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Underestimation in temporal 
numerosity judgments 
computationally explained 
by population coding model
Takahiro Kawabe*, Yusuke Ujitoko, Takumi Yokosaka & Scinob Kuroki

The ability to judge numerosity is essential to an animal’s survival. Nevertheless, the number of 
signals presented in a sequence is often underestimated. We attempted to elucidate the mechanism 
for the underestimation by means of computational modeling based on population coding. In 
the model, the population of neurons which were selective to the logarithmic number of signals 
responded to sequential signals and the population activity was integrated by a temporal window. 
The total number of signals was decoded by a weighted average of the integrated activity. The model 
predicted well the general trends in the human data while the prediction was not fully sufficient for 
the novel aging effect wherein underestimation was significantly greater for the elderly than for the 
young in specific stimulus conditions. Barring the aging effect, we can conclude that humans judge the 
number of signals in sequence by temporally integrating the neural representations of numerosity.

Animals can behave adaptively by recognizing their own actions and the number of sensory events that occur 
during those actions. For example, pigeons can discriminate the number of objects in spatial  patterns1, and bees 
can judge the number of landmarks to be passed in order to obtain  food2. Various species of organisms have 
brain regions that process  numerosities3, suggesting that there has been evolutionary selection pressure to make 
them sensitive to numerosity. In other words, we can say that numerosity judgment is a basic ability of living 
 things4. Indeed, many species such as  dogs5–7,  elephants8,  frogs9,10,  fish11,12,  parrots13,14, and  chicks15,16 in the 
animal kingdom can judge the numerosity of external stimuli.

Humans can judge the number of spatially and/or temporally discrete signals. The mechanism of numerosity 
judgment can be described as information processing in several stages. First, in the relatively early processing 
stages, the mechanism of numerosity judgment differs depending on the format of the stimuli. In other words, the 
number of signals presented consecutively in time is processed by different neural populations than the number 
of signals presented simultaneously in  space17. In the later processing stages, numerosity is processed abstractly, 
regardless of the stimulus format or signal presentation  modality17–19. Furthermore, in the higher stages, internal 
processing for some mathematical tasks is  performed20,21. Thus, multiple levels of neural information processing 
are involved in the judgment of numerosity.

In this study, we discuss the judgment of the number of signals presented in temporal succession, which may 
be related to the relatively early processing stages described above. The judgment of the number of temporally 
continuous signals is called a temporal numerosity judgment (TNJ). The brain can judge the number of sequential 
signals presented in various sensory modalities, including  tactile22–24,  visual25,  auditory26,27, and  multisensory28,29 
modalities, despite modality-specific differences in temporal  characteristics25,26,28.

One of the hallmarks of TNJ is underestimation of the numerosity. A low level of numerosity can be reported 
relatively accurately, but as it increases, the reported number of signals becomes smaller than the actual 
 number24,28,30. The temporal interval between successively presented signals also affects the underestimation. 
Specifically, as the time interval becomes shorter, the underestimation becomes  stronger28.

To the best of our knowledge, there is no research that discusses how the underestimation in the number 
of sequential signals occurs. We believe that a clarification of the mechanism for underestimation in TNJ will 
promote the understanding of TNJ itself. In this study, we hypothesized that underestimation is caused by the 
temporal integration of the activities of neural populations when temporally continuous signals are input to the 
brain. In general, the underestimation of spatial and temporal extents has been explained in terms of the temporal 
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integration of previous and recent neural  signals31–34. We assumed that a similar kind of temporal integration 
would occur in the numerosity dimension, and this would cause underestimation in TNJ.

