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Both platelets and the liver play important roles in the processes of coagulation and innate
immunity. Platelet responses at the site of an injury are rapid; their immediate activation
and structural changes minimize the loss of blood. The majority of coagulation proteins are
produced by the liver—a multifunctional organ that also plays a critical role in many
processes: removal of toxins and metabolism of fats, proteins, carbohydrates, and drugs.
Chronic inflammation, trauma, or other causes of irreversible damage to the liver can
dysregulate these pathways leading to organ and systemic abnormalities. In some cases,
platelet-to-lymphocyte ratios can also be a predictor of disease outcome. An example is
cirrhosis, which increases the risk of bleeding and prothrombotic events followed by
activation of platelets. Along with a triggered coagulation cascade, the platelets increase
the risk of pro-thrombotic events and contribute to cancer progression and metastasis.
This progression and the resulting tissue destruction is physiologically comparable to a
persistent, chronic wound. Various cancers, including colorectal cancer, have been
associated with increased thrombocytosis, platelet activation, platelet-storage granule
release, and thrombosis; anti-platelet agents can reduce cancer risk and progression.
However, in cancer patients with pre-existing liver disease who are undergoing
chemotherapy, the risk of thrombotic events becomes challenging to manage due to
their inherent risk for bleeding. Chemotherapy, also known to induce damage to the liver,
further increases the frequency of thrombotic events. Depending on individual patient
risks, these factors acting together can disrupt the fragile balance between pro- and anti-
coagulant processes, heightening liver thrombogenesis, and possibly providing a niche for
circulating tumor cells to adhere to—thus promoting both liver metastasis and cancer-cell
survival following treatment (that is, with minimal residual disease in the liver).
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HEMOSTASIS, CHRONIC TRAUMA,
AND CANCER

Trauma triggers clotting mechanisms that prevent excessive
blood loss from organs and the body in general. The initial
hemodynamic response to trauma is contractions in vessel walls
of smooth muscle resulting in vasoconstriction to limit blood loss
—a response that is highly transient . Fortunately ,
vasoconstriction of damaged blood vessels is concomitant with
the initiation of the coagulation process. Indeed, trauma also
induces exposure of platelets to prothrombogenic extracellular
matrix and tissue factor (i.e. platelet tissue factor, tissue
thromboplastin, factor III, or CD142). The associated
mechanisms of clot formation in primary hemostasis include
platelet activation, adhesion, and aggregation resulting in platelet
micro-plug formation. Secondary homeostasis includes
strengthening of the expanding plug—a process that involves
clotting factors—and formation offibrin (1). Wound healing, like
cancer, involves the invasion of immune cells, fibroblasts, and
other stromal cells to cleanse and repair the lesion (2–4). During
the acute phase of wound healing, the subsequent repair and
resolution involves the additional action of anticoagulant
proteins to break down the fibrin mesh. Once sufficient healing
of the wound has occurred, a clot dissolution process takes place
with the activation of plasminogen. In the case of chronic
inflammation associated with non-alcoholic steatohepatitis
(NASH), other liver diseases (5), or cancer, the resolution
phase stalls or is suppressed by the non-healing abnormal
tissue (2–4). Each organ has unique endogenous cellular
characteristics and tissue matrices that govern interactions of
coagulation and immune responses. The liver contains a unique
microenvironment with a heterogeneous mix of many cell types
(6). This unique cellular complexity provides distinctive
biological influences on tissue wounding and repair (7). While
the intricacies of this unique liver biology and its interface with
platelets is not well understood, platelets do help in the
infiltration of immune cells by initiating the tumor immune
response (8).
PLATELETS AS FIRST RESPONDERS

Platelets can be considered first responders in the context of
wounding, tissue repair, and inflammatory and immune
responses that occur with cancer progression and metastasis.
Platelets are important anucleate elements of the immune and
hemostatic systems. Their genesis occurs when membrane-
bound organelles containing cytoplasmic extrusion are released
as small (2-3 mm) blebs into the blood stream. This blebbing,
Abbreviations: CTCs, Circulating tumor cells; CRC, colorectal cancer; EGF,
epidermal growth factor; HSCs, hepatic stellate cells; LSECs, liver sinusoidal
endothelial cells; MRD, minimal residual disease; NAFLD, non-alcoholic fatty
liver disease; NASH, non-alcoholic steatohepatitis; PDGF, platelet-derived growth
factor; TPO, thrombopoietin; TLRs, toll-like receptors; TCIPA, tumor-cell-
induced platelet aggregation; VEGF, vascular endothelial growth factor; vWF,
vonWillebrand factor.
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subcellular, genesis process occurs from surfaces of
megakaryocytes, the largest cells in the body, and occurs
primarily in the bone marrow. Normal human platelets are
principally considered to be responsible for coagulation and
fibrinolysis, but emerging data suggest a greater impact on
immunology and cancer biology.

Resting platelets are plate-like discs that maximize planar
surface interactions (9–11) that are biophysically concentrated
toward the outer fluid-shear fields of flowing blood—much like
silt movements associated with wave action (12–19). The liver
sinusoids exhibit their own unique uneven wall/fluid-shear
characteristics due to the open irregular sinusoidal vasculature
compared to the typical vessels that are fully enveloped by a
smooth continuous layer of endothelial cells and are subject to
more uniform laminar field shear (20–23). These liver-sinusoidal
vessel properties can change with liver fibrosis, metastasis, and
damage from chemotherapy (24–28). Taken together, these
properties enhance encounters with and recognition of any
vascular wall lesions, wounds, or tumors. Should platelets
encounter basement membrane or underlying matrix, they
undergo receptor-mediated activation (29–34) connected to
very rapid cytoskeleton- and membrane changes to form
filopodia leading to adhesion (35–42). This rapid process
occurs within seconds along with shape change and exocytic
degranulation. In turn, degranulation encompasses the release of
proteins, growth factors, cytokines, and lysozymes accompanied
by a variety of bioactive lipids, small molecules, and other factors.
Successful sequential recruitment of additional platelets and
immune cells coupled with thrombogenesis ultimately seals
any tissue gaps and initiates recruitment of other immune cells.

Platelet-Derived Serum Contents
The primary serum constituents resulting from platelet-initiated
coagulation, growth, and wound repair are derived from
intracellular sources (43–47). Circulating, resting platelets
contain multiple storage granules: 1) alpha-granules
(a-granules) 2) dense granules (d-granules) 3) lysosomes, and
4) microparticles (48–50). There is also a newly described T-
granule that primarily contains toll-like receptors 9 (51).

Platelet a-Granules
Of the various types of platelet granules, the most common are
a-granules, which constitute 10% of the platelet volume and
number 50-80 per platelet (52). Two pathways contribute to a-
granule formation. De novo synthesis occurs when the trans-
Golgi network generates a core structure that attracts clathrin to
form a lattice structure and interacts with coat proteins like
adaptor-protein 1 resulting in clathrin-coated pits. After
invagination, these pits bud forming membrane-bound vesicles
that end up in early endosomes. A strictly endocytic vesicle
pathway also exists involving adaptor-protein 2 that is involved
in forming subsets of endosomes. Alpha-granule subset lineages
mature in multivesicular bodies through the engagement of
vacuolar protein sorting-associated protein (-33B and -16B)
that are involved in sorting certain cargo from the trans-Golgi
network. Neurobeachin-like protein 2 is another molecule that
helps drive a-granule development and secretion. Mature
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a-granules are released via exocytosis following platelet
stimulation via a process involving dynamin-related protein-1
and other cytoskeletal elements (53–55).

a-Granule Adhesion and Coagulation Molecules
Adhesion proteins released from a-granules help to stimulate the
rapid arrest of platelets in circulation mediated by vonWillebrand
factor (vWF), fibrinogen, integrins (aIIbb3 and avb3), P–selectin,
thrombospondin, and fibronectin. These proteins regulate
interactions between platelets and endothelial cells, exposed
basement membrane extracellular matrix, leukocytes, neutrophils
monocytes, tumor cells, and other platelets. The same a-granules
also release prothrombin, fibrinogen, factor V, and factor VIII that
stimulate and promote coagulation and fibrin formation (56–66).

a-Granule Growth and Angiogenesis Factors
Infiltrating- and tissue-resident immune cells, stromal cells, and
fibroblasts are stimulated by a-granule factors. Growth factors
include platelet-derived growth factor (PDGF), basic fibroblast
growth factor (48, 67), epidermal growth factor (EGF) (68),
hepatocyte growth factor (69, 70), insulin-like growth factor 1
(71, 72), and transforming growth factor-beta (TGFb) (73–79)—
all of which can induce cell-type- and function-specific
proliferation and immunomodulation. Pericytes, smooth
muscle fibroblasts (myofibroblasts), and endothelial cells are
stimulated by a-granule-released pro-angiogenic and anti-
angiogenic factors that include vascular endothelial growth
factors (VEGF)-A and -C) (80, 81), angiopoietin-1, angiostatin,
and sphingosine-1-phosphate (48, 59, 67, 80, 82–85).

Platelet-Dense d-Granules
Dense-granules are derived from the platelet endosomal lineage
compartment. Early endosomes are currently thought to mature
in multivesicular bodies. Like melanosomes, biogenesis of
lysosome-related organelles complex (BLOC1 and -2) are
involved with cellular exit of tubular structures that transport
cargo from the endosomes to maturing d-granules (83). The
adapter-protein complex-3 may also elicit biogenesis of
lysosome-related organelle complexes potentially involving
BLOC1 and BLOC2. d-granules that are generated from
BLOC-containing organelle complexes can number 3-8 per
human platelet and primarily contain bioactive small
molecules. These d-granules are released into the bloodstream
during degranulation to enhance platelet activation, adhesion,
and stabilization at sites of vascular damage. A number of ions
(including calcium, magnesium, phosphate, and pyrophosphate)
are released into the developing lesion microenvironment and
influence platelet aggregation, clot progression, and wound
evolution. Platelet d-granules also actively accumulate and
sequester nucleotides ATP, GTP, ADP, GDP and cyclic
nucleotides via multidrug-resistance protein 4 (i.e., ABCC4), a
transport pump for cyclic nucleotides and nucleotide analogs
(86, 87). The exposure of tetraspanins and lysosomal-associated
membrane protein-2 in association with platelet activation also
occurs during release of d-granules (88–91). Platelet d-granules
also release transmitters like serotonin (5-HT), epinephrine, and
histamine (92, 93), which influence vascular function,
Frontiers in Oncology | www.frontiersin.org 3
macrophages, thrombosis, liver regeneration, and cancer
progression (70, 94–97). Both a- and d-granule release amplify
secondary platelet responses, initiate wound repair, and influence
cancer-cell proliferation (55, 98–100).

Granule Release as Essential Components of the
Immune System
Although platelets are principally considered to be responsible for
coagulation and fibrinolysis, data suggest that platelets also serve as
key effectors in immunological responses. Platelet function in
normal wound biology contributes to potential pathogen
clearance, tissue repair, and resolution of inflammation. Once a
clot is formed, pro-inflammatorymediators attract immune cells to
sterilize the resulting wound. These factors include C-X-C motif
chemokines such as CXCL1 (GRO-a), CXCL4 (PF4), CXCL5
(ENA-78), CXCL7 (PBP, b-TG, CTAP-III, NAP-2), CXCL8 (IL-
8), CXCL12, and stromal-cell-derived factor-a (101). Platelet-
derived CXCL12 is involved in mediating inflammation, immune
response resolution, and repair mechanisms within sites of tissue
injury (102). CXCL12 also binds CXCR4 andCXCR7 and regulates
monocyte/macrophage functions (103).CXCL4andCXCL7are the
most abundant a-granule proteins and—following CXCL12
binding along with chemokine C-X-C-motif ligand 11 (CXCL11)
andmacrophagemigration-inhibitory factor—help to dynamically
modulate wound site biology (104, 105). In one study, when
platelets were co-cultured with monocytes, they predominantly
differentiated into CD163+ macrophages (103, 106), which may
involve EP4-receptor stimulation (107). In cardiovascular disease,
CD163+ elevation elicits the differentiation of a distinct, alternative,
non–foam-cell anti-inflammatory macrophage that, in turn,
promotes angiogenesis, leakiness, inflammation, and plaque
progression via the CD163/HIF1a/VEGF-A pathway (108).
CD163 has been used as a biomarker of the anti-inflammatory
M2macrophage phenotype in tumor-associated macrophages and
has been associated with tumor progression in a number of cancers
including colorectal cancer (CRC) (109). Platelet a-granules also
release additional C-C motif chemokines that include: CCL2
(MCP-1), CCL3 (MIP-1a), and CCL5 (RANTES), CCL7 (MCP-
3); andCCL17 (TARC) alongwith IL1-b, PAF acetyl hydrolase, and
LPA (83). Other immuno-active molecules include C1 inhibitor
and immunoglobulin-G; while other hemostasis-related a-granule
proteins include albumin, a1–antitrypsin, high-molecular-weight
kininogen and Gas6 (92, 93).

Degranulationandsurface interactionsofplateletswith immune
cells induce biological responses by leucocytes and progenitor- and
endothelial cells at the site of pathogen permeation or vascular
injury inflow. Platelet interactions with neutrophils, monocytes,
and lymphocytes activate and promote platelet-leukocyte
aggregates that immobilize and eliminate pathogens from
spreading further. Platelets can also phagocytize pathogens
directly. Platelet toll-like receptors (TLRs) also recognize and
respond to pathogens in the gut microbiome (110–112).

