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Machine learning modeling 
for solubility prediction 
of recombinant antibody fragment 
in four different E. coli strains
Atieh Hashemi *, Majid Basafa & Aidin Behravan

The solubility of proteins is usually a necessity for their functioning. Recently an emergence of 
machine learning approaches as trained alternatives to statistical models has been evidenced for 
empirical modeling and optimization. Here, soluble production of anti-EpCAM extracellular domain 
(EpEx) single chain variable fragment (scFv) antibody was modeled and optimized as a function of four 
literature based numerical factors (post-induction temperature, post-induction time, cell density of 
induction time, and inducer concentration) and one categorical variable using artificial neural network 
(ANN) and response surface methodology (RSM). Models were established by the CCD experimental 
data derived from 232 separate experiments. The concentration of soluble scFv reached 112.4 mg/L 
at the optimum condition and strain (induction at cell density 0.6 with 0.4 mM IPTG for 24 h at 23 °C 
in Origami). The predicted value obtained by ANN for the response (106.1 mg/L) was closer to the 
experimental result than that obtained by RSM (97.9 mg/L), which again confirmed a higher accuracy 
of ANN model. To the author’s knowledge this is the first report on comparison of ANN and RSM in 
statistical optimization of fermentation conditions of E.coli for the soluble production of recombinant 
scFv.

Due to its numerous advantages such as the availability of different genome engineering tools and strategies, 
established high cell density culture techniques, high growth rate and low protease, E. coli has been widely utilized 
as one of the most favoured microbial hosts for the production of recombinant proteins. Process development 
and cell engineering are two strategies widely employed to enhance heterologous protein production in this 
 host1. The development of production conditions is one of the most influential steps in process development. To 
obtain best possible production conditions, optimizing variables based on “one-factor-at-a-time” approach in 
addition to being a labour-intensive process, it is not able to identify interactions between the various param-
eters involved. Statistical-based and artificial intelligence-based approaches can overcome limitations of the 
conventional single parametric optimization  methods2. Response Surface Methodology (RSM) is an efficient 
optimization method extensively utilized to establish the quantitative relationship between the independent 
process parameters and responses. Moreover, in RSM, the effects of the variables alone or in combination can be 
analyzed via regression analysis. Optimum levels of process parameters for preferable responses are also robustly 
predicted in this  method3. RSM combined to central composite design has been widely employed in optimiza-
tion of culture  conditions4. However, RSM is unable to accurately model a highly non-linear complex system. 
So, a limited range of input process parameters can be exactly modeled by RSM. Machine learning techniques 
such as artificial neural network (ANN), which is popular for non-linear multivariate modeling can successfully 
overcome this limitation of RSM and can be a promising tool for modeling of the biological  systems5. However, 
according to their structure, ANN requires processors with parallel processing power. Moreover, there are no 
specific rules for determining the structure of artificial neural networks. Proper network structure is achieved 
through trial and  error6. The most popular ANN network is organized in three layers comprised of input layer, 
output layer and hidden layer. Different number of hidden layers can be found within a feedforward  network7. 
The particular weights of the produced output data by the model are utilized to predict the new set of input data. 
By presenting sets of input/output data pairs to the neural network, ANN models can be trained. After being 
trained on the model, the network can correctly predict the outputs corresponding to responses it never has 
seen  before8. This approach was successfully utilized as a data analysis tool in fermentation optimization like 
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production of L-asparaginase from Aspergillus niger9. Several reports have shown that ANN models can work 
better than RSM when the same DOE has been used. For example Bas and Boyaci results showed the superiority 
of ANN over RSM in enzyme  kinetics10.