In this context, what sort of neural representation can be integrated across time in the numerosity dimen-
sion? We focused on the responses of neural populations involved in numerosity  judgment18,35. It is noteworthy 
that in Nieder’s studies, the neural populations showed systematic responses when the sequence of signals was 
presented to macaque monkeys. Specifically, when a sequential stimulus consisting of three successive signals was 
presented, neurons that are selective for “1” predominantly responded to the first signal, neurons that are selec-
tive for “2” predominantly responded to the second signal, and neurons that are selective for “3” predominantly 
responded to the third  signal36. Therefore, in order to correctly decode that the total number of stimuli is “3”, it 
is necessary for the brain to focus on the activities of the neural populations that responded to the final (that is, 
the third) stimulus signal, while discounting the activities of the neural populations that responded to signals 
prior to the final signal (that is, the first and the second signals). If this discounting process is successful, the 
number of signals will be accurately determined based on the responses to the final signal. When the discounting 
process fails, the processing mediating the determination of the total number of stimuli is likely influenced by the 
population responses to the signals presented prior to the final signal, in addition to the population responses 
to the final signal, and this may lead to underestimation. In other words, to judge the numerosity of signals in 
sequence, the brain needs to integrate the population responses across time. Based on this idea, we hypothesized 
that temporal integration of neural population activities representing numerosity might be the cause of underes-
timation. The hypothesis may be described at the neural level in the following way: Activities of each population 
neuron selective to numerosity may undergo synaptic modulations that correspond to the gaining of population 
activities with a temporal window in our computational model, and the post-synaptic activities are summed by 
higher-order units to determine the numerosity of vibrations.

The purpose of this study was to investigate computationally whether the underestimation in the TNJ of 
successively presented signals could be explained by the temporal integration of numerosity representations, 
using a neural population coding model. We conducted an online experiment using the vibration function of 
a smartphone (Fig. 1a). Although smartphone vibrations emit both tactile and auditory signals, we discuss 
our results focusing mainly on the effect of tactile signals on the TNJ. Since auditory stimuli are transmitted to 
the ear as air vibrations, they can be affected to a significant degree by differences in the listener’s immediate 
environment. In contrast, tactile stimuli in the form of smartphone vibrations are transmitted directly from the 
smartphone to the skin and thus are less affected by differences in the external environment. Thus vibration 
stimuli were selected as the stimuli for our online experiment, where the external environment cannot be well 

Figure 1.  (a) A photo of our experimental scene. (b) A schematic description of stimuli. (c) Upper: Mean 
difference between actual and reported numbers of vibrations as a function of the number of actual vibrations. 
The difference was calculated by subtracting the actual from the reported numbers of vibrations. Thus, positive 
and negative values for the difference denote overestimation and underestimation, respectively. Lower: Heatmap 
of Cohen’s d for each age band. Asterisks (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001) denote the 
significance level (with correction by the Holm’s method) of one-sample t-tests for the mean difference with an 
array of zeros. n.s. non-significance.
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controlled. We obtained large-scale data from various age bands. Using a neural population coding model, we 
attempted to explain the overall tendency of TNJ and its underestimation. We also explored whether the model 
could describe the data of participants in the different age bands, though we do not have a priori expectations 
about the effect of aging on underestimation in TNJ. As shown in Fig. 1b, we controlled the stimuli with the 
4 levels of stimulus onset asynchronies (SOA; 100, 150, 200, and 250 msec) and the 5 levels of the number of 
smartphone vibrations (2, 3, 4, 5, and 6).

Results
Psychophysical experiment. The upper panel of Fig. 1c shows the difference between the reported and 
the actual numbers of vibrations as a function of the actual number of vibrations. Because the difference was 
calculated by subtracting the actual from the reported numbers of vibrations, the positive and negative values of 
the difference indicate overestimation and underestimation in TNJ. In the lower panel, asterisks show the sig-
nificance of one-sample t-tests to check whether the underestimation deviated significantly from zero. The heat 
map shows Cohen’s d calculated with the following formula,

wherein m denotes a sample mean, µ denotes a value against which the sample mean is compared (in this case, 
0), and s denotes the standard deviation of the sample, which is calculated with n-1 degrees of freedom. The 
results showed that when the number of vibrations was 2, no significant underestimation occurred. On the other 
hand, when the number of vibrations was larger than four, a significant underestimation was observed with all 
SOAs. Moreover, the effect of underestimation was larger with the smaller SOAs. The results are consistent with 
the previous  studies24,28,30 showing that the underestimation in TNJ increased with the number of vibrations, 
and in contrast, decreased with SOA.

Figure 2 shows data which are aggregated in terms of each age band. Using the mean reported number of 
vibrations, we conducted a three-way mixed ANOVA with age band as a between-participant factor and SOA 
and the number of vibrations as within-participant factors. The results of the ANOVA are shown in Table 1 and 
the results of multiple comparison tests and the simple main effect of the significant main effects are shown in 
Supplementary data 1.

Both the main effects of SOA and the number of vibrations were significant. Moreover, the interaction 
between them was also significant. Further analyses showed that the effect of SOA was significant when the 
number of vibrations was three or more. The ANOVA results showed that the magnitude of underestimation 
did not vary with SOA when the number of vibrations was 2.

Our results newly demonstrated the effect of aging on the underestimation in TNJ. The multiple comparison 
test of the significant main effect of age band showed that the underestimation in the 60’s was significantly larger 
than that in other age bands. The results indicate that the performance of TNJ changes during the aging pro-
cess. This idea is also supported by the analysis of Cohen’s d. The lower panels of Fig. 2 show the significance of 

(1)d =

m− µ

s
,

Figure 2.  Upper: Mean difference between actual and reported numbers of vibrations as a function of the 
number of actual vibrations. The data of the 20’s, 30’s, 40’s, 50’s and 60’s age bands are plotted from left to right 
in Fig. 2. The error bars denote 95% confidence intervals though error bars are not visible because the intervals 
are so small. Lower: Heatmap of Cohen’s d for each age band. Asterisks (*p < .05, **p < .01, ***p < .001, ***p < 
.0001) denote the significance level (with correction by the Holm’s method) of one-sample t-tests for the mean 
difference with an array of zeros. n.s. denotes non-significance. Each graph shows the difference as a function of 
the number of vibrations for each SOA condition.
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one-sample t-test and Cohen’s d. Comparing the data among the age bands, Cohen’s d in the 60’s was larger than 
the one in other age bands, particularly in the condition with the shorter SOAs and the greater number of vibra-
tions. The results indicate that in the 60’s, the underestimation became stronger than in the younger age bands.

Computational modeling. The purpose of this study was to test computationally whether the temporal 
integration of neural numerosity representations could explain the underestimation in TNJ. As described in 
Fig. 3a, our model consists of the following five processing steps. 

1. In general, a single neuron selectively responds to a stimulus feature value such as image orientation and 
 velocity37,38. As the feature value moves away from the one optimal to the neuron, the neuron’s activities 
(i.e., mean firing rates) decrease. The transition of mean firing rates as a function of feature values shows the 
neuron’s tuning curve. A specific feature value in stimuli may thus be read out from the neuron’s activity, 

Table 1.  ANOVA table of mean reported numbers in the experiment.

Factor SS df MS F-ratio p-value η
2

G

A (age band) 85.900 4.00 21.475 7.979 <0.0001 0.066

s × A 578.633 215.00 2.691

B (SOA) 202.511 1.41 143.805 193.805 <0.0001 0.142

A × B 13.123 5.63 2.330 3.128 0.007 0.010

s × A × B 225.489 302.77 0.745

C (number of vibrations) 263.322 1.61 163.256 276.546 <0.0001 0.178

A × C 27.092 6.45 4.199 7.113 <0.0001 0.022

s × A × C 204.719 346.78 0.590

B × C 67.645 7.24 9.338 70.114 <0.0001 0.0053

A × B × C 6.490 28.98 0.224 1.682 0.013 0.005

s × A × B × C 207.429 1557.41 0.133

Figure 3.  (a) A pipeline of processing steps in our model. (b) Tuning curves of the population of neurons 
that are selective to number. Here the standard deviation (SD) of the tuning curves is set at 0.6. (c) Spike 
count that was determined on the basis of Poisson randomness. The Poisson distribution that was used for the 
determination of the spike count of each neuron had a mean value that was drawn from each tuning curve. 
(d) A schematic explanation of temporal window and gain (w1, w2, w3, and w4). Here the SD of the temporal 
window is set at 300 ms. (e) Spike count with gain. (f) Summed version of spike count with gain as a function of 
preferred numerosity for each neuron.
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provided that the properties of the tuning curve such as mean and variability are known. Nevertheless, it is 
not practical to try to understand the nature of the tuning curves of all neurons in the brain. As each neu-
ron is often part of a population that selectively responds to similar feature values in the stimulus, previous 
studies have suggested that it is possible to decode feature values in stimuli more robustly by considering 
the response of the population of neurons rather than the responses of a single  neuron39. This superiority 
of population coding has also been reported for the numerosity  judgment40,41. Based on these findings, our 
model also assumes that the brain decodes the number of stimuli by reckoning the population pattern of 
activity. The tuning curve of the neuron selective to numerosity is defined by a Gaussian function, and is well 
plotted on a logarithmic  scale42,43. Thus, in the computation we also assumed populations of neurons each 
having selectivity to numerosity according to a logarithmic scale (Fig. 3b). Based on the previous  study36, we 
assumed that neurons which are tuned to the numerosity n will respond to the nth vibrations in a sequence. 
In our model, for the nth vibration, the response of all neurons in the population to the numerosity n is 
obtained as the mean firing rate. As shown in Fig. 3b, the population consists of 10 neurons each of which 
has a tuning curve centered on one of the logarithmic values of 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10. Although we 
arbitrarily tested populations with several different numbers of neurons (ranging from 7 to 13), there were no 
obvious (and apparently meaningful) differences among them. In the preliminary simulation, we observed 
that the model with ten neurons produced the highest performance (See Supplementary Fig. 2). Hence, in 
this article we report the case of the population with ten neurons.

2. Obtaining spike count based on Poisson distribution for each vibration. Then, based on basic population 
coding  scheme39,44, the model obtains spike counts on the basis of a Poisson distribution whose mean cor-
responds to the mean firing rate (Fig. 3c). We call the pattern of spike counts across the ten neurons as a 
“population response”. When a sequence contains n signals, the population responses to the 1st to the nth 
vibration are calculated. In the simulation, the n ranged from 2 to 6.

3. Summing the spike counts gained with temporal window. In TNJ, the decision about the number of signals 
cannot be made until after the final signal is presented and the brain judges that no further signal will come. 
Hence, there is an uncertainty about the timing of sequence termination. Due to the uncertainty, the popu-
lation activity for numerosity needs to be integrated across time. Temporal uncertainty can be modeled by 
using a Gaussian function along a temporal  dimension45. We assumed that representation of the number of 
signals was integrated within a temporal window of  integration46–49. Assuming a temporal Gaussian func-
tion which is centered at the timing of the final signal (Fig. 3d), the model weights the spike count by the 
Gaussian function (Fig. 3e), and sums the gained spike counts for the preferred numerosity of each neuron 
in the population (Fig. 3f). Each vibration in a sequence input to the model was mapped along the time 
dimension according to SOAs. Specifically, the last vibration in the sequence was made to start at 0 ms, and 
hence, earlier vibrations were mapped to earlier timings according to SOAs. The above temporal window 
had a peak at 0 ms, which was the onset timing of the last vibration. In our calculation, we repeated a set 
from the processing step 2 to step 3 100 times and its averaged values were sent to the next stage.

4. Calculating weighted average of numerosity. Based on the summation of the gained spike count, the model 
decodes the numerosity of signals N in a sequence on the basis of the following formula, 

 wherein i denotes the preferred numerosity for each neuron in the population ( i = 1, ..., 10) and Si denote 
the summed spike counts with gain for neuron selective to numerosity i.

5. Updating free parameters via Bayesian optimization. The model has two free parameters. One parameter is 
the standard deviation of the tuning curve of neurons in the population (Fig. 3b). The second is the standard 
deviation of the temporal window (Fig. 3d). Based on the absolute difference between the weighted average 
of numerosity and actual number of vibrations, the free parameters are updated by Bayesian  optimization50 
which is implemented in scikit-optimize/scikit-optimize v0.5.251. We adopted Bayesian optimization rather 
than other methods such as grid search or random  search52,53 because Bayesian optimization can find optimal 
parameters more rapidly and efficiently than other methods. In the simulation, the outcome of the optimiza-
tion after 50 repetitions was taken as giving the final values of the free parameters.

As a novel assumption, the population coding model in the present study assumes the temporal integration 
of the population responses across time. In general, population coding uses a single set of population responses 
which do not take temporal dimensions into  account39. To model computationally the representation of working 
memory, a previous  study54 assumed the temporal drifting of the activity of populations over time. We did not 
employ the drifting as a possible computation scheme of underestimation because the drifting that is modeled 
by using Brownian motion along a stimulus dimension does not seem to be appropriate to describe the under-
estimation, which is a unidirectionally biased phenomenon.

By using the model, we conducted the optimization 20 times and obtained 20 sets of the free parameters 
which were optimized by the simulation. Based on each set of the free parameters, our model output the simu-
lated number of vibrations when the actual number of vibrations (2, 3, 4, 5, and 6) and SOAs (100, 150, 200, and 
250 msec) were varied. Figure  4a shows the mean difference between simulated and actual numbers of vibra-
tions. The model data indicated by lines apparently fits to the human data indicated by markers. We calculated 
r-squared between the mean human data and the mean simulation data and found that the r-squared value was 
high ( r2=0.927) and prediction error (mean squared error: MSE) was low (MSE = 0.007), indicating that our 
model successfully accounted for the human data. Figure 4c,d show the SDs of temporal window and tuning 
curves, respectively. Both of the values apparently fell in the range that is reasonable in terms of human temporal 

(2)N = 2

∑
(

Si∑
Si
log2i)

,
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processing and number processing. To ascertain whether the model could explain data that were not employed 
for the model training, we conducted a fivefold cross-validation of the model, which was iterated 20 times with 
different data splits, and confirmed that the prediction of data unseen by the model was also reasonably good 
(Supplementary Fig. 1).

Although the model prediction was generally good, it seemed that the fitting of the model did not look so 
great when the SOA was short (in particular, 100 ms). As described above, the participants in the 60’s age band 
showed a larger underestimation than the participants in the other age groups. Thus, there was a possibility that 
our model could not capture the characteristic of underestimation in TNJ by the 60’s age group.

To check this possibility, by using the identical model, we simulated underestimation in TNJ for each age 
band. Figure 5a shows the results of simulation for each age band. As expected, the success of the model predic-
tions depended on the age band of the participants. As long as we checked r-squared and MSE, the model predic-
tion was good in general, while the prediction was not so compelling for the data of the 60’s age band when the 
SOAs were 100 and 150 ms, while the data in the longer SOA conditions such as 200 and 250 ms could be well 
predicted by our model. The results indicate that our model could predict the data of various levels of age band 
except for the data in the short SOA conditions of some age bands, in particular the 60’s age band. Fig. 5b shows 
the fitted SD of temporal window for each age band. The results showed that the SD of the temporal window 
increased with the age band though the fitted parameter for 60’s is not reliable due to the unsuccessful prediction 
of human data. Figure 5c shows the fitted SD of the tuning curve for each age band. The results showed that the 
SD of the tuning curve increased with the age band. Although the SD of the tuning curve dropped for the 60’s 
age band, we again consider the fitted parameter for the 60’s is not reliable due to the unsuccessful prediction 
of human data.

Discussion
The results of the present study are consistent with our idea that temporal integration of numerosity represen-
tation underlies underestimation in TNJ. Specifically, the weighted average of population responses that were 
obtained across time generally accounted for human data. The results indicate that the brain integrates the neural 
evidence about the number of vibrations across time and makes a decision on numerosity of signals in a sequence. 
Because our model assumes some novel aspects of information processing such as the temporal integration of 
population responses and calculation of their weighted average, further evidence in neuroscience is required to 
test whether the algorithm in our model is indeed implemented in biological neural processing.

The present study first reported the aging effect in TNJ. Specifically, the underestimation was greater in the 
60’s than other younger age-groups. A closer look at the data for each age band showed that our model could not 
explain the underestimation for all age bands. In particular, large underestimations reported by the participants of 
the 60’s age band in the case of short SOA and large vibration number conditions were not covered by our model. 
We speculate that to explain the aging effect, the model needs to be improved by implementing one or more 
additional factors that can simultaneously take the effects of the SOA and the numbers of vibrations into account.

In our model, the averaged spike counts gained in a time window are sent to the next stage. The contribution 
of this study is to show that, from an algorithmic point of view, the averaged spike counts can be a valid input to 
the next stage. On the other hand, it should be noted that this calculation is not based on neuronal evidence that 
the higher-order units assumed to be located in the next stage receive the averaged spike counts. The calculation 
of averaged spike counts could be replaced by other types of statistics for spike counts. For example, in our model, 
the averaged spike count could computationally be replaced with summed spike counts since the calculation in 
the next stage is a weighted average of the numbers, which is not affected by whether the input is an averaged 
or summed spike count. What information is actually sent to the higher-order units would need to be carefully 
considered in light of the neurophysiological findings.

Figure 4.  Simulation results. (a) Difference between simulated and actual numbers of vibrations is shown by 
using lines as a function of the number of vibrations in stimuli. Error bars indicate 95% confidence intervals 
(N = 20). Human data are replotted by using markers. (b) A correlation plot between human data (horizontal 
axis) and simulation data (vertical axis). (c) Mean SD of temporal window. Error bar denotes 95% confidence 
intervals (N = 20). (d) Mean SD of tuning curves. Error bar denotes 95% confidence intervals (N = 20).
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A potential factor for the aging effect is temporal sensitivity. It is known that the sensitivity to  tactile55–61 
and auditory temporal  structure57,62 declines with aging. One of the previous studies focused on the temporal 
discrimination threshold for a sequence of two vibrations and found that the threshold increased with  aging60. 
Moreover, another  study56 has reported that temporal masking of a target vibration by another preceding vibra-
tion stimulus was stronger in the elderly than the young. A previous  study28 also interpreted the underestimation 
in multisensory TNJ by in terms of sensory persistence. In our experiment, no significant underestimation was 
observed when the number of vibrations was 2 even for the 60’s age group, which is not always consistent with 
temporal masking which reportedly occurs more strongly in the elderly than in the young. On the other hand, 
signals in the middle of a long sequence likely undergo forward and/or backward masking. Further studies are 
warranted to substantiate this speculation of the aging effect in TNJ.

As for the question of why underestimation occurs, we have a tentative answer that underestimation does not 
always have a positive biological meaning. As shown in the previous  study28, it is possible for participants to judge 
the number of signals in sequence accurately when SOA is long, but not when it is short. Given this, it seems 
that the brain may not be optimized for such a task like judging the numerosity of signals in rapid succession. 
Eventually, more general information processing parts of the brain, such as the temporal integration of signals 
as the model in the present study assumes, will affect the judgment of numerosity, resulting in underestimation.

Methods of behavioral experiments
Participants. Two hundred and fifty-six people (113 females) participated in this experiment. Their mean 
age was 45.14 (SD 13.60). Almost the same number of people in each age band participated in the experiment 
(51, 50, 52, 51 and 52 people for 20’s, 30’s, 40’s, 50’s and 60’s age bands). A Japanese crowdsourcing research 
company recruited the participants online and paid for their participation. The participants were unaware of the 
specific purpose of the experiment. Ethical approval for this study was obtained from the Ethics Committee at 
Nippon Telegraph and Telephone Corporation (Approval number: R02-009 by NTT Communication Science 
Laboratories Ethics Committee). The experiments were conducted according to principles that have their origin 
in the Declaration of Helsinki. Written informed consent was obtained from all observers in this study.

Apparatus. We conducted the experiment online. For this reason, the experiment was carried out by using 
a smartphone owned by each participant.

Figure 5.  Simulation results for each age band. (a) Difference between simulated and actual numbers of 
vibrations is shown by using lines as a function of the number of vibrations in stimuli. Error bars indicate 95% 
confidence intervals (N = 20). Human data are replotted by using markers. From left to right, panels for 20’s, 
30’s, 40’s, 50’s and 60’s age band data are shown. (b) Mean SD of temporal window as a function of age band. 
Error bars denote 95% confidence intervals (N = 20). (d) Mean SD of tuning curves as a function of age bands. 
Error bars denote 95% confidence intervals (N = 20).
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Stimuli. Stimuli were defined by using a Javascript API (navigator.vibrate) which works on the Chrome 
browser in Android smartphones. For example, by describing “navigator.vibrate([50, 100, 50, 100, 50])” in the 
script, we presented a vibration train with the vibration duration of 50 ms, SOA of 150 ms, and the number of 
vibrations of 3. In our experiment, the duration of each vibration was fixed at 50 ms. Moreover, we used four lev-
els of SOA (100, 150, 200, and 250 ms) and six levels of the number of vibrations (0, 2, 3, 4, 5, and 6). The number 
of vibrations in the stimuli was determined in accordance with the previous  study23 showing a robust interaction 
between the number of vibration stimuli and inter-vibration temporal intervals on the tactile TNJ. We employed 
the condition with 0 vibrations because we wanted to use this condition as catch trials to exclude from the 
analysis any participants who did not seriously perform the task. To ascertain whether our manipulation of the 
duration and SOA of vibrations properly worked, we measured the physical vibration of smartphones during 
stimulation by using an accelerometer implemented in the smartphones. Figure 6a shows the acceleration pat-
tern of Google Pixel 5 on the desk when subject to a train of ten vibrations at four levels of SOA. We calculated 
mean SOAs and plot them in Fig. 6b. Mean SOAs deviated by approximately 10 ms from the expected SOA. 
Because the deviation was constant across four levels of SOA and the magnitude of deviation was not large, we 
judged that it was possible to use smartphones to conduct the experiment. Besides Google Pixel 5, we observed 
similar acceleration patterns for SONY Xperia, Sharp Aquos sense 4, and Samsung Galaxy note 10. Thus, our 
manipulation of the vibration by using the API was reproduced in various types of smartphone.

Procedure. During the experiment, participants were instructed to hold a smartphone in their hand. The 
participants could register smartphone vibrations as tactile and auditory sensations, and it is possible that they 
could have used both tactile and auditory signals to perform the task. Each trial was initiated by tapping a black 
rectangle presented on the screen. The black rectangle was presented among three white rectangles. The posi-
tions of these rectangles were shuffled from trial to trial to increase the attentional engagement of the partici-
pants toward the task. In a period of 500 ms, a train of vibrations was presented. Five-hundred ms after the start 
of the train of vibrations, buttons each containing one of ten digits were presented on the screen (see Fig. 1a). 
The task of the participants was to report the number of vibrations they felt by tapping the button having a digit 
that corresponded to their judgment. After 1000 ms, the next trial began. Each participant performed 96 trials 
consisting of 4 (SOAs: 100, 150, 200, and 250 ms) × 6 (numbers of vibrations: 0, 2, 3, 4, 5, and 6) × 4 repetitions. 
The order of the trials was pseudo-randomized for a participant and also varied across the participants. The trials 
were performed in a single session. Although we did not measure how long each participant took to complete 
the session, from the preliminary testing it was expected that each participant would take 5–10 min to complete 
the task.

Analysis. Based on the performance in the catch trials, from our analysis, we excluded participants who did 
not participate in the trials seriously. Specifically, we wanted to exclude those participants who paid insufficient 
attention to the task in the catch trials, in which no vibration was presented, and the participants were expected 
to report 0 as the number of vibrations. We excluded the data obtained from participants whose mean percent-

Figure 6.  (a) Acceleration patterns of Google Pixel 5 when subject to a train of ten vibrations at four levels of 
SOA. (b) Mean SOAs as a function of expected SOA. Values above each bar indicate mean SOAs for each SOA 
condition. Error bars denote standard errors of mean.
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age of correct reports was less than 93.75% (15 correct reports out of 16 cases) in the catch trials. Moreover, we 
also wanted to exclude data obtained from participants who paid insufficient attention to the task in the trials 
with vibrations. Therefore, we excluded the data of participants who reported “0” in more than 5% of trials 
with vibrations. We adopted the exclusion criteria with approximately 5% error rates, keeping in mind both the 
appropriate removal of those who were not performing the task seriously and securing sufficient data so as not 
to reduce the power of the test. As a result, the number of participants excluded from further analysis in each 
age band was 6, 9, 6, 7, and 8 for those in their 20s, 30s, 40s, 50s and 60s, respectively, and hence, the number of 
participants that underwent analysis was 45, 41, 46, 44, and 44 in each of the respective age band. For each of the 
participants, the mean reported number of vibrations was calculated by averaging four reports in each condition. 
We also subtracted the actual number of vibrations from the reported number of vibrations. The positive and 
negative values of the subtraction indicated the overestimation and underestimation of the number of vibrations. 
The calculated values were subject to a three-way mixed ANOVA with age bands as a between-participant fac-
tor and SOA and the number of vibrations as within-participant factors. Degrees of freedom were adjusted by 
Greenhouse-Geisser’s Epsilon. The results are shown in Table  1.

Data availability
Supplementary material contains the raw data of this study (Exp1_raw_data (for submission).csv). Further 
information is also available upon request to the first author (TK) of this study.
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