Platelets in Wound Resolution
Platelets release significant amounts of factors from a-granules
such as a2-macroglobulin, plasminogen activator, plasminogen,
and plasminogen-activator inhibitor type-1 that help with
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fibrinolysis, clot dissolution, inflammation resolution, and
wound repair (113–117). They also release tissue remodeling
enzymes involved in wound repair that include matrix
metalloproteinases (MMP-1, MMP-2, MMP-3, MMP-9, MT1-
MMP, MMP-14), tissue inhibitor of metalloproteinases (TIMPs;
TIMP-1, TIMP-2 and TIMP-4), as well as a disintegrin and
metalloproteinases (ADAMs; ADAM-10, ADAM-17, ADAMTS-
13) (118, 119). Platelet-activating factor induces the expression
of a number of tissue-remodeling proteases (120–122). PDGF
also stimulates tissue remodeling hepatic stellate cell (HSC)
proliferation and fibrosis in the liver that involves tissue-
remodeling proteases (123). MMPs secreted by activated
platelets play an integral role in tumor spread and the
metastatic cascade by contributing in tissue remodeling and
stimulating tumor-cell transmigration and invasion of
surrounding tissues, blood vessels, and liver sinusoids (124–128).

Platelet Lysosomes
Lysosome function in platelet biology and hemostasis is not well
characterized (50, 55, 90, 91, 98, 129–134). Because they release
phospholipase A, protease, and glycohydrolase enzymes, this
suggests that lysosomes play a role in platelet responses and
dissolution of clots (129, 132–134). Successive waves of platelet
activation, adhesion, aggregation, and stabilization allow these
first responders to activate specific subsets of cytoskeletal
changes to recognize and secure vascular lesions.

Platelet Clearance
The body is thought to produce and clear 1011 platelets per day
(135, 136); clearance occurs primarily in the liver and spleen.
Clearance mechanisms include senescence and apoptosis driven
by Bcl-xL and the proapoptotic molecules Bax and Bak, which set
the internal clock for platelet lifespan in conjunction with BH3-
only proteins, mitochondrial permeabilization, phosphatidylserine
exposure, and lectin-mediated recognition of platelet glycans
(135–137). The vWF or antibodies binding to platelet surface
glycoproteins under fluid shear induce mechanosensory signaling
that leads to ADAM17 and phosphatidylserine exposure along
with desialylation (138). These molecular changes are also
commonly associated with platelet aging-related clearance and
thrombocytopenia found in type 2B vonWillebrand disease (139).
Recognition of platelet glycans by the Ashwell-Morell receptor
leads to clearance of senescent platelets by hepatocytes,
macrophages, and other resident liver- or spleen immune cells.
The complexities and temporal state of the platelet life-span clock
and surface recognition by resident liver-immune cells is likely to
influence the dynamics of liver diseases by selectively eliminating
aging platelets and allowing fully functional platelets to exert their
normal biological function.

Platelet-to-Lymphocyte Ratios
Elevations in circulating platelet-to-lymphocyte ratios are often
associated with inflammation and poor outcomes along with
being linked to infections, inflammatory diseases, liver disease
and cancer (140–146). The predictive value indicative of poor
outcomes linked to elevated platelet-to-lymphocyte ratios has
Frontiers in Oncology | www.frontiersin.org 4
shown clear associations with liver transplantation, particularly
when performed for hepatocellular carcinoma and liver
metastasis (147–152).

Evidence exists in support of the predictive value of platelet-
to-lymphocyte ratios as a general biomarker of inflammation but
prospective case-control studies in each disease will help to
further establish this hypothesis.

LIVER CELL AND ORGAN BIOLOGY

The normal liver exhibits unique heterogeneous and
multifunctional organ properties, particularly at the cellular
level (Figures 1–5A). Normal liver lobes are formed by
parenchymal hepatocytes and non-parenchymal cells.
Hepatocytes occupy nearly 80% of the total liver volume, play
a role in innate immunity, and are responsible for much of the
liver’s homeostatic and hemostatic functions using platelets
widely distributed throughout the liver (Figures 1–4) (155,
156). Non-parenchymal cells represent 6.5% of the other liver-
cell types that are organized around sinusoids.(Figure 4) The
hepatic sinusoid walls are lined by sinusoidal endothelial cells
(SECs), Kupffer cells, and HSCs along with intrahepatic
lymphocytes, pit cells, and liver-specific, natural-killer cells
(Figures 2–4) (157–167). Liver fibroblasts and myofibroblasts
are thought to arise from multiple sources (168). Cholangiocytes
and cells of the bile-canalicular system tend to associate
preferentially with the hepatic arterial system (169).

Liver sinusoids, by contrast, are lined by discontinuous liver
sinusoidal endothelial cells (LSECs) open-pore capillaries with
50-150 nm gaps on average that can also occur less frequently as
200-300 nm gaps as measured by SEM and atomic force
microscopy (166, 167, 170, 171). These low-pressure sinusoids
provide a porous separation from the underlying parenchyma,
and thus play an essential role in maintaining metabolic and
immune homeostasis while they actively contribute to disease
pathophysiology (172). LSECs exhibit endocytic and scavenging
functions and facilitate nutrient exchange, which contributes to
receptor-mediated clearance of waste products via scavenger
receptors (SR-B1, SCARF1) and immunoglobulin-G complexes
(CD32b). Capillarization and dysfunction precede fibrogenesis.
LSECs, along with other microenvironmental components, play
an active role in liver disease (173). LSECs stretch receptors in
particular can sense deformation and wall shear that leads to
CXCL1 release via integrin-dependent activation of transcription
factors regulated by Notch proteins and their interaction with the
mechano-sensitive Piezo calcium channel (174). This results in
the recruitment of neutrophils, and the generation of sinusoidal
microthombi that can promote portal hypertension (174).
Platelet-LSEC interactions may involve P-selectin expression
(175). These platelet-LSEC interactions can also promote
immune tolerance and recruit distinct immunosuppressive
leukocyte subsets that allow persistence of chronic viral
infections and facilitate tumor development (173). LSECs are
also thought to modulate the tumor microenvironment and
promote development of a pre-metastatic niche, which can
drive formation of secondary liver tumors (176).
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Liver sinusoids receive blood from the hepatic artery and portal
vein that empty into central veins. The space of Disse surrounds
the sinusoids and constitutes a stem-cell niche that harbors HSCs
or liver-resident mesenchymal stem cells that patrol and regulate
cellular function within this microenvironment (177–181). HSCs,
antler stem cells, mesenchymal stem cells, and other cells freely
migrate within the space of Disse and contribute to regeneration,
liver fibrosis, carcinogenesis, and metastasis (177–185). The
complexities of this resident stem-cell space may contribute to
the liver becoming an organ of extra-medullary hematopoiesis
(Figure 5A) that is also prone to tumor metastasis.

Among the many mediators involved in the intercellular
communication in the liver, some include prostanoids, nitric
oxide, endothelin-1, TNF-alpha, interleukins, chemokines,
growth factors (TGF-beta, PDGF, IGF-I, hepatocyte growth
factor), reactive oxygen species, and vitamin A.

LSECs perform key filtration functions due to small
diaphragm-windowed fenestrae or sieve plates that allow free
diffusion of many substances between the blood and the
hepatocyte surface. LSECs exhibit endocytic capacity for
glycoproteins, components of the extracellular matrix (such as
hyaluronate, collagen fragments, fibronectin, or chondroitin
sulphate proteoglycan), transferrin, ceruloplasmin, and
immune complexes. LSECs may also serve as MHC-I- and
MHC-II-presenting cells involved in antigen-specific T-cell
tolerance. They are also active in the secretion of eicosanoids,
Frontiers in Oncology | www.frontiersin.org 5
nitric oxide, cytokines, endothelin-1, and some extracellular-
matrix components.

HSCs in the peri-sinusoidal space of Disse are characterized
by the presence of well-branched cytoplasmic processes which
contact endothelial cells. In the normal liver, HSCs (i.e. Ito cells)
are able to store fat droplets and vitamin A. HSCs also control
extracellular matrix turnover and regulate the contractility of
sinusoids. Acute damage to hepatocytes activates transformation
of quiescent stellate cells into myofibroblast-like cells that play a
key role in the development of inflammatory fibrotic response
(177–181). HSCs can also swell or contract due to the presence of
smooth-muscle actin to regulate sinusoidal blood flow (186).
Constriction or relaxation of HSCs from circulating molecules
released by neighboring hepatocytes (carbon monoxide and
leukotrienes), endothelial cells (endothelin, nitric oxide, and
prostaglandins), Kupffer cells (prostaglandins and nitric oxide),
and other stellate cells (endothelin and nitric oxide) (187).

Kupffer cells—intra-sinusoidal endocytic and phagocytic
tissue macrophages that reside in the liver—are continuously
exposed to gut-derived particulate materials and soluble bacterial
products. They can produce reactive-oxygen species, nitric oxide,
carbon monoxide, eicosanoids, TNF-a, and other cytokines as
part of their innate immune-defense function. Kupffer cells can
release these inflammatory mediators and ultimately damage the
liver during liver dysfunction or when overexposed to bacterial
products. Kupffer cells also engulf and clear senescent and
FIGURE 1 | Platelets in Hepatic Sinusoids and Vessels in the Normal Liver. Large numbers of platelets immunoreactive for CD61 in the hepatic sinusoids and
vessels of the normal murine liver (20x).
July 2021 | Volume 11 | Article 643815
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damaged erythrocytes and platelets. In the cancer-research
setting, Kupffer cells engulf tumor cells very early during
metastasis following the injection of tumor cells into the portal
vein (188). Liver macrophages modulate immune responses via
antigen presentation and suppression of T-cell activation by
antigen-presenting sinusoidal endothelial cells via paracrine
actions of IL-10, prostanoids, and TNF-alpha. Kupffer cells can
Frontiers in Oncology | www.frontiersin.org 6
also secrete enzymes and cytokines during liver injury and
inflammation that damage hepatocytes and remodel liver tissues.

Pit cells—liver-associated large granular lymphocytes like
natural-killer cells—kill a variety of tumor cells in a major
histocompatibility complex, unrestricted way, and this anti-tumor
activity may gd T cells, both conventional- and unconventional a-
and b-T cells, or liver-sinusoidal natural-killer cells.
FIGURE 2 | Comparison of the Immune Composition of the Microenvironment in the Colon and Liver. Multiplex immunofluorescent images showing the immune
composition of the human (A) and murine (B) colon (20x). Large numbers of IBA-1+ macrophages (red), CD3+ T cells (gold), and CD20+ B cells (green). Immune cells
reside in the lamina propria of the mucosa and Peyer’s patches. In comparison, the microenvironment of a healthy liver has far fewer CD3+ T cells (gold) and CD20+ B
cells (green), and is instead predominated by specialized macrophages termed Kupffer cells (red) (C). Insets show digitally magnified IBA-1+ macrophages (red), CD3+
T cells (gold) and CD20+ B cells (green) (not to scale). Image panel (D) shows both CD4+(orange) and CD8+(teal) T cells in the liver (insets are not to scale).
July 2021 | Volume 11 | Article 643815
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Single-cell sequencing technology has revealed more granular
levels of cellular heterogeneity (6). These studies identified
previously unknown subtypes of endothelial cells, Kupffer cells,
and hepatocytes, associated with specific zonal population
distributions (see data link: http://human-liver-cell-atlas.ie-
freiburg.mpg.de). A zonal division of labor appears to exist
within the organ (189, 190). Normal liver-lobule, metabolic,
sub-specialization has been divided into the periportal zone
that surrounds the portal triad (portal vein, hepatic artery, and
bile duct), the central zone closest to the central vein, and the
remaining mid zone (189–192). Single-cell sequencing of human
Frontiers in Oncology | www.frontiersin.org 7
liver has also uncovered distinct macrophage populations in
those locations (193).

Tumor Metastasis of the Liver
Ultrastructural studies of experimental metastasis to the liver
were first reported by Dingemans (153, 154) (Figure 5B), who
injected mammary carcinoma cells into syngeneic C57/Bl6 mice.
Almost immediately after mesenteric-vein injection, tumor cells
had formed large emboli in the portal branches. Tumor emboli
adhered to the vascular wall without completely occluding the
lumen. On the side of the embolus facing the vascular lumen,
FIGURE 3 | Resident and Bone Marrow-Derived Macrophages in the Liver. Multiplex immunofluorescent images of a normal murine liver showing the predominance
of resident F4/80+ macrophages (red) with fewer bone marrow-derived CD11b+ macrophages (gold). Images also show S1008A expression (teal) by bone marrow-
derived macrophages, but not resident macrophages. S1008A is involved in modulation of the immune response through cytokine secretion recruitment of
leukocytes. Resident F4/80 macrophages also express arginase-1 consistent with M2, anti-inflammatory phenotype. Arginase-1 is widely expressed by hepatocytes.
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aggregatedplatelet clusterswere foundaspart of thefirst response in
the liver. On the luminal side of the platelet clusters, leukocytes,
especially neutrophils, had adhered. Erythrocytes, by contrast, were
present near the non-platelet-involved tumor cell surfaces,
potentially suggesting that immune cells were preferentially
attracted to the aggregated platelets. An outer zone consisting of
the platelet aggregates was formed by degranulated- and more or
less spherical platelets. The platelet aggregate centers consisted of
closely packed, elongated elements along with small amounts of
Frontiers in Oncology | www.frontiersin.org 8
fibrin within heterogenous emboli, which were gradually displaced
during metastatic growth and disease progression.

Liver Coagulation-Factor Biology
Along with regulating platelet number, the liver also plays an
important role in coagulation. Both coagulation and anti-
coagulant proteins are primarily made in the liver; thus, any liver
disease can potentially dysregulate coagulation (156, 194–196).
Most coagulation factors are synthesized by the parenchymal cells
FIGURE 4 | Stromal Composition of the Liver and PDGRa Expression by Hepatic Portal Vessels. (A) Multiplex immunofluorescent images of a normal murine liver
showing the predominance of collagen type I (red) around portal areas and collagen type IV (gold) lining hepatic sinusoids. (B) Image showing the co-localization of
PDGFRa (green) with a-smooth muscle actin positive portal veins and hepatic arterioles (red) in the portal area of the liver.
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A

B

FIGURE 5 | (A) The normal liver sinusoid exhibits unique heterogeneous multifunctional cells. Hepatocytes (yellow, H) occupy the bulk of the liver volume. Non-parenchymal
liver cells represented are primarily organized around sinusoids. Liver sinusoidal endothelial cells (LSEC) line the walls of the sinus and have open-pore capillaries with 100-
300 nm fenestrations (F). Resting Ito cells contain lipocytes or vitamin A and fat-storing vesicles (yellow droplets) are hepatic stellate cells (HSC). Resident immune cells consist
of Kupfer cells (K), intrahepatic lymphocytes (IHL), pit cells (PC), or liver-specific natural-killer (LSNK) cells. Liver fibroblasts and myofibroblasts are thought to arise from multiple
mesenchymal sources. Cholangiocytes and cells of the bile-canalicular system tend to associate preferentially ductal junctions that converge at the canals of Hering. The space
of Disse surrounds the sinusoids and constitutes a stem-cell niche that harbors HSCs or liver-resident mesenchymal stem cells (MSCs) that patrol and regulate space function.
HSCs or antler stem cells (ASC), MSCs and other cells freely migrate within the space of Disse and contribute to regeneration, liver fibrosis, carcinogenesis, and metastasis.
HSC in the perisinusoidal space of Disse are characterized by the presence of well-branched cytoplasmic processes which contact endothelial cells. Circulating tumor cells
(CTC) can stimulate resting platelets (RP) to become activated (AP) and release their stored granule contents. (B) Multiple studies (first reported by Dingemans) have shown
that platelets respond within minutes of encountering platelets in the liver sinusoids (153, 154). Five minutes after injection, tumor cells had formed large emboli that were
present in portal branches. Tumor emboli (TC) adhered to the vascular-wall liver sinusoidal endothelial cells (LSEC) without fully occluding the lumen. On the vascular-lumen
side of the emboli, aggregated and degranulated platelets were common with leukocyte and neutrophil associations whereas erythrocytes were found near the non-platelet-
involved tumor-cell surfaces. Degranulated platelets an outer zone of the platelet aggregates with a closely packed, activated-platelet inner zone containing fibrin deposits.
Although not shown, in other studies Kupffer cells were engaged and engulfed by tumor cells.
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of the liver (factors I, -II, -V, -VII, -IX, -X; proteins C, -S, and –Z;
fibrinogen; antithrombin; a2-PI; and plasminogen); while factor
VIII is produced by liver LSECs (197). Of these, the synthesis of
factors II, -VII, -IX, -X; and proteins C and -S are dependent on
vitamin K—an important cofactor for regulating coagulation. As the
primary storage site for vitamin K, the liver provides conversion of
synthetic vitamin K to its active form and produces the bile salts that
aid with the absorption of food-based vitamin K (156, 194–196,
198). The liver also plays a role in the clearance of the coagulation
products from the bloodstream and regulates anticoagulation by
removing activated clotting- and fibrinolytic factors via the hepatic
reticuloendothelial system.

Liver Damage or Injury and Coagulation
Liver disease can manifest through several mechanisms. Overuse
of certain drugs or alcohol, metabolic syndrome, diabetes,
chronic viral infection, and exposure to toxins are some of the
many contributors to liver injury and disease. Depending on the
degree of liver damage, individuals with liver disease have
deficiencies in clotting enzymes, which manifest as prolonged
clotting times in in vitro assays. Chronic liver-disease-associated
coagulation disorders result from the inability of the liver to
produce or clear clots (194, 199). Imbalances in the synthesis or
clearance of clotting factors can increase the risk of bleeding;
increasing evidence suggests that these also increase the risk of
prothrombotic events (156). The development of coagulopathies
is associated with chronic liver disease; circulating levels of some
coagulation factors such as vWF and factors II, -V, and -VII have
been shown to correlate with the severity of liver disease. Blood
coagulation-protein levels can also reflect liver-cell functionality
(200–202). In some instances, irregularities in these levels can
contribute to the process of liver damage.

Sterile Injury
Two types of liver injury—sterile and non-sterile—are mediated by
similar but distinctly different platelet engaging immune responses.
In the case of sterile injury, an inflammatory reaction occurs in the
absence of infection during normal sterile-wound healing (7).When
this process becomes dysregulated in various acute- and chronic
inflammatory liver diseases (such as non-alcoholic fatty-liver disease
[NAFLD]/NASH), toxic injury-altered immune-cell trafficking and
abnormal function further promote progressive, chronic
inflammatory disease (7). Platelets initiate the early biological
responses to injury through direct contact and release of granules
(173). In one sterile-injury-and-repair model of the liver, platelets
were the first responders directly observed to form a substratum
that facilitated neutrophil entry to the injured site for subsequent
repair (8). In the sterile-inflammation case of liver ischemia/
reperfusion injury, the release of damage-associated molecules can
also trigger toll-like receptor 4 (TLR4)- and TLR9-MyD88 signaling
pathways to form neutrophil extracellular traps (NETs) that
exacerbate organ damage and initiate inflammatory responses
(203). Following sterile injury to the liver, local cytokines can also
reprogram classic, proinflammatory (CCR2hiCX3CR1low)
monocytes into nonclassical-, patrolling-, or alternative
(CCR2lowCX3CR1hi) monocytes to facilitate proper wound-
healing (204).
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Septic Injury
Similar mechanisms are involved in a septic insult to the liver
(205, 206). Severe sepsis induces dysregulated inflammation and
coagulation leading to multiple organ (particularly liver) failure.
Platelet TLR4 receptors initiate the formation of NETs to ensnare
pathogens (205, 206). These platelet-initiated NETs and the
extravasated platelet aggregation facilitate detachment of
LSECs and trigger sepsis-induced liver dysfunction (205, 206).
In the case of CRCs, invasive microorganisms like the bacterial
species Fusobacterium nucleatum are often present (207). These
and other bacteria can cause platelet aggregation and have been
associated with cancer cells in metastatic lesions (207–209).

Liver Fibrosis
Liver disease is often associated with a marked decrease in the
synthesis of proteins involved in coagulation. Whereas the levels of
some factors like factor VIII, fibrinogen, and vWF remain
unchanged or even increase due to defects in their clearance
mechanism. In most cases, the defects in liver function are
stabilized by between-coagulant- and anti-coagulant-protein
counterbalancing. However, irreparable liver damage caused by
conditions such as viral hepatitis and fatty liver can result in
fibrosis of the liver. Some coagulation proteins—especially the
prothrombotic factors—initiate microthrombi formation which
could accelerate the progression of fibrosis. Studies in animal
models have shown that factor Xa and thrombin contribute to
liver fibrosis by occluding hepatic sinusoids with fibrin deposits
(thus activating signaling pathways that promote a pro-fibrinogenic
phenotype of the liver cells) or by triggering inflammation (156).
Liver fibrosis, when severe, can progress into liver cancer and/or
other life-threatening conditions. Patients with liver cirrhosis have
an increased risk of all-cause mortality due to conditions like
increased bleeding and thrombosis that can lead to severe, acutely
life-threatening events like pulmonary thromboembolism. Budd-
Chiari syndrome, which involves thrombotic occlusion and
metastatic-tumor invasion of the hepatic veins, can also cause
elevated portal pressures and ascites (210–212). Venous
thromboembolism becomes particularly challenging in these
patients (213). In others, conditions like liver cirrhosis may lead
to a spectrum of coagulation defects, and in rare cases could even
progress to disseminated intravascular coagulation—a common
feature of end-stage liver disease—with widespread activation of
coagulation, fibrinolysis, and hepatic failure. End-stage liver disease
is also associated with thrombocytopenia and platelet
dysfunction (214).

Therapy-Induced
Damage to the liver and hepatotoxicity can result from chemotherapy.
This chemotherapy-induced injury is idiosyncratic andcan range from
asymptomatic, reversible, functional defects to advanced-stage liver
disease like cirrhosis. Multiple factors like reactive-oxygen radicals,
mitochondrialdysfunction, and immunedysregulationcouldaffect the
extent anddegreeofhepatotoxicitydependingon the typeof treatment
received. Additionally, pre-existing liver conditions including
nonalcoholic steatohepatitis are often aggravated by chemotherapy
(215–217). Increased levels of activated platelets can also be identified
in association with alcohol-induced liver cirrhosis and nonalcoholic
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steatohepatitis (218–220). Patientswith hepatic sinusoidal-obstruction
syndrome—associated with oxaliplatin-based chemotherapy (221)–
experience portal hypertension, elevated liver enzymes, and
splenomegaly, all of which can result in liver atrophy and fibrosis.
Development of sinusoidal-obstruction syndrome in patients with
CRC-based liver metastasis prior to liver resection surgery can lead to
increasedmorbidity (221, 222). Increased incidence of liver damage is
also emerging in association with checkpoint-blockade
immunotherapy (223).

Cancer is a hypercoagulable state. Cancer-associated thrombosis
increases the risk of morbidity and mortality in cancer patients
(224). The risk of venous thromboembolism is approximately 4-fold
higher in cancer patients than in normal individuals. Cancer-
associated thrombosis also correlates with metastasis. Cancer cells
can activate the coagulation cascade via signaling mechanisms and
secretion of cytokines. Moreover, tumor burden can cause vessel
compression eventually leading to thrombosis (224). Platelets are
primary contributors in coagulation and thrombogenesis pathways.
Platelet counts and activation markers have a significant impact on
the prognosis of cancer and response to therapy (4, 225, 226).
Intriguingly, cancer treatment, including surgery, also has an impact
on platelet activity, which could increase hypercoagulability in these
patients. In one study of cancer patients receiving chemotherapy,
the risk of thrombosis was increased by 6- to 7-fold (227).
Chemotherapy may also contribute to an increased risk of
thrombotic events and venous thromboembolism, both associated
with decreased survival. In another study, oxaliplatin-based
chemotherapy affected platelets in the liver; the number attached
to liver cells positively correlated with sinusoidal-obstruction
syndrome severity (221). Oxaliplatin-based damage to hepatic
sinusoids can possibly attract and activate platelets (228–230).
Once activated, platelets secrete growth factors such as platelet-
activating factor and thromboxane A2, causing liver injury, vascular
and sinusoidal occlusion, and collagen deposition (231, 232). Then
again, high-dose bevacizumab may interfere with platelet activation
(228–230). The increased risk of bleeding in patients receiving
bevacizumab treatment could be attributed to down-regulation of
platelet activation (229). The impact of systemic cancer therapy is
likely to vary along with the patient’s cancer type, performance
status, comorbidities, individual platelet biology, and type of
treatment (233–238).
LIVER DISEASE AND CANCER RISK

Liver disease contributes to an increased risk of CRC through the
gut-liver axis (239). As the liver plays important roles in
metabolism, synthesis and regulation of hormones, microbiome
factor clearance, and blood detoxification, any major alterations in
the liver function can lead to clinical findings including
hypertension, diabetes, and hyperlipidemia. Systemic alterations
stemming from liver dysfunction also can lead to dysregulated
cytokine production and immune-cell function that initiate
malignant transformation of cells and/or promote survival of
cancer cells in the liver. Fatty liver is a known risk factor for CRC
and cirrhosis patients have nearly double the risk of developing the
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CRC (240). CRC is known to be associated with thrombocytosis,
hypercoagulation, and thromboembolic events (241, 242). About
35-55% of CRC patients develop liver metastasis, and surgical
resection of the metastasis can be curative in some of these
patients (243). In most cases, systemic chemotherapy is used
prior to and after resection. This becomes challenging in patients
with pre-existing- or with chemotherapy-induced liver disease as
the goalof liver-resection surgery is topreserve liver functionality by
removing metastasis. Patients with liver cirrhosis have a higher
mortality rate following CRC surgery (244).

As the liver is actively involved in the synthesis and regulation of
hormones, chronic hepatocellular damage can lead to hormonal
imbalance. Estrogen levels are elevated in men with alcoholic liver
disease and in others with a high body-mass index. Liver cirrhosis in
men increases their risk for breast cancer possibly due to
hyperestrogenemia (245–247). Steroid imbalance is also associated
with viral cirrhosis and hepatocellular carcinoma (248). Evidence
suggests that irrespective of cirrhosis type, all patients with cirrhosis
and any related metabolic changes have an increased risk for liver
cancer (249, 250). Studies also show that NAFLD is positively
correlated with pancreatic cancer, and that NAFLD may serve as a
prognostic factor; patients with pancreatic cancer and NAFLD have
poorer overall survival than thosewithoutNAFLD(251). In addition,
coagulation-factor Xa was shown to promote tumor growth and
metastasis in animal models of melanoma (166).

Platelet Activation and Aggregation
Trousseau first reported excessive blood coagulation in cancer
patients with elevated platelet counts or thrombocytosis in 1865
(252–254). Since then, numerous studies have reported on
thrombocytosis in cancer. In ovarian cancer, thrombocytosis is
linked to elevated tumor interleukin-6 and liver-generated
thrombopoietin and is associated with shortened overall survival
of patients (255). In one study, orthotopic ovarian-mouse models
revealed tumor-derived, interleukin-6-stimulated, hepatic-
thrombopoietin (TPO) synthesis and paraneoplastic induction of
thrombocytosis (255). Liver metastasis along with Fusobacterium in
the liver can also trigger the thrombotic Trousseau’s syndrome
(256–258). Observed abnormalities associated with coagulation
factors like fibrinogen and prothrombin in liver disease could
activate platelets (259). In certain conditions, platelets interact
and bind with endothelial cells, hepatocytes, hematopoietic stem
cells, and Kupffer cells in the liver (173). Upon injury to the liver
endothelium, platelets are sequestered within the sinusoid and lead
to endothelial-cell activation. This activation releases cytokines that
facilitate the infiltration of immune cells (175). Recruitment of
neutrophils and macrophages by platelets is of importance in liver
disease as they regulate inflammation, fibrinogenesis, and
fibrinolysis, and contribute to fibrosis (260). Platelet-mediated
neutrophil recruitment and the interaction of platelets with the
vasculature have been suggested as mechanisms driving cholestasis-
induced liver damage (261). In NAFLD, the severity of
inflammation and fibrosis in the liver was shown to directly
correlate to the increased platelet turnover (262). In cirrhosis, the
elevated levels of vWF promote platelet binding to collagen (263).
Damage to the liver can directly affect liver-produced TPO levels.
Circulating TPO levels have been shown to negatively correlate with
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the stage of liver disease, while reduced levels can lead to decreased
platelet production or thrombocytopenia. In addition,
thrombocytopenia in chronic liver disease is also caused by
hypersplenism and increased sequestration of splenic platelets
and increased platelet destruction due to aggregation in the liver
(264). Increased thrombosis in these patients may consume
platelets leading to lower levels in circulation (265). PDGF‐b, a
mediator of hepatic fibrosis, is produced by platelets and released
upon their activation (266). With the established association
between platelet activation and liver fibrosis, anti-platelet drug use
could prove beneficial in combating platelet-mediated liver disease
and progression to cirrhosis. Recently, a systemic review and meta-
analysis report of 3,141 patients concluded that the use of anti-
platelet agents (such as aspirin or clopidogrel) was associated with a
32% decreased odds of hepatic fibrosis (adjusted pooled OR 0.68; CI
0.56–0.82, p ≤ 0.0001) (267). However, a prospective cohort study
of patients at high risk of cardiovascular events revealed an inverse
association between the use of anti-platelet agents and the presence
and degree of liver fibrosis (268). A recent study of patients with
hepatocellular carcinoma demonstrated that anti-platelet therapy
was associated with improvement in overall survival and reduction
in liver-related deaths. This study also reported that the use of anti-
platelet therapy tended to delay the deterioration of liver function in
these patients (269). Recent summaries of outcomes data in cancer
prevention have also highlighted the cancer mitigating role of
aspirin and other agents (270).

Tumor-Educated Platelets and Exosomes
Tumor-derived exosomes—vesicles secreted by tumor cells—are
packed with proteins and nucleic acid content that differs among
different tumor types (271). These cancer exosomes may prime
the liver environment to influence metastasis and can influence
diverse cell types ranging from immune cells, endothelial cells,
and platelets. Tissue factor—involved in the initiation of clot
formation—may be enriched in cancer exosomes which may
trigger increased thrombosis (272). Studies have also shown that
microvesicles can bind and fuse with activated platelets to initiate
coagulation (273).

Platelets also release a varietyof vesicles uponactivation, ranging
from smaller ectosomes to larger exosomes. Platelet microvesicles
make up the bulk of circulating microparticles in the blood stream
(271, 274–278). These vesicles carry mRNA,miRNA, proteins, and
lipids and are known to be critical in the process of angiogenesis,
cancer progression, and metastasis (279, 280). When cells in the
vicinity of platelet activation come into contact with the cargo in
these vesicles, gene-based modulation of protein expression in
target cells may occur (281). These vesicles can fuse with tumor
cells and transfer receptors inducing chemotaxis, expression of
metalloproteases, and cell proliferation. These exchanges may
contribute to the development of drug resistance in tumor cells
(282, 283). Recent findings provide insight into horizontal-RNA
transfer mechanisms between platelets, platelet microparticles, and
tumor cells (271, 284).Tumor-educated platelets appear to undergo
modifications when they come into contact with tumor cells. These
platelets may retain tumor-specific information including the
primary tumor location (285, 286).
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Platelet Activation and Liver Metastasis
The liver is a common site for cancer metastasis from primary
tumors originating in the gastrointestinal tract. Traditionally the
preponderance of liver metastasis was felt to be a function of
drainage from the intestines into the hepatic circulation; however,
the liver may instead represent a favorable microenvironment for
metastasis. The liver’s unique regeneration may likewise
contribute to creating a receptive metastasis-formation
microenvironment involving platelets and the chronic activation
of pathways related to the Myc family of regulator genes (287–
292). More than half of CRC patients develop liver metastases
(associated with poor prognosis) (85, 225) and an increased risk of
thrombosis (241, 293). A positive correlation has been observed
between high platelet counts and CRC tumor invasiveness and
-metastasis, and a negative correlation between high platelet
counts and survival in CRC patients (294–296). Platelet
hyperactivation measured by elevated platelet mean volume or
aggregation (297–301) can be a predictor of cancer progression in
CRC (302–304). Genes implicated in CRC are also involved in
platelet activation and coagulation suggesting a prothrombotic
environment in CRC (305). During cancer progression and
metastasis, platelet responses can be modulated by the tumor
cells. Circulating tumor cells (CTCs) can stimulate heterotypic
tumor-cell-induced platelet aggregation (TCIPA) (29, 85, 306).
Tumor cells may get trapped within a TCIPA, go undetected by
immune surveillance, be protected from shear forces while in
circulation, and have greater capacity to migrate and metastasize
(61, 271). Recently, a microfluidic approach was developed to
isolate CTCs by targeting platelets that satellite on the tumor-cell
surfaces. A significant number of platelet-coated CTCs was
observed in metastatic cancer patients of both epithelial (lung
and breast)- and non-epithelial (melanoma) tumor origins. Also
observed were single cells and clusters, along with CTCs associated
with leukocytes (307). Isolating CTCs using platelet markers
emphasizes the potential of platelet-coated CTCs that go
unnoticed by conventional isolation methods and their possible
significance in metastasis.

Tumor cells also release thrombin which serves to activate
platelets and results in the formation of tumor thrombi, a form of
TCIPA. These thrombi couldprovide a supportive environment for
CTCs by becoming tethered to blood vessels within distant tissues.
Given the heightened coagulatory imbalances in the liver driven by
cancer or pre-existing- and/or chemotherapy-induced chronic liver
disease, these thrombi canbecome lodgedwithin the liver sinusoids,
potentially leading to the initiationofmetastasis.Many studies have
used anti-platelet drugs with chemotherapy to reduce platelet-
mediated tumor-cell survival and metastasis. Platelets were also
shown to promote angiogenesis by releasing angiogenic growth
factors such as VEGF (308). In a study that provided aspirin along
with tamoxifen therapy to patients with breast cancer investigated
the impact of aspirin therapy on circulating levels of the
proangiogenic-protein VEGF, the antiangiogenic-protein TSP‐1,
and platelet-mediated angiogenic-protein release. The aspirin
therapy not only impacted angiogenic protein levels but it may
modify the angiogenic balance in women treated with tamoxifen
therapy. The increase in antiangiogenic TSP‐1 levels without a
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concurrent increase in pro‐angiogenic VEGF levels suggests an
anti-angiogenic balance fromaspirin therapy.This study also found
less release of platelet angiogenic proteins (309).

In addition to the pathways discussed previously,
dysregulated modulation of TGFb activity can also provide a
favorable environment for tumorigenesis (76). Platelets are the
major source of latent TGFb which is released during platelet
activation. This process also releases a furin-like proprotein
convertase from platelets which in turn activates TGFb. This
enzyme-mediated activation was shown to continue in the
damaged area even after platelet-derived TGFb activation was
complete (75). Aberrant expression of TGFb could lead to liver
fibrosis. Elevated levels of vWF can increase platelet binding to
collagen in the cirrhotic condition (263). Thus, conditions like
liver cirrhosis can increase the activation and aggregation of
platelets, with TGFb and other growth-factor release not only
causing platelet binding with collagen, but also providing a
tumorigenic niche within these platelet-collagen traps to
capture CTCs and promote their growth within the liver.

Platelets and Minimal Residual Disease
Minimal residual disease (MRD)—a collection of viable cancer
cells that are undetectable by standard imaging methods—differs
by tumor type and requires disease-specific stratification based
on distinctive organ-related microenvironmental disease
characteristics (310). Recent discoveries in the development
and use of liquid biopsies based on analyses of biomarkers in
body fluids—including blood, urine, and cerebrospinal fluid—
are showing potential for use in stratifying MRD. Liquid biopsy
analyses can include (1) tumor-derived DNA, -RNA, -miRNA;
epigenetic alterations; and proteins present in cell-free plasma or
(2) contained in CTCs or (3) circulating exosomes and
microvesicles or tumor educated platelets (271, 285, 286, 311–
314). To fully understand MRD from a liquid biopsy standpoint,
the inclusion of proteomics and metabolomics may be desirable
to form a complete integrated molecular profile. To help with
this, animal models of MRD involving gut related vascular
modes of injection are materializing, which can help represent
MRD in CRC (315, 316). Exposing platelets to tissue-factor-
expressing tumor cells in the MRD microenvironment, may also
trigger the activation cascade that promotes disease progression.

Based on our experience in developing in-house assays for solid
tumor ctDNA (317), the detection of blood-based circulating-tumor
DNA (ctDNA), a prognostic biomarker highly sensitive for CRC
recurrence following curative-intent therapy, identifies MRD that
will inevitably develop into clinically detectable, local recurrent-
and/or distant metastases (318–321). Currently, ctDNA assays that
detect MRD are also commercially available as a standard-of-care
tool that enables oncologists to monitor for CRC recurrence.
However, when ctDNA is detected, no prospective data directly
linked to proven therapies are available to guide clinical
management of CRC (322). A clinical need exists to better
understand the biology of micrometastases and the role of
platelets, especially in microscopic disease. If platelet-based
biomarkers (e.g., platelet-to-lymphocyte ratios or micrometastasis-
educated platelets) can portray ctDNA-defined MRD before the
onslaught of macroscopic, clinically evident metastatic disease, our
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diagnosis and window for treating microscopic disease will likely
improve before the tumor growth outpaces the immune-system
ability to eliminate the disease. Presently, little is known from
patient samples about the impact of platelets on the biology of
micrometastases, while few therapeutics that consider this potential
platelet involvement have been tested in patients.
CONCLUSION

Platelets are immediate responders to an injury and contribute to
the coagulation process by physically plugging the wound and
releasing factors that contribute in the repair process. In addition
to platelets, the liver also plays a critical role in hemostasis by
synthesizing coagulation pathway proteins and promoting
platelet production. In conditions where the liver has sustained
significant damage, coagulation- and thrombogenesis processes
can become dysregulated. When combined with liver disease,
thrombocytosis and platelet activation is further promoted
creating a microenvironment similar to that of a wound.
Activated platelet-surface interactions and granule release
initiate signal transduction and biologic responses.

Analogous mechanisms come into play in the case of cancer.
Platelet activation, circulating cancer exosomes, thrombosis, TCIPA,
and heterotypic aggregate formation are commonly associated with
cancer. In patients with cancer and liver disease the interactions
between CTCs and activated platelet aggregates can increase, and
platelet-tumor thrombi can get trapped within the hypercoagulative
liver vasculature. The administration of chemotherapy can further
worsen the hemostatic regulation in these patients. The increased
formation of Trousseau’s-Syndrome-related thrombi and the
increased interaction of platelets together with tumor cells create a
suitable environment for tumor-cell entrapment. Given the complex,
multi-faceted role of the platelet in both wound healing and cancer
biology, it remains uncertain if certain cancer patients could benefit
from platelet-inhibition agents not yet identified.

In conclusion, heightened liver injury may increase the
retention of CTCs that triggers rapidly responding platelets
and fibrinogenesis and associated immune cells at metastatic
foci within liver sinusoids. In patients who have a pre-existing
liver disease or who develop chemotherapy-induced liver injury,
these CTCs are likely to find a supportive niche within the liver
sinusoids and adjacent space of Disse that promotes liver
metastasis and MRD.
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