The optimal conditions for fermentative production of soluble anti- EpCAM extracellular domain (EpEx) 
single chain variable fragments (scFv) were evaluated in the current study. The scFv represents a class of antibody 
fragments which is comprised of a heavy chain variable domain (VH) and a light chain variable domain (VL) of 
an antibody joined by a flexible peptide linker. Its molecular weight is considerably smaller than the full-length 
antibodies. Owing to small size and low immunogenicity, scFv has brought much attention in biomedicine for 
theranostic  purposes11. 4D5MOC-B scFv is a stable anti EpCAM extracellular domain-scFv (anti EpEX-scFv) 
with a very high affinity to its target. It was generated from the binding residues of parental hybridoma MOC31 
which was grafted onto the scFv 4D5 framework. EpCAM was one of the first target antigens considered for 
tumor immunotherapy because of its overexpression in epithelial-derived  neoplasms12.

For the first time, this study adopted ANN and RSM to model the effects of post-induction temperature, post-
induction time, cell density of induction time, and inducer concentration as numerical factors along with different 
strains as a categorical factor on soluble production of scFv. Here, the ANN was developed with a large number of 
experimental data points (232), which reduces problems with overfitting and allows more complex models to be 
used. Moreover, the optimum culture condition and strain recommended by model were experimentally verified.

Materials and methods
Bacterial strains and plasmid. Four E. coli strains including SHuffle T7 (gifted by Dr. Nematollahi, Pas-
teur institute of IRAN, Tehran, Iran), BW25113 (rrnB3 ΔlacZ4787 hsdR514 Δ(araBAD)567 Δ(rhaBAD)568 
rph-1 γ (DE3), gifted from Prof. Dr. Silke Leimkühler, University of Potsdam, Potsdam, Germany), Origami 
(DE3) (Pasteur institute of IRAN, Tehran, Iran), and BL21 (DE3) (gifted by Dr. Keramati, Pasteur institute of 
IRAN, Tehran, Iran) were used here as the host for antiEpEX-scFv expression. Heat shock method was used to 
transform the pETDuet-1 plasmid (gifted from Dr. Bandehpour, Shahid Beheshti University of Medical Sci-
ences, Tehran, Iran) containing the antiEpEX-scFv gene into the chemically competent cells of each  strain12.

Analytical methods. Protein expression. For initial determination of the anti EpEX-scFv expression. Sev-
eral transformed clones were checked from each strain for their ability to protein expression in similar condition 
(37 °C, OD 0.8, IPTG 0.8 mM, and 24 h) in 50 mL TY2x medium and results were confirmed by western blotting. 
In order to perform the optimization experiments, E. coli cells were firstly pre-cultured in liquid TY2x medium 
supplemented with 100 µg/mL ampicillin overnight at 37 °C. Then, 50 mL of medium was inoculated with 10% 
(v⁄v) of the pre-culture. This culture was used for all experiments designed by RSM-CCD methodology.

Sample preparation. After centrifugation of culture medium (10,000 g for 10 min at 4 °C), the cell pellets were 
resuspended in 20 mL of lysis buffer containing 1 mg/mL lysozyme, 20 mM Tris pH 7.5, 50 mM NaCl and 50% 
glycerol followed by incubation on ice for 40 min. the cells were then sonicated for 20 min (20 s on/3 s off) at 
400 W and centrifuged at 4 °C (15,000 × g for 30 min). The obtained supernatants and pellets were collected as 
soluble and insoluble fractions respectively.

SDS‑PAGE and expression analysis. The expression level of the recombinant protein was analyzed utilizing 
sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS- PAGE). The samples were resuspended in 
4 × SDS sample buffer. After heating at 100 °C for 5 min, 10 μL of each sample was loaded onto 15% SDS-PAGE 
gel and electrophoresis was carried out. The protein bands were detected via staining the gel with coomassie 
brilliant blue G-250 staining solution. The signal intensities of the protein bands in all 120 PAGEs were densito-
metrically determined utilizing ImageJ software (NIH, MD).

Western blotting. After separation, protein bands were transferred from a SDS- PAGE gel onto the polyvi-
nylidene difluoride (PVDF) membrane using electroblotting (wet Transblot, Bio-Rad, USA). After blocking in 
5% non-fat milk in tris-buffered saline-tween (TBST) for 1 h, the transferred membrane was washed with TBST 
for three times and incubated overnight with anti-6 × His tag antibody (Sigma, UK). Then, the membrane was 
washed by TBST three times and incubated in anti-mouse horseradish peroxidase (HRP)-labelled secondary 
antibody for 2 h (Sigma, UK). The 3,3-diaminobenzidine (DAB) (Sigma, UK) was used for band detection.

Optimization methods and predictive modeling. Response surface methodology. After the initial ex-
pression of antiEpEX-scFv, we employed the RSM-CCD methodology for optimization of soluble expression of 
antiEpEX-scFv, using software package Design-Expert version 11 (Stat-Ease Inc., Minneapolis, USA). Based on 
our previously published data, the effects of independent variables including post-induction temperature, post-
induction time, optical cell density in 600 nm before the induction and concentration of inducer as numerical 
factors and effect of different strains as a categorical factor on the production of soluble antiEpEX-scFv fragment 
were examined in the current study. Each numerical variable was set to 5 levels with 2 replications: plus and 
minus 1 (factorial points), plus and minus alpha (axial points), and the central point (12 central points and 48 
non-central points in total) (Table 1). Then the categorical factor with 4 levels was added, a total of 232 separate 
experiments were carried out in 250 mL Erlenmeyer flasks containing 50 mL of TY2x medium (Supplementary 
Table 1). The estimated response obtained from RSM model was further compared with actual response in terms 
of coefficient of determination  (R2) and Root mean square error (RMSE) using the Eqs. (1) and (2).
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where n represents the number of experiments, yi, the predicted value, ydi the experimental value and ya is the 
average of experimental value.

Artificial neural network. Alongside RSM methodology, we used ANN for optimization. In this study, Neural 
Designer software version 4.2.0 by Artelnics company feed-forward backpropagation in Multi-layer perceptron 
(MLP) was employed with 4 numerical and 1 categorical factor (with 4 levels). A multi-layer neural architecture 
contains input, output and hidden layers. The input layer consisting of eight neurons represents the variables 
including post-induction temperature, post-induction time, optical cell density in 600 posnm before the induc-
tion and concentration of inducer and four different strains (BW25113(DE3), Origami(DE3), SHuffle T7 and 
BL21(DE3)). The raw results of densitometry analysis were used for input (Supplementary Table 1). The output 
layer with one neuron represents soluble expression of antiEpEX-scFv (Fig. 1). The neurons number in the hid-
den layer was chosen depend on  R2. Finally, considering  R2 and RMSE, the estimated response obtained from 
ANN model was compared with actual response using the Eqs. (1) and (2).

Comparison of predictive capabilities and validation of the RSM and ANN-based models. The 
prediction capabilities of RSM and ANN models were compared using error parameters. A dataset having 145 
data points was randomly selected from the total dataset. The actual response of protein solubility was compared 
with estimated response achieved by RSM and ANN model in the randomly selected dataset in terms of  R2 
and RMSE using the Eqs. (1) and (2). Smaller values of RMSE show fair performance of the prediction models. 
Moreover, the experimental response of soluble protein production was plotted along with the correspond-

(1)R2
= 1−

∑n
i=1(yi − ydi)

2

∑n
i=1(ydi − ya)2

(2)RMSE =

√

1

n

∑n

i=1
(yi − ydi)2

Table 1.  Coded values of numerical and categorical variables used in central composite design.

Factors Name Type Minimum Maximum Coded Low Coded high Central

A Time (h) Numeric 0 32 −1 ↔ 8.00  + 1 ↔ 24.00 16

B Temperature (°C) Numeric 16 44 −1 ↔ 23.00  + 1 ↔ 37.00 30

C OD Numeric 0.5 0.9 −1 ↔ 0.60  + 1 ↔ 0.80 0.7

D IPTG concentration (mM) Numeric 0.2 1 −1 ↔ 0.40  + 1 ↔ 0.80 0.6

E Strain Categoric BW25113(DE3), Origami(DE3), SHuffle T7, BL21(DE3)

Figure 1.  Multilayer feed forward neural network for eight input variables, 15, 10 and 3 neurons in the first, 
second and last hidden layers respectively and one output layer.
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ing predicted values of the RSM and ANN models. In addition, the validity of the models was evaluated by 
experimentally assessing the combination of tested variables leading to the maximum predicted level of protein 
solubility.

Results
Protein expression. The expression of the scFv protein was assessed in four E. coli strains before optimiza-
tion using SDS-PAGE method. Utilizing western blotting, anti-His-tag monoclonal antibody can confirm the 
expression of His –tagged scFv in all stains studied here (Fig. 2).

Predictive modeling and optimization methods. Response surface methodology modeling. Based on 
the published data, four numerical (post-induction time, concentration of inducer, post-induction temperature, 
and optical cell density) and one categorical (different strains) factors were selected for statistical optimization. 
As presented in Table 1, the five-level CCD with a total of 232 runs was employed (Supplementary Table 1). The 
dependent response (soluble production of scFv) was correlated with the independent numerical factors (coded 
values) in different strains using predicted following equations:

(Y)0.5 :

BW 25113(DE3)

Y = −36.1443A+ 137.399B− 6761.67C + 2608.58D

− 0.501425AB+ 17.572AC − 35.8366AD − 32.7466BC

+ 48.2716BD − 2, 588.53CD + 2.22388A2
− 2.01959B2

+ 7078.58C2
− 1294.25D2

+ 420.482

Origami(DE3)

Y = 209.604A− 40.9083B− 12140.1C − 91.7678D

− 1.83904AB− 108.763AC − 16.7602AD + 167.013BC

− 17.7474BD − 162.912CD − 1.43726A2
− 0.861316B2

+ 5869.2C2
+ 447.055D2

+ 4861.88

Figure 2.  Western blotting analysis of the antiEpEX-scFv recombinant protein. Bacterial lysates of BL21(DE3), 
BW25113(DE3), SHuffle T7 and Origami(DE3) before (C-) and after induction were electrophoresed. After 
separation, protein bands were transferred onto the PVDF membrane and treated with anti-6 × His tag antibody.
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In the above equations, Y denotes response (soluble production of anti EpEX-scFv), and A, B, C, and D 
denotes post-induction time, post-induction temperature, cell density before induction, and IPTG concentra-
tion, respectively.

According to ANOVA results, significant "F value" (15.78) as well as insignificant "Lack of Fit for value of 
F" indicates that the model is valid to predict soluble production of scFv. The low p-value (Prob > F) (< 0.0001) 
of the model resignifies its significance.  R2 (the coefficient of determination) of 0.950 implies that 95.0% of 

SHuffle T7

173.319A+ 120.981B+ 13795C + 1830.34D − 1.46395AB

− 34.9288AC − 66.2975AD − 129.442BC − 7.38606BD

− 4836.21CD − 2.36028A2
+ 0.178132B2 − 4977.67C2

+ 1802.92D2
− 7034.69

BL21(DE3)

− 9.03435A− 2.64382B− 7902.75C − 687.916D + 1.13725AB

− 134.612AC + 37.2579AD + 45.6254BC + 85.7176BD

− 5129.02CD + 1.81334A2
− 1.73011B2 + 8359.54C2

+ 853.879D2
+ 4084.09

Table 2.  Analysis of variance for the experimental results of the central-composite design for soluble 
production of anti EpEX-scFv.

Source Sum of Squares df Mean Square F-value P-value

Model 1.697E + 07 59 2.876E + 05 15.78  < 0.0001

A-time 7.430E + 05 1 7.430E + 05 40.78  < 0.0001

B-temp 27,256.37 1 27,256.37 1.50 0.2230

C-OD 22,835.55 1 22,835.55 1.25 0.2645

D-IPTG 5.929E + 05 1 5.929E + 05 32.54  < 0.0001

E-strain 1.332E + 06 3 4.439E + 05 24.36  < 0.0001

AB 1.785E + 05 1 1.785E + 05 9.80 0.0021

AC 3.481E + 05 1 3.481E + 05 19.10  < 0.0001

AD 1.365E + 05 1 1.365E + 05 7.49 0.0069

AE 2.131E + 06 3 7.103E + 05 38.99  < 0.0001

BC 9977.13 1 9977.13 0.5476 0.4603

BD 1.858E + 05 1 1.858E + 05 10.20 0.0017

BE 1.500E + 06 3 4.998E + 05 27.43  < 0.0001

CD 5.175E + 05 1 5.175E + 05 28.40  < 0.0001

CE 7.618E + 05 3 2.539E + 05 13.94  < 0.0001

DE 7.439E + 05 3 2.480E + 05 13.61  < 0.0001

A2 1882.41 1 1882.41 0.1033 0.7483

B2 6.291E + 05 1 6.291E + 05 34.53  < 0.0001

C2 3.555E + 05 1 3.555E + 05 19.51  < 0.0001

D2 69,859.91 1 69,859.91 3.83 0.0518

ABE 5.310E + 05 3 1.770E + 05 9.72  < 0.0001

ACE 2.966E + 05 3 98,873.10 5.43 0.0014

ADE 4.655E + 05 3 1.552E + 05 8.52  < 0.0001

BCE 7.396E + 05 3 2.465E + 05 13.53  < 0.0001

BDE 4.444E + 05 3 1.481E + 05 8.13  < 0.0001

CDE 2.047E + 05 3 68,242.47 3.75 0.0122

A2E 2.078E + 06 3 6.928E + 05 38.02  < 0.0001

B2E 3.756E + 05 3 1.252E + 05 6.87 0.0002

C2E 6.003E + 05 3 2.001E + 05 10.98  < 0.0001

D2E 4.297E + 05 3 1.432E + 05 7.86  < 0.0001

Residual 3.134E + 06 172 18,219.75

Lack of Fit 6.933E + 05 32 21,666.07 1.24 0.1956

Pure Error 2.440E + 06 140 17,432.02

Cor Total 2.010E + 07 231
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the variability in the response can be described by the model. Furthermore, the difference value less than 0.2 
confirms a high degree of correlation between the predicted  R2 (0.7487) and adjusted  R2 (0.7906) values. Plot 
illustrated in Supplementary Fig. S1 confirms this correlation again. Also, the accuracy and predictability of the 
selected model were validated by the normal probability plot of the studentized residuals (Supplementary Fig. 
S1). Based on ANOVA results, the proposed model fits the experimental data well. So it can be effectively utilized 
to navigate the design space (Table 2).

As depicted in Table 2, three linear terms (post-induction time (A), concentration of inducer (D) and differ-
ent strains (E)) were found to be significant for soluble production of scFv whereas post-induction temperature 
and optical cell density variables had no significant impact on solubility of scFv. All interactive terms except 
temperature- optical cell density (BC) were found to be significant which was evident from their p-values (less 
than 0.05). Also, two quadratic terms  (A2 and  D2) were not significant according to Table 2. Moreover, it can be 
concluded that post-induction time is largely affecting soluble production of anti EpEX-scFv.

Utilizing two-dimensional graphs, the interactive effects between two significant independent variables (A and 
D (Fig. 3), A and B (Supplementary Fig. S2), A and C (Supplementary Fig. S3), B and D (Supplementary Fig. S4) 
and C and D (Supplementary Fig. S5)) were studied in different strains while keeping other two numerical fac-
tors at their constant middle levels. From Fig. 3, and Supplementary Fig. S2 and S3, it was evident that increasing 
the post-induction time led to solubility increase in three strains including BW25113(DE3), Origami(DE3) and 
BL21(DE3), and decrease in SHuffle T7. Moreover, upon increasing the concentration of inducer, the solubility 
had significantly decreased in Origami(DE3) and SHuffle T7 which was more substantial in SHuffle T7 than 
that in Origami(DE3) in similar post-induction time (Fig. 3). Also, increasing the temperature had a negative 
effect on scFv solubility in Origami(DE3) (Supplementary Fig. S2). As illustrated in Supplementary Fig. S3, 
more soluble protein was provided in BW25113(DE3) when protein production was induced at higher OD600 
nm while the amount of soluble scFv obtained in Origami(DE3) and SHuffle T7 had been negatively affected by 
increasing the OD600 nm before induction. A significant interaction between temperature and inducer concen-
tration is also indicated by ANOVA (p-value of 0.0017) (Table2). As depicted in Supplementary Fig. S4, when the 

Figure 3.  The interactive effects of post-induction time and inducer concentration on soluble production of 
scFv in (a) BL21(DE3), (b) SHuffle T7, (c) BW25113(DE3), and (d) Origami(DE3). Post-induction temperature 
(B = 30 °C) and cell density of induction time (C = 0.7) were kept at their constant middle levels.
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levels of post-induction time (A) and optical cell density (C) were kept constant at their medium value (16 and 
0.7 respectively), temperature raise could lead to increase the solubility in BW25113(DE3) and SHuffle T7. In 
BW25113(DE3), although increasing IPTG concentration at lower temperature decreased the amount of soluble 
fraction, an increase in inducer concentration at higher temperature had a positive effect on protein solubility. 
The dependency of OD600 nm before induction (C) and IPTG concentration (D) on scFv solubility when the 
post-induction time (A) as well as temperature (B) is kept constant (16 °C and 30 °C respectively) is illustrated 
in Supplementary Fig. S5. According to this graph, an increase in OD600 nm at higher IPTG concentration (0.8) 
led to a decrease in solubility in BL21(DE3) and SHuffle T7 and at lower inducer concentration (0.4), increasing 
the OD600 nm enhanced protein solubility. Interestingly, Supplementary Fig. S5 also declares that increasing 
the OD600 nm at both IPTG concentration levels leads to a solubility increase in BW25113(DE3) and decrease 
in Origami(DE3). The interactive effects between each independent numerical variable and strain type were 
studied while keeping other three numerical factors at their constant middle levels. As depicted in Fig. 4 and 
confirmed by ANOVA results, post-induction time was the most effective factor on soluble production of scFv 
in four strains studied here.

Artificial neural network modeling. Using artificial neural network (ANN) models, the behavior of nonlinear 
multivariate systems can be predicted. The multilayer feed forward neural network with Quasi-Newton algo-
rithm was the model considered for the present work. In this study, the same DoE used in building the RSM 
model was also employed to develop the ANN-based model. The experimental data was divided into three sub-
sets including training, testing and validation (70%, 15%, 15% of data respectively) (Table 3). A small amount 
of noise was added to the data set and regularization of weight was done to prohibit overfitting the training data 
and make smoother responses. The network topology developed for ANN determines the accuracy of a model 
prediction. To achieve optimal ANN structure for prediction, the number of hidden layers and neural composi-

Figure 4.  The interactive effects between strain type and (a) post-induction time (b) post-induction 
temperature (c) inducer concentration and (d) cell density of induction time. In each case other three numerical 
factors were kept at their constant middle levels (post-induction time (A), post-induction temperature (B), cell 
density of induction time (C), and inducer concentration (D).
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tion were determined by varying the number of hidden layers (1–5) as well as number of neurons (8–48). We 
had 8 neurons in the input layer and the scaling layers were set at automatic with 8 neurons. For perceptron lay-
ers, different architectures were investigated and best results were achieved when we had 15, 10 and 3 neurons 
in the first, second and last hidden layers respectively. Activation function in all hidden layers was a hyperbolic 
tangent. The scaled outputs from the hidden layers connected to the unscaled layer with one neuron to produce 
the original units. Moreover, the model selection was carried out to achieve better network architecture with the 
best generalization. Finally, the performance of the developed network was examined based on NRMSE and  R2 
of testing data. The fitness of the model was confirmed by its overall  R2 which was found to be 0.87. NRMSE 
value also indicates a good prediction of outputs (0.288).

Comparison of predictive capabilities and validation of the RSM and ANN-based models. In 
the current study, based on  R2 and the error analyses, the effectiveness of the empirical models was statistically 
evaluated between estimated and actual responses. A dataset having 145 data points was randomly selected from 
the total dataset. The experimental response along with the predicted data obtained for soluble production of 
scFv are given in Supplementary Table 2. According to obtained results, for random dataset, the  R2 for ANN and 
RSM models are 0.913 and 0.856 respectively, demonstrating the ability of these models to describe 91% and 
85% of the variations of the actual values respectively. The NRMSE is more for RSM model (0.264) than for the 
ANN model (0.154), which means that the predicting capacity of the ANN model is higher over the RSM model. 
According to comparative plot for predicted and actual values, the ANN model has fitted the experimental 
responses with an excellent accuracy. Greater deviation is seen in RSM-based prediction for soluble scFv yield 
than ANN (Fig. 5). For validation of models, utilizing the RSM model based predicted optimum conditions 
(Table 4), experimental densitometric analysis result of 112.4 mg/L was obtained for soluble fraction which was 
in good correlation with the predicted value of 97.9 mg/L. When the levels of the variables were replaced in the 
ANN model, the maximum predicted response value was 106.1 mg/L, which was closer to the experimental 
result (112.4 mg/L) than the RSM (97.9 mg/L). Reaffirms the higher accuracy of ANN model.

Discussion
Due to unsuitable folding of protein, most of the heterologous proteins expressed in E. coli aggregate in inclusion 
bodies which are partly or completely devoid of biological activity. Solubilization of these aggregates requires 
denaturing agents in a high concentration causing the loss of secondary structure of protein. Moreover, after 
refolding, the obtained proteins might be unstable. Therefore, focusing on environmental modification, many 
investigations have tried to develop expression of well folded highly soluble proteins in E. coli during the past 
three  decades13.

The RSM and ANN models for optimized soluble production of scFv were studied here for the first time. Also, 
here, the effects of four numerical factors along with different strains as a categorical factor on response were 
investigated for the first time. Based on the developed quadratic model, temperature and induction OD were not 
significant and the other three terms (post-induction time, concentration of inducer and different strains) were 
found to be significant for soluble production of scFv. In agreement with our study, many investigations showed 
the influence of different E. coli strains on solubility of various proteins. For example, the effect of different engi-
neered hosts including BL21(DE3) pLysS, BL21(DE3) and Rosetta on soluble expression of recombinant TNF-α 
was assessed by papaneophytou et al. Their results showed lower yield of soluble TNF-α in Rosetta compared to 
the other two  hosts14. The effective role of the engineered strains on solubility demonstrated here is also in line 
with Zhang et al.’s study which has showed the higher solubility of IGF1-thioredoxin fusion in Rosetta-gami 
(DE3) than that in Rosetta (DE3) and Bl21 (DE3)  bacteria15. Herein, the maximum soluble amount of scFv was 
achieved in E. coli Origami(DE3) which is a type of mutant strain with mutation in thioredoxin reductase (trxB) 
and glutathione reductase (gor) genes. Its oxidative environment enhances disulfide bonds formation in the 
cytoplasm which leads to lesser accumulation of misfolded proteins and inactive inclusion body  formation16. 
Moreover, the optimal culture conditions obtained here were IPTG concentration of 0.4 mM, cell density before 
induction of 0.6 nm, post-induction temperature of 23 °C and post-induction time of 24 h. Consistent with this 
finding, Heo et al. achieved the highest soluble amount of anti-c Met scFv in 0.5 mM concentration of IPTG. They 
showed that in Origami (DE3), higher inclusion body formation was associated with higher concentrations of 
IPTG and lowering IPTG concentration (1 to 0.5 mM) led to higher levels of functional anti-c Met scFv expres-
sion. This is because lesser inducer concentration can lead to lower transcription rate and higher efficiency of 
intracellular folding of the target  protein16. Consistently, soluble production of recombinant scFv against HBV 
preS2 in Origami2 (λDE3) was shown to be promoted at low concentration of  inducer17. We also showed that 
maximum soluble amount could be achieved at low temperature (23 °C). Our data was in agreement with the 

Table 3.  The number and percentage of experimental data used for training, testing and validation in artificial 
neural network.

The number of experimental data The percentage of experimental data

164 70.6% Train

34 14.7% Test

34 14.7% Validation

232 100% Total
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Figure 5.  Comparison of prediction capabilities of RSM and ANN models for randomly selected dataset. (a) 
RSM and ANN predicted vs. actual responses. (b) Comparison of responses obtained from experimental, RSM 
and ANN. The ANN model has fitted the experimental responses with an excellent accuracy. Greater deviation 
is seen in RSM-based prediction for soluble production of scFv than ANN.

Table 4.  Optimum condition and strain for soluble production of anti EpEX-scFv.

Input variables RSM model ANN model

Time 24 h 24 h

Temperature 23 °C 23 °C

Optical density 0.6 0.6

Inducer concentration 0.4 mg/ml 0.4 mg/ml

Strain Origami(DE3) Origami(DE3)

Experimental data 112.4 mg/L 112.4 mg/L

Predicted data 97.9 mg/L 106.1 mg/L
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prior studies in which several proteins including human interferon α-2 ricin A chain, subtilisin E, Fab fragments, 
and β-lactamase had higher solubility at low  temperatures18,19. Similarly, Emamipour et al. achieved maximum 
solubility at 23 °C for DsbA-IGF1 protein using BBD  methodology20. This may be a result of providing enough 
time for the proper folding due to slow rate of cell processes such as transcription, translation, and cell division. 
Also, decreasing temperature has been shown to eliminate the heat-shock proteases which are induced during 
overexpression of heterologous proteins. Also, it has been reported that at low temperature, the expression and 
activity of some chaperones are increased which can facilitate corrected folding of the recombinant  proteins21. 
The results of the current study also showed that a long incubation time was critical for the optimal expression 
of soluble scFv. This finding was consistent with the findings of Sina et al. which showed a significant increase in 
soluble expression of humanized anti-TNF-α scFv- GST fusion protein in E. coli Origami (DE3) when it was pro-
duced in the presence of low amount of inducer, in low cultivation temperature under a long incubation  time22.

In the current study, RSM and ANN methodologies are compared for their efficiency in optimization of fer-
mentation media. Although both methods were shown to be effective in determining the optimum conditions 
to improve the response, comparing  R2 achieved from ANN model (0.913) to that obtained for RSM (0.856) 
showed the better ability of the former in modeling soluble production of scFv, due to its deliberate overtraining. 
Consistently, for culture medium optimization, machine learning techniques have been shown to outperform the 
statistically-designed models in few investigations presented in the literature. For example, to maximize growth 
and lipid productivity of marine microalga Tetraselmis sp, the composition of a culture medium was optimized 
by Mohamed et al. using both RSM and ANN models. They reported that ANN was a more appropriate method 
for increasing biomass concentration and lipid yield than the RSM-based optimization  method23. Similarly, 
compared to RSM, a higher predictive capacity for ANN was reported by Rafigh et al. for optimizing the culture 
conditions for curdlan production by Paenibacillus polymyxa24.

Conclusion
In the present study, we have optimized fermentation condition for soluble production of antiEpEX-scFv by 
optimizing four literature based numerical factors and one categorical variable using ANN and RSM. Based on 
the RSM, three linear terms (post-induction time (A), concentration of inducer (D) and different strains (E)) sig-
nificantly affected solubility of scFv whereas post-induction temperature and optical cell density variables had no 
significant impact on the response. Moreover, post-induction time was the most affecting parameter. Analysis of 
error parameters and  R2 from a dataset having 145 data points randomly selected from the total dataset revealed 
the superiority of ANN model to RSM. Thus it may be concluded that although RSM usually is the first choice 
for statistical modelling, machine learning models can also be utilized to optimize the fermentation condition. 
The best fermentation conditions estimated by RSM, (induction at cell density 0.6 with 0.4 mM IPTG for 24 h 
at 23 °C in Origami(DE3)), allowed predