides the pre-processing steps performed using Net Station’s algorithms,
all other processing and analysis steps were performed using Matlab 2018b (The Mathworks, Natick,
MA, USA).

Brain Sci. 2020, 10, x FOR PEER REVIEW 6 of 29 

Station’s algorithms, all other processing and analysis steps were performed using Matlab 2018b (The 
Mathworks, Natick, MA, USA). 

 

Figure 1. Outline of the methodology for extracting the network metrics derived from correlation 
matrices  

2.5. Connectivity: Pearson Correlation Coefficient (PCC) 

PCC was implemented in order to measure connectivity between all pairs of electrodes. PCC is 
a measure of normalized covariance between two continuous variables that can be estimated by 
dividing the covariance of two variables by the product of their standard deviations, given as = ∑ ( − )( − )∑ ( − ) ∑ ( − )   

where X and Y are two channels and the corresponding EEG measurements in a segment and  is 
their mean. Weighted matrices were created using the PCC between the time series of each pair of 
electrodes (all electrodes at a global level, only selected parietal electrodes at a local level). The 
absolute values of the PCC were used in order to estimate the respective network metrics. 

2.5.1. Global Brain and Local Parietal Network Analysis 

Correlation matrices were constructed from the EEG measurements and used as weighted 
adjacency matrices. Network characteristics were derived from the weighted adjacency matrices, 
including clustering coefficient, network strength and betweenness centrality, to characterize the 
connectivity properties of global brain and local parietal network using the Brain Connectivity 
Toolbox and FieldTrip Toolbox. In detail, we considered a local network of selected electrodes (parietal 
region), which is the most prominent choice for the examination of resting state network(s) 
[35,73,75,100–102]. Regarding the local parietal network, we chose the following electrodes according 

Figure 1. Outline of the methodology for extracting the network metrics derived from correlation matrices.

2.5. Connectivity: Pearson Correlation Coefficient (PCC)

PCC was implemented in order to measure connectivity between all pairs of electrodes. PCC is a
measure of normalized covariance between two continuous variables that can be estimated by dividing
the covariance of two variables by the product of their standard deviations, given as

rXY =

∑n
i=1

(
Xi −X

)(
Yi −Y

)
√∑n

i=1

(
Xi −X

)2
√∑n

i=1

(
Yi −Y

)2

where X and Y are two channels and the corresponding EEG measurements in a segment and X is
their mean. Weighted matrices were created using the PCC between the time series of each pair of
electrodes (all electrodes at a global level, only selected parietal electrodes at a local level). The absolute
values of the PCC were used in order to estimate the respective network metrics.

2.5.1. Global Brain and Local Parietal Network Analysis

Correlation matrices were constructed from the EEG measurements and used as weighted
adjacency matrices. Network characteristics were derived from the weighted adjacency matrices,
including clustering coefficient, network strength and betweenness centrality, to characterize the
connectivity properties of global brain and local parietal network using the Brain Connectivity Toolbox
and FieldTrip Toolbox. In detail, we considered a local network of selected electrodes (parietal region),
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which is the most prominent choice for the examination of resting state network(s) [35,73,75,100–102].
Regarding the local parietal network, we chose the following electrodes according to the EGI system,
numbering: 78, 87, 100, 101, 63, 142, 154, 35, 87, 99, 110, 119, 63, 141, 153, 163, 86, 98, 109, 118, 127, 140,
152, 162, 96, 97, 108, 170 and 161 [103], which represent the respective parietal area.

In the present study, we implemented graph analysis so as to seek for any significant differences
among the four groups (HC, SCD, MCI and AD) with regards to brain connectivity. The corresponding
channels of the EEG constitute the nodes of the graph, while the correlations between the node
electrodes (absolute value of PCC) represent the edges of the graph. We constructed a weighted
graph in order to analyze the brain network and explore the network metrics we chose (clustering
coefficient, strength and betweenness centrality). While strength (S) quantifies aggregation and
clustering coefficient (CC) segregation, we also considered the betweenness centrality (BC) measure as
a measure of centrality [104]. The three metrics are briefly presented below.

Clustering Coefficient (CC)

Given a graph G of N nodes and weighted connections, the weighted clustering coefficient Cw
i

of node i provides us with a measure of interconnection between node i and its neighbors [104].
The overall weighted clustering coefficient Cw of the graph G is computed as the average of Cw

i over
all nodes i:

Cw =
1
N

N∑
i=1

Cw
i

Strength (S)

Next, the connection strength Si of each node i in the graph is estimated as the sum of the weights
of all the connections of node i, gaining information on the total level of the (weighted) connectivity of
a node [104]. The strength expresses how strongly the node is connected with its neighboring nodes,
by summing all weights of the connections of this node. For a weighted undirected graph, the strength
of node i is simply the sum of the components in the i-th row or column of the weight matrix. The total
strength S of the graph G is the average of all N node strengths:

S =
1
N

N∑
i=1

Si

Betweenness Centrality (BC)

Finally, the betweenness centrality BCv of a node v in the graph is related to the fraction of the total
number of shortest paths that pass through node v from node i to node j (σij(v)) to the total number of
shortest paths from node i to node j (σij) [104]. BC describes the centrality of a graph using the shortest
paths and represents the degree to which nodes stand between each other. The total BC of the graph G
is the average of all N node betweenness centralities:

BC =
1
N

N∑
i=1

BCi

2.5.2. Statistical Analysis

We compared brain network data (in terms of PCC) among the four groups at the level of
significance p = 0.05. The network metrics of the global and local networks were compared between
groups using ANOVA analysis. Exploratory correlation analysis tested the relationship of global and
local network metrics with neuropsychological test scores of participants using the PCC (p = 0.05,
uncorrected for multiple comparisons) so as to explore the potential connection between cognitive
performance and how this is interpreted in network metrics.
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Statistical analysis was performed using SPSS v25.0 for Windows (IBM Corporation, Armonk,
NY, USA) and R Studio software. For assessing the normality assumption for continuous and categorical
variables, we used the Kolmogorov–Smirnov and chi-squared test, respectively. For examining the
potential statistical significance between two independent groups (e.g., HC vs. SC) we used the
independent sample t-test. Moreover, the independent sample t-test was used for the years of
education variable, yielding no statistical difference among the groups, with p = 0.253, while no gender
differences were found with respect to gender after chi-squared analysis (p = 0.522). Despite that,
in each group of participants, the female participants were more in total compared to male participants,
a finding indicative of the prevalence of AD [105–107]. However, with respect to age, although we
included participants over 60 years old, a statistically significant difference was found in the AD
group compared to HC (p = 0.01). Nevertheless, no statistically significant difference was found either
among HC and the preclinical groups of SCD (p = 0.127) and MCI (p = 0.09) or between SCD and MCI
(p = 0.690). The independent sample t-test was also used in order to find any potential statistically
significant difference in neuropsychological tests among groups. We used one-way ANOVA in order
to analyze the difference in the network metrics across the four groups. In cases where graph measures
showed statistical significance between groups, within group differences were tested using the t-test
for independent samples (p-values were reported and interpreted in view of the Bonferroni correction
for multiple comparisons on the statistical significance level). Correlation between neuropsychological
tests and network-derived metrics was assessed by using Pearson correlation coefficient.

3. Results

3.1. Neuropsychological Assessment of HC, SCD, MCI and AD

In each of the neuropsychological tests we included to test the cognitive performance of the
four groups, the performance of all HC and SCD participants was indicative of normal cognitive
status (Table 2). Nevertheless, according to the one-way ANOVA test, the MCI and AD groups
showed statistically significantly worse performance scores in the majority of MMSE subsections,
FRSSD and FUCAS items, RAVLT, FAS, ROCFT and RBMT memory tests. Superscripts show the
statistical significance among the four groups after independent sample t-tests.

Table 2. The table shows the mean ± SD (standard deviation) of neuropsychological assessments of
the participants (size in groups: HC = 22, SCD = 20, MCI = 30, AD =20). The last column of the table
shows the p-values of one-way ANOVA.

Diagnosis HC SCD MCI AD

Neuropsychological Tests Mean SD Mean SD Mean SD Mean SD p-Value

MMSE 29.13 0.99 29.25 1.06 27.13 ** 2.55 22.30 3.35 0.001

NPI 0.00 0.00 0.30 0.73 2.81 6.08 2.75 4.23 0.092

FRSSD total score 1.58 * 2.50 3.20 1.57 4.00 ** 1.51 6.75 6.60 0.002

FUCAS total score 42.00 0.00 42.55 1.27 44.77 ** 3.40 50.375 8.99 0.001

TRAIL-B 143.00 54.86 144.75 49.64 262.42 ** 137.61 147.00 149.18 0.002

RBMT immediate recall 17.40 2.70 14.18 3.28 12.71 ** 4.04 10.30 2.48 0.015

RBMT delayed recall 15.40 2.07 13.09 3.23 12.04 4.07 9.50 3.31 0.070

ROCFT copy 33.50 2.12 33.68 1.65 30.23 5.05 22.80 13.43 0.005

ROCFT delayed recall 31.00 * 1.41 22.08 5.69 13.54 ** 5.76 9.90 9.16 0.001

RAVLT 1 7.33 3.05 7.23 2.75 5.19 2.08 4.60 2.07 0.035

RAVLT 2 5.00 * 0 7.35 3.83 5.33 2.19 5.40 3.84 0.201

RAVLT total score 53.33 13.86 53.88 12.56 33.38 16.09 34.00 16.85 0.001

RAVLT 4 −1.33 0.57 1.23 6.20 −1.76 2.99 −2.20 4.6 0.208

FAS 14.3 3.20 12.18 3.69 9.49 ** 3.75 10.66 3.67 0.073

* HC vs. SCD—p-value < 0.05, ** HC vs. MCI—p-value < 0.01.
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In detail, the one-way ANOVA between subjects was conducted to compare the cognitive status
and behavioral issues that commonly arise in the AD spectrum by administering standardized
neuropsychological tests and define the limitations in each group. There was a significant effect of
diagnosis on several neuropsychological tests at the p < 0.05 level among the four groups, as follows:
MMSE: [F(3, 88) = 42.35, p = 0.0001], FRSSD total score: [F(3, 88) = 5.55, p = 0.002], FUCAS total
score: [F(3, 88) = 9.76, p = 0.0001], TRAIL-B: [F(3, 88) = 5.54, p = 0.002], RBMT immediate recall:
[F(3, 88) = 3.89, p = 0.015], ROCFT delayed recall: [F(3, 88) = 11.71, p = 0.0001], RAVLT immediate
recall: [F(3, 88) = 3.14, p = 0.035] and RAVLT total score: [F(3, 88) = 7.07, p = 0.001]. In order to further
investigate the differences among each pair of groups, we conducted independent sample t-tests, which
indicated the following results.

Global Cognition: According to independent sample t-tests, the MMSE score was better for HC
(M = 29.13, SD = 0.99) compared with MCI (M = 27.13, SD = 2.55), t (50) = 3.48, p = 0.001, and AD groups
(M = 22.30, SD = 3.35), t (40) = 9.13, p < 0.0001. In this common vein, the SCD (M = 29.25, SD = 1.06)
group also outperformed MCI (M = 27.13, SD = 2.55), t (48) = 3.49, p = 0.001, and AD t (38) = 8.82,
p < 0.0001, and in turn MCI outperformed AD, t (48) = 5.77, p < 0.0001. The differences were also
found to be statistically significant under the Bonferroni correction for multiple testing, which here
was equivalent to setting the significance level to 0.008.

Daily Functionality: Independent sample t-tests revealed that the FRSSD total score was better
for HC (M = 1.58, SD = 2.50) compared to MCI (M = 4, SD = 1.51), t (32) = −3.52, p = 0.001 and
AD groups (M = 6.75, SD = 6.60), t (40) = −2.28, p = 0.03. There was also a significant difference in
the scores for FRSSD total score between HC (M = 1.58, SD = 2.50) and SCD (M = 3.20, SD = 1.57),
t (30) = −2.25, p = 0.032, but both were within normal range. For the FUCAS test, the HC group
(M = 42.0, SD = 0.00) outperformed both MCI (M = 44.77, SD = 3.41), t (32) = −2.79, p = 0.009 and
AD (M = 50.37, SD = 8.99), t (38) = −3.27, p = 0.004. Moreover, the SCD group (M = 42.55, SD = 1.27)
demonstrated better performance than MCI t (40) = −2.75, p = 0.009 and AD t (38) = −3.90, p = 0.001.
Finally, the MCI group had greater scores than AD in the FRSSD total score t (48) = −1.87, p = 0.07 and
FUCAS total score t (48) = −2.52, p = 0.01. The differences were also found to be statistically significant
between HC and MCI under the Bonferroni correction for multiple testing for daily functionality
measurements (except the subcategory of FUCAS memory and FRSSD personal hygiene), which here
was equivalent to setting the significance level to 0.008.

Memory and Executive Function: HC (M = 143, SD = 54.86) had better scores than MCI (M = 262.42,
SD = 137.61), t (50) = −2.86, p = 0.007 in TRAIL part B. Additionally, independent sample t-tests revealed
that the RBMT immediate recall was better for HC (M = 17.4, SD = 2.70) compared to MCI (M = 12.71,
SD = 4.04), t (50) = 2.44, p = 0.022 and AD (M = 10.30, SD = 2.49), t (40) = 4.32, p = 0.003. Additionally,
HC showed better performance compared to AD (M = 9.50, SD = 3.31), t (40) = 3.37, p = 0.01 in RBMT
delayed recall, as well. Additionally, HC (M = 31, SD = 1.41) had better performance than the MCI group
(M = 13.54, SD = 5.76), t (50) = 4.18, p = 0.0001 and AD (M = 9.90, SD = 9.16), t (40) = 3.06, p = 0.02 in
ROCFT delayed recall. In this common vein, SCD (M = 144.75, SD = 49.64) had better scores than MCI
(M = 262.42, SD = 137.61), t (35) = −3.25, p = 0.003 in TRAIL part B. Moreover, SCD (M = 22.08, SD = 5.69)
had better performance than the MCI group (M = 13.54, SD = 5.76), t (35) = 4.48, p = 0.0001 and AD
group (M = 9.90, SD = 9.16), t (38) = 3.61, p = 0.002 in ROCFT delayed recall. Moreover, SCD had better
performance in RBMT - immediate recall (M = 14.18, SD = 3.28) and RBMT delayed recall (M = 13.09,
SD = 3.23), as well as ROCFT copy (M = 33.68, SD = 1.64) compared to the AD group [RBMT—immediate
recall: (M = 10.30, SD = 2.49), t (38) = 2.42, p = 0.02, RBMT delayed recall: (M = 9.50, SD = 3.32),
t (38) = 2.16, p = 0.04 and ROCFT copy: (M = 22.80, SD = 13.43), t (38) = 3.35, p = 0.003]. Finally, the MCI
group (M = 30.23, SD = 5.05) also demonstrated significantly better performance with respect to the AD
group (M = 22.80, SD = 13.43), t (48) = 2.08, p = 0.004 in ROCFT copy test. The differences were also found
to be statistically significant under the Bonferroni correction for multiple testing in the majority of memory
and executive function neuropsychological tests, which here was equivalent to setting the significance
level to 0.008. However, no statistically significant differences were found between HC and MCI in TRAIL
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part B and RBMT delayed recall, and SCD and MCI were similar in ROCFT delayed recall, where the
Bonferroni correction for multiple testing was not equivalent to setting the significance level to 0.008.

Verbal Fluency—Learning: HC (M = 53.33, SD = 13.86) outperformed MCI (M = 33.38, SD = 16.09),
t (31) = 2.09, p = 0.05 in RAVLT total score. tThe independent sample t-test revealed that the FAS total
score was better for HC (M = 14.3, SD = 3.20) compared to MCI (M = 9.49, SD = 3.75), t (31) = 2.09,
p = 0.04. Moreover, SCD (M = 53.33, SD = 13.86) outperformed MCI (M = 33.38, SD = 16.09), t (36) = 4.29,
p = 0.0001 in RAVLT total score. In addition to that, SCD showed better performance in RAVLT-2
(M = 7.35, SD = 3.83) and RAVLT immediate recall (M = 7.23, SD = 2.75) compared to MCI (M = 5.33,
SD = 2.19), t (36) = 2.03, p = 0.04 and (M = 5.19, SD = 2.08), t (36) = 2.60, p = 0.01, respectively. Moreover,
SCD showed significantly better performance in RAVLT total score (M = 53.88, SD = 12.56) compared
to AD (M = 34.0, SD = 16.85), t (38) = 2.88, p = 0.009. The independent sample t-test revealed that the
FAS total score was better for SCD (M = 12.18, SD = 3.20) compared to MCI (M = 9.49, SD = 3.75),
t (36) = 2.19, p = 0.03. The differences were also found to be statistically significant under the Bonferroni
correction for multiple testing in memory and executive function neuropsychological tests, which here
was equivalent to setting the significance level to 0.008.

Mood: Lower scores, which indicate better performance, for HC (M = 0.00, SD = 0.00)
and SCD (M = 0.33, SD = 0.73) were found in NPI compared with the AD group (M = 2.75,
SD = 4.23), t (40) = −2.28, p = 0.03 and (M = 2.75, SD = 4.23), t (38) = −2.56, p = 0.01, respectively.
The differences were also found to be statistically significant under the Bonferroni correction for
multiple testing in mood assessment tests, which here was equivalent to setting the significance level
to 0.008. Nevertheless, no group had clinical manifestations of depression or anxiety disorder since the
mean scores for NPI and PSS were below the cut-off scores.

Consequently, statistically significant differences were found in many neuropsychological tests
among the four groups (HC, SCD, MCI and AD), supporting the differentiation of MCI and AD
compared to HC in a variety of cognitive domains (e.g., daily functionality, memory, executive function,
etc.). However, as expected, in the case of SCD and HC, no significant differentiation was found between
traditional neuropsychological tests, which paves the way to explore other mechanisms to detect SCD.
Thus, taking into account the absence of any differentiation between HC and SCD, we explored the
likelihood of any potential difference between the four groups, as well as between HC and SCD,
with regards to the brain connectome in a resting state condition.

3.2. Comparison of Network Properties between HC, SCD, MCI and AD

As presented in Table 3 alongside the network properties measured (clustering coefficient, strength
and betweenness centrality), mean values of the HC group were higher compared to all other groups
(i.e., SCD, MCI and AD). Superscripts indicate statistically significant differences between the groups
after the independent sample t-test was performed. Moreover, Figure 2B,C illustrate the correlation
matrices at local and global levels, respectively, from which the network was constructed in order to
estimate the network metrics and create the topoplots presented in Figure 2A. From the matrices of
global and local networks, we constructed weighted undirected networks for each group of participants,
as shown in Figure 2B,C, respectively. Moreover, the mean values and SD of clustering coefficient and
betweenness centrality, as derived from local and global networks, are illustrated in Figure 3A, while
the local and global strength mean and SD values are depicted in Figure 3B. A one-way ANOVA was
conducted to compare each group of participants in each network property at local and global levels.
There was a significant effect of diagnosis on every network property at a local level (parietal electrodes)
at a 0.05 level among the four groups in clustering coefficient: [F (3, 88) = 4.76, p = 0.004], strength:
[F (3, 88) = 4.69, p = 0.004] and betweenness centrality: [F (3, 88) = 3.50, p = 0.681]. However, no statistically
significant difference was found at a global level between the four groups in global clustering coefficient:
[F (3, 86) = 0.50, p = 0.681], global strength: [F (3, 88) = 0.67, p = 0.569] and betweenness centrality:
[F (3, 88) = 0.48, p = 0.53]. Independent sample t-tests indicated that significant differences were found in
network metrics, as presented below, and especially at a local level.
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Table 3. Mean ± SD of network properties at a local level (parietal electrodes) and global level
(all 256 electrodes) of the participants (HC = 22, SCD = 20, MCI = 30, AD = 20). The last column of the
table shows the p-values of one-way ANOVA. Superscripts indicate the statistical significance between
groups after independent sample t-tests.

HC SCD MCI AD

Mean SD Mean SD Mean SD Mean SD p-Value

Lo
ca

l

Clustering
Coefficient 0.79 0.07 0.73 * 0.09 0.72 ** 0.09 0.68 *** 0.11 0.004

Strength 22.56 1.65 21.11 * 2.10 20.83
** 2.25 20.12

*** 2.67 0.004

Betweenness
Centrality 0.044 0.03 0.056 * 0.03 0.047 + 0.02 0.06 0.02 0.431

G
lo

ba
l

Clustering
Coefficient 0.311 0.079 0.308 0.088 0.291 0.072 0.285 0.091 0.681

Strength 99.24 18.08 97.70 20.19 94.01 16.20 91.88 21.92 0.569

Betweenness
Centrality 0.33 0.05 0.30 0.11 0.33 0.06 0.32 0.08 0.531

* HC vs. SCD—p-value < 0.05, ** HC vs. MCI—p-value < 0.01, *** HC vs. AD—p-value < 0.001, + SCD vs.
MCI—p-value < 0.05.
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SCD = 20, MCI = 30, AD = 20).
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Global and Local Clustering Coefficient (CC): According to independent sample t-tests, the local
clustering coefficient was higher for HC (M = 0.79, SD = 0.07) compared to SCD (M = 0.72, SD = 0.09),
t (40) = 2.39, p = 0.02, MCI (M = 0.71, SD = 0.09), t (50) = 0.41, p = 0.004 and AD groups (M = 0.68,
SD = 0.11), t (40) = 3.62, p = 0.001. On the other hand, with regard to the global clustering coefficient,
comparisons between SCD and MCI, SCD and AD and MCI versus AD revealed no statistically
significant differences (Table 3). Despite that, HC (M = 0.31, SD = 0.07) showed greater values with
regard to the global clustering coefficient, compared to SCD (M = 0.30, SD = 0.08), t (40) = 0.13, p = 0.897,
MCI (M = 0.29, SD = 0.07), t (48) = 0.94, p = 0.351 and AD (M = 0.28, SD = 0.09), t (40) = 0.97, p = 0.337,
where no statistically significant difference was found (Figure 3).

Global and Local Strength (S): According to independent sample t-tests, the local strength at parietal
electrodes showed higher values for HC (M = 22.56, SD = 1.65) compared to SCD (M = 21.11, SD = 2.10),
t (40) = 2.50, p = 0.01, MCI (M = 20.83, SD = 2.25), t (50) = 3.01, p = 0.004 and AD groups (M = 20.12,
SD = 2.66), t (40) = 3.48, p = 0.001. On the other hand, with regard to the global strength, comparisons
between SCD and MCI, SCD and AD and MCI versus AD revealed no statistically significant differences
(Table 3). Although HC (M = 99.24, SD = 18.08) showed greater values with regard to global strength
compared to SCD (M = 97.70, SD = 20.18), t (40) = 0.26, p = 0.795, MCI (M = 94.01, SD = 16.20), t (48) = 1.07,
p = 0.287 and AD (M = 91.88, SD = 21.91), t (40) = 1.18, p = 0.245, no statistically significant differences
were found between SCD vs. MCI and AD or MCI vs. AD (Figure 3).

Global and Local Betweenness Centrality (BC): Based on the independent sample t-tests, local
BC at parietal electrodes showed statistically significantly lower values for HC (M = 0.04, SD = 0.03)
compared to SCD (M = 0.056, SD = 0.03), t (40) = −1.42, p = 0.05. Moreover, local BC at parietal
electrodes showed statistically significant lower values for MCI (M = 0.04, SD = 0.02) compared to SCD
(M = 0.056, SD = 0.03), t (40) = −1.42, p = 0.04 (Table 3). On the other hand, with regard to local BC,
comparisons between the remainder of the groups revealed no statistically significant differences.
Albeit, with regard to global betweenness centrality, all groups showed similar values, while no
statistically significant differences were found between SCD vs. MCI and AD or MCI vs. AD (Figure 3).

To sum up, as illustrated in Figure 2A, HC presents a denser network with several connections
between nodes in a local area (parietal electrodes) as well as in a global network with regard to CC
and strength. As the disease progresses, we can see fewer connections between nodes. Similarly,
correlation matrices, as shown in Figure 2B,C for local and global networks, respectively, support
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the assumption of less connectivity between nodes (electrodes) in later stages. The correlation
differences are more obvious in the local network. Especially in the case of AD, the connections of
network connections are much more aberrant, while network interruption is widely observed over
the global network. Additionally, boxplots in Figure 3 show increased functional connectivity (lower
mean values in CC and higher mean strength, Figure 3A) in HC with regards to SCD, MCI and
AD participants, while higher mean values of betweenness centrality were found in later stages of
the disease.

3.3. Sensitivity and Specificity of Network Properties

In the present section, we investigate the potential utility of the abovementioned network
properties as markers of an individual’s condition (SCD, MCI and AD) or an HC by testing sensitivity
and specificity among the groups. More specifically, we examined the area under the curve (AUC),
the sensitivity and specificity. These pieces of evidence can provide information about the use of local
or global clustering coefficients, betweenness centrality and strength as tools that would indicate the
condition of an SCD individual.

Specificity and sensitivity values were estimated by using SPSS v25.0. In particular, we developed
Receiver operating characteristic curves (ROC)and identified the best threshold of the local and
global clustering coefficients, betweenness centrality and strength values to differentiate the groups.
Taking into account recent neurophysiological studies, a minimum value of 65% for both sensitivity and
specificity constitutes an acceptable rate [10,108], . The sensitivity and specificity scores corresponding
to the cut-off thresholds, alongside the AUC, are shown in Tables 4 and 5, while Figures 4 and 5 present
in detail the results of the AUC, sensitivity and specificity in global and local networks, respectively.

One vs. Other Groups
In the one vs. other groups simulation scenario, we only managed to successfully discriminate HC

from SCD, MCI and AD using either the clustering coefficient (sensitivity = 64% and specificity = 78%,
AUC = 74%) or the strength (sensitivity = 64% and specificity = 79%, AUC = 74%) measures at a local
level. None of the other simulation tests managed to yield a performance over the minimum value
(AUC = 65%) for both specificity and sensitivity (Figure 4).

One vs. One
In the one vs. one simulation scenario, we only managed to successfully discriminate HC from

SCD using either the clustering coefficient (sensitivity = 75% and specificity = 64%, AUC = 71%) or the
strength (sensitivity = 75% and specificity = 64%, AUC = 71%) measures at a local level. Additionally,
we managed to discriminate HC from MCI using either the clustering coefficient (sensitivity = 64% and
specificity = 80%, AUC = 73%) or the strength (sensitivity = 80% and specificity = 64%, AUC = 79%)
measures at a local level. Finally, HCs were also discriminated from AD using either the clustering
coefficient (sensitivity = 65% and specificity = 82%, AUC = 79%) or the strength (sensitivity = 65% and
specificity = 82%, AUC = 79%) measures at a local level. None of the other simulation tests managed
to yield a performance over the minimum value (AUC = 65%) for both specificity and sensitivity
(Figure 5). Consequently, although these results are very promising, there is still work to do to reaching
an acceptable level for discriminating each pair of groups.
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Table 4. Sensitivity and specificity of clustering coefficient, strength and betweenness centrality at
global and local levels for each group compared with one of the other three groups.

Groups Global/Local Network
Property

AUC
(%)

Threshold
Value

Sensitivity
(%)

Specificity
(%)

HC vs. SCD,
MCI and AD

Lo
ca

l

Clustering
Coefficient 74 0.78 64 78

Strength 74 22.38 64 79

Betweenness
Centrality 40 0.31 64 39

G
lo

ba
l

Clustering
Coefficient 55 0.5 41 78

Strength 56 106.65 41 75

Betweenness
Centrality 55 0.04 73 24

SCD vs. HC,
MCI and AD

Lo
ca

l

Clustering
Coefficient 51 0.79 90 25

Strength 52 22.85 90 25

Betweenness
Centrality 51 0.69 80 26

G
lo

ba
l

Clustering
Coefficient 55 0.28 70 44

Strength 55 97.11 60 58

Betweenness
Centrality 43 0.28 75 25

MCI vs.
SCD, HC
and AD

Lo
ca

l

Clustering
Coefficient 57 0.75 67 52

Strength 57 22.14 77 40

Betweenness
Centrality 54 0.05 61 43

G
lo

ba
l

Clustering
Coefficient 54 0.30 61 57

Strength 54 94.48 57 58

Betweenness
Centrality 49 0.37 71 40

AD vs. HC,
SCD and

MCI

Lo
ca

l

Clustering
Coefficient 66 0.70 55 75

Strength 65 20.37 55 76

Betweenness
Centrality 66 0.05 68 62

G
lo

ba
l

Clustering
Coefficient 55 0.32 75 41

Strength 56 72.31 25 93

Betweenness
Centrality 51 0.28 73 27
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Table 5. Sensitivity and specificity of clustering coefficient, strength and betweenness centrality at
global and local levels for all different combinations of one to one comparisons.

Groups Global/Local Network
Property

AUC
(%)

Threshold
Value

Sensitivity
(%)

Specificity
(%)

HC vs. SCD
Lo

ca
l

Clustering
Coefficient 71 0.78 75 64

Strength 71 22.34 75 64

Betweenness
Centrality 41 0.033 77 30

G
lo

ba
l Clustering

Coefficient 49 0.185 15 100

Strength 51 69.829 15 100

HC vs. MCI

Lo
ca

l

Clustering
Coefficient 73 0.78 80 64

Strength 79 22.31 80 64

Betweenness
Centrality 45 0.036 77 32

G
lo

ba
l Clustering

Coefficient 44 0.259 74 36

Strength 43 86.773 68 36

HC vs. AD

Lo
ca

l

Clustering
Coefficient 79 0.73 65 82

Strength 79 21.16 65 82

Betweenness
Centrality 29 0.068 79 23

G
lo

ba
l Clustering

Coefficient 58 0.351 85 41

Strength 59 107.412 85 36

SCD vs. MCI

Lo
ca

l

Clustering
Coefficient 54 0.76 70 45

Strength 53 19.80 27 85

Betweenness
Centrality 54 0.060 40 71

G
lo

ba
l Clustering

Coefficient 57 0.285 54 70

Strength 56 93.358 54 65

SCD vs. AD

Lo
ca

l

Clustering
Coefficient 63 0.69 50 80

Strength 62 20.41 55 70

Betweenness
Centrality 38 0.071 25 79

G
lo

ba
l Clustering

Coefficient 57 0.317 75 45

Strength 59 97.879 65 55

MCI vs. AD

Lo
ca

l

Clustering
Coefficient 58 0.70 55 70

Strength 58 20.50 55 70

Betweenness
Centrality 35 0.058 36 58

G
lo

ba
l Clustering

Coefficient 51 0.241 30 79

Strength 52 70.799 20 96
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Figure 5. ROC curves showing the clustering coefficient, strength and betweenness centrality at local
and global levels for discriminating between: (A) SCD and HC, (B) MCI and HC, (C) AD and HC,
(D) MCI and SCD, (E) SCD and AD and (F) MCI and AD.

3.4. Correlation between Neuropsychological Assessment and Network Properties

Furthermore, we used a Pearson correlation in order to seek for any potential correlations among
the neuropsychological tests and the local network metrics (Table 6). More specifically, we can see that
values of sleep, as measured in the FRSSD test, were negatively correlated with the local clustering
coefficient at parietal electrodes generated during the resting state EEG. The local clustering coefficient
captures how strongly particular nodes are connected with their neighboring nodes, corresponding
to specific areas of the brain, showing that the larger the value of CC is in a brain region, the more it
affects its neighboring areas of the brain. The local clustering coefficient was found to be negatively
correlated with the FRSSD sleep score (r = −0.286, p = 0.034) with statistical significance. Moreover,
BC was negatively correlated with MMSE (r = -0.254, p = 0.04), RBMT delayed recall (r = −0.362,
p = 0.032) and ROCFT copy (r = −0.501, p = 0.025), whereas a statistically significant positive correlation
was found between BC and FUCAS total score (r = 0.281, p = 0.038) and the FRSSD sleep parameter
(r = 0.522, p = 0.033), indicating that higher cognitive impairment, as daily functionality problems show,
increased BC in the parietal area. Therefore, standardized neuropsychological tests show that, in the
case of BC, several cognitive domains (global cognition, episodic memory, visuospatial long-term
memory and daily functionality) have a weak but statistically significant correlation, supporting that
network disruption and the loss of connection between brain areas may impact cognition, as measured
in the neuropsychological assessments.
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Table 6. Pearson correlation between network properties and neuropsychological tests for all
participants at a local level.

Domain Neuropsychological Tests Clustering
Coefficient Strength Betweenness

Centrality

Global Cognition MMSE 0.158 0.141 −0.254 *

Mood NPI −0.082 −0.083 0.149

Memory and
Executive Function

RBMT immediate recall 0.167 0.146 −0.251

RBMT delayed recall 0.205 0.186 −0.362 *

ROCFT copy 0.119 0.085 −0.501 **

ROCFT recall 0.169 0.149 −0.501

Learning
RAVLT recall 0.152 0.144 −0.042

RAVLT learning 0.018 0.014 −0.062

Daily Functionality

FUCAS total score −0.053 −0.028 0.281 *

FRSSD total score −0.070 −0.053 0.244

FRSSD sleep −0.286 * −0.280 0.522 **

* Correlation is significant at the 0.05 level (two-tailed), ** correlation is significant at the 0.01 level (two-tailed),
no superscript indicate no statistically significant difference.

4. Discussion

The present study presents pieces of evidence from investigating brain connectome changes
in the preclinical stage of AD by using a resting state HD-EEG, while highlighting the importance
of network metrics to find ways for the early detection of SCD and its connectivity mechanisms as
a preclinical stage of the AD continuum. Our study confirms and underlines the presence of an
interrupted brain connectome in SCD and describes the potential of the brain connectome in order to
detect future cognitive decline related to AD. Additionally, it suggests that disordered brain function,
characterized by decreased coherence in specific nodes of the brain network, may be related to SCD.
This implies that SCD is considered as an intermediate condition between the two stages, healthy ageing
and MCI. Since this is the first ever reported study which explored these particular brain network
metrics in people with SCD by using HD-EEG, we compare our results with other approaches found in
the literature that deployed different modalities (e.g., Magnetoencephalography - MEG, fMRI) or with
EEG studies that explored potential differences between HCs and people in more severe stages (e.g.,
AD or MCI).

Despite the fact that the a wide variety of the resting state studies showed disrupted patterns
and interrupted links in SCD compared to HCs [28,30,37,42], there were some with opposing results,
presenting increased FC in SCD with regards to HCs [26,32]. More specifically, decreased FC was
basically presented among posterior brain regions in SCD compared to the HC group [37,42]. Similarly,
in our study, SCD exhibited decreased strength and clustering coefficients in the parietal area compared
to HCs. Similar results can also be found in similar brain network studies, demonstrating decreased
nodal strength in SCD individuals in key regions of resting state networks basically located over
the parietal region [26,32,38,57,109,110], which can be partially explained due to the low levels of
glucose in the inferior parietal lobe [111]. Therefore, since the parietal region is the primary target of
functional decrease in SCD individuals, which may further lead to cognitive decline associated with
more advanced stages of the AD continuum, we found connectivity abnormalities and statistically
significant differences basically located over the parietal region as well. Moreover, lower strength and
clustering coefficients compared to HC was also found in MCI and AD, both at a global level and in
the local parietal network. This implies that all the connections which are interrupted in SCD are also
affected in a similar way in MCI, which supports the assumption that both conditions show a common
“functional coupling pattern”. These findings suggest that SCD presents intermediate connectivity
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disruption over posterior regions with regards to HCs and MCI [28,42]. Our results pave the way
to imply that the subjective feeling of memory loss without any objective clue of cognitive decline,
as revealed from neuropsychological tests, could be indicative of pathological brain function related to
future progression to AD.

Similar approaches have demonstrated that HC have increased FC compared to SCD, while a
disconnection over posterior regions was observed in SCD with an anterior hyper-synchronization
of the exact same brain areas as MCI [29,37,38,45,47] was found. On the other hand, with regards
to the nodal clustering coefficient changes, it is worth mentioning that differences were found only
between MCI and HC, whereas SCD presented no differences compared to HC or MCI [25]. In contrast
to the abovementioned findings, our study found statistically significant differences between SCD and
HC with respect to local clustering coefficient. However, we did not find any statistically significant
difference between HC and SCD with regard to the global clustering coefficient, as well as between
the rest of the groups (SCD vs. MCI, SCD vs. AD and MCI vs. AD). On the other hand, SCD also
demonstrated decreased strength, especially between rich-club regions compared to HC [29], proposing
a common disconnection pattern of the brain connectome in SCD but milder than in MCI. In this
common vein, our study showed that strength values were significantly lower in SCD, AD and MCI
compared to HC at a local level but not at a global level, suggesting that by constructing brain networks
from resting state EEGs, we can observe intermediate values of the SCD between HC and MCI.

It has been suggested that there is wide disconnection between frontal and parietal brain areas in
prodromal AD, supporting an interruption of anterior–posterior connection [19]. Since the posterior
cingulate cortex (PCC), inferior parietal lobule (IPL) and retrosplenial cortex (RSC), brain areas located
over the posterior region form a main cluster in resting state networks, partial interruption and apparent
connectivity between them is indicative of prodromal AD [112–114]. This implies that these particular
brain areas, disconnected from the rest of the brain in prodromal AD, are likely interrupted due to high
metabolic activity and amyloid plaque aggregation in these particular regions [115–117]. Furthermore,
findings in preclinical stages, such as MCI, are conflicting in brain network studies, since a few of them
have found no significant disruptions of network properties (e.g., “small-world”), whereas others have
found decreased FC [118,119]. Accordingly, we did not find a statistically significant difference in global
brain network properties (clustering coefficient, strength and betweenness centrality) between HC
and SCD nor between SCD and the rest of the groups (MCI and AD), which could indicate that brain
changes in the SCD participants are too subtle to be detected in the whole brain, while at a local level
we can detect network disruptions. Our results are in line with other approaches which have not found
any significant differences in participants with regards to global network metrics [31,37,47,120]. Hence,
it is still uncertain whether people at preclinical stages of AD would exhibit a disrupted property in
their whole brain identical to that of AD individuals, and more research is necessary to cast more light
on this problem.

In addition to clustering coefficient and strength, we explored the potential of betweenness
centrality as a metric to differentiate the four groups. If the presence of cortical pathology in AD and its
early preclinical stages suggests that a longer route for the information transfer between brain regions
must take place, the global BC will have increased values. Thus, we found an escalated increase
in BC among the patient groups compared to HC in parietal areas, whilst a reduction in BC was
observed at a global level in more advanced stages. These results show that the disrupted interactions
in advanced stages, compared to preclinical and HC, suggested that less direct paths were taken for
the information transfer, passing through several cortical nodes, reducing BC in several brain areas,
while at the same time increasing betweenness centrality in certain brain posterior regions. Similarly,
several studies have shown that BC is lower in specific brain areas in MCI and AD with respect to
HC [31,38,121]. On the other hand, decreased long-distance connectivity, indicating lower BC values
of the frontal and posterior brain regions, has been found in AD compared to HC [122], suggesting
that the increase in these areas lies in the fact that a compensatory mechanism is responsible for the
reduced centrality in precuneus, which is a key region in the resting state networks commonly affected
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in AD [38]. However, we did not observe a statistically significant difference with regard to BC between
the four groups, except SCD and MCI, which could be explained because SCD constitutes an early
preclinical stage and the interruption is due to a compensatory mechanism or due to the small sample.
Our results are in line with similar approaches that have investigated BC derived from undirected
weighted networks using PCC and found no significant difference between AD and HC or other patient
groups [123,124].

Despite the fact that brain disruption and brain connectome disconnection was found in SCD in
the majority of the studies, small-world networks were not interrupted in the SCD group compared to
HC [63]. This could also partially explain our results regarding the preserved global network metrics
in this population, which suggests that no extensive disruption occurred in the brain in order to have
characteristics similar to a randomized network. Although SCD preserves some network properties
and several brain regions remain intact, there are extensive disruptions of local network properties
indicative of those in MCI but to a lower extent [63]. Thus, SCD, compared to HC, exhibits relatively
stable connections as far as network properties in a global network are concerned, hence, it has
lower connections between particular brain regions over posterior brain structures. Compatible with
the findings of the abovementioned studies, our results reinforce that the disrupted strength of
posterior areas (parietal channels) is widely observed in SCD in a similar way to more advanced
stages (e.g., MCI, AD) compared to HC. This particular “localized disconnection” has also been
suggested in similar research approaches, showing that connectivity over a posterior DMN undergoes
extensive disconnection with apparent connections across the AD spectrum [64]. Similarly, our results
are in line with previous reported studies underlying the importance of interregional connections
between frontal and parietal brain areas for episodic memory [124,125], whereas an interrupted
connectivity among regions of frontal (e.g., PFC) and posterior areas (e.g., PCC) is indicative of
AD [29,30,35,126–128]. In detail, we showed that hub regions of the DMN, such as the PCC and
precuneus, presented lower activity in MCI and AD compared to HC and SCD, while reduced activity
in frontal areas, such as mPFC, in the case of betweenness centrality and strength network metrics,
is widely observed in people with AD compared to HC, indicating less straightforward anatomical
links of contralateral brain areas [17,31]. Therefore, lower activation over the vmPFC and PCC in SCD
indicates that, in contrast to AD, the hub regions of the DMN and the fronto-parietal connection are
widely preserved, although to a lower extent compared to HC, which underlines that these regions
work in coherence. Additionally, differences were observed among groups in the case of the cerebellum,
where lower activation was detected in later stages of the disease. In line with our results, recent
studies have highlighted the role of cerebellum in the AD hypothesis and its pivotal role in cognitive
impairment [129,130]. Our findings support and underline the importance of a reasonable and
consistent interchange among particular brain areas and support that interruption or any disconnection
in these specific regions may be linked to the future development of AD.

Additionally, a recent EEG study showed that the network properties, such as increased path
length, showed statistically significant differences between the HC and MCI [35]. In this common
line, other studies have found that the MCI group had less network efficiency [131,132] and reduced
small worldness [133] compared to the HC. The correlation between neuropsychological tests and
network properties underlined that the increased cognitive impairment of the individuals’ cognitive
states is associated with increased disconnection and reduced network organization. Thus, in both of
the above mentioned studies, as well as in ours, the network-derived metrics based on EEGs were
found to be correlated with neuropsychological tests, especially the BC, indicating that these metrics
could be potentially implemented to assess the cognitive function of people at preclinical stages of
AD and suggest a new diagnostic tool for both SCD and MCI. Finally, in our study, we employed the
ROC curve analysis so as to define the cut-off scores and the sensitivity and specificity of each metric
(clustering coefficient, strength and betweenness centrality at global and local levels). Based on our
findings, the local clustering coefficient and local strength may be examined as potential markers for
the detection of SCD, categorizing SCD from HC with 75% sensitivity and 64% specificity (AUC = 71%,
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in ROC curves), MCI from HC with 80% sensitivity and 64% specificity (AUC = 73% and AUC = 79%,
respectively, in ROC curves), and AD from HC with 65% sensitivity and 82% specificity (AUC = 79%
in ROC curves). An important finding deriving from the present study is that SCD individuals present
network values intermediate to HC and MCI, underlying a common disconnection pattern of the brain
connectome in SCD but not to the same extent as in MCI. In conclusion, our findings proved once
more that AD is a “disconnection syndrome”, according to the literature to date and indicated that the
resting state network was partially interrupted as cognitive impairment progresses, highlighting the
importance of the early detection of cognitive impairment.

5. Limitations

The results of the present study should be cautiously interpreted because of some limitations.
One limitation of our study is that age matching was not possible across all groups, since cognitive
disturbances manifest in early 60 s but the development of AD occurs, in most cases, in later stages.
Therefore, AD and HC showed statistically significant differences with respect to age. However, all four
groups met the inclusion criterion of being over 60 years of age, while HC were age matched with
preclinical stages of the AD continuum (SCD and MCI), showing no statistically significant differences
between groups with respect to age. Another limitation is that more females than males participated in
the present study. However, it is widely known that AD affects more female than male participants,
which is indicative of the prevalence of AD [105–107], while other similar approaches have found
no differences with respect to resting state activity between the gender groups [134,135]. Finally,
another limitation of the current study is the lack of follow-ups in order to investigate the future
progression and network changes of SCD. However, this study constitutes a novel cross-sectional
study of several study groups in order to seek for potential differences in the grounds of the brain
connectome among HC and people on the AD continuum. In order to overcome the above limitations,
we intend, in future research, to use larger samples with several follow-ups, allowing us to examine
the progression of disease. The creation of such a dataset with an adequate number of follow-ups will
give us the ability to study the neuropsychological progression of the disease, and to construct efficient
AD-related predictive models. Another limitation of our study is that we performed the analysis with
static brain networks instead of using a more dynamic method and we adopted a bivariate connectivity
estimator, which might cause issues in dense EEG networks compared to multivariate. However,
since the brain connectivity analysis depends on two basic factors: (i) the measure that describes the
connectivity between brain regions/electrodes, and (ii) how these connections are represented and
analyzed under a unified theory and framework [136], in our analysis, we used the PCC to describe
connections between brain areas under the framework of graph theory. Clearly, the choice of measure
and the properties of the underlying graph affect the overall analysis. In our case, this means that,
due to the correlation measure and the static nature of our brain-related graphs, we analyzed static
brain networks (graphs that do not evolved with time). Another issue is that we used a bivariate
connectivity estimator. However, we must point out that some brain connectivity measures may seem
to be multivariate (one-to-all or all-to-all connectivity) but are in fact mass bivariate measures [137],
meanwhile, the choice of a connectivity estimator that would take into account the volume conduction
effect would definitely improve our methodology [136]. Furthermore, in our analysis, we used fully
weighted networks since our basic goal was to study the statistical significance of connections in
different brain areas, while in the future, we intend to use a thresholding approach for more specialized
graph theory-based analyses [136]. Finally, we used broadband EEG activity (from 0.3 Hz to 75 Hz)
since our goal was to study the effects of AD over all brain activity, while future studies would benefit
from exploring the brain connectivity in specific bands (e.g., alpha rhythm), which are highly associated
with connectome interruptions across the AD spectrum.
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6. Conclusions

This is the first ever reported study which investigated brain connectivity by using HD-EEG in
order to explore network changes in SCD with regards to HC, MCI and AD individuals. Therefore,
our study provides pieces of evidence that SCD may actually indicate a transitional preclinical stage of
AD with network changes and brain connectome interruptions. More specifically, the estimation of the
clustering coefficient, betweenness centrality and strength of correlation networks restricted to parietal
areas could serve as a possible biological predictor of future cognitive impairment connected to AD.
However, more longitudinal research is required to extend and further investigate the underlying
neurophysiological mechanisms that are associated with these particular brain network interruptions
commonly occurring in SCD.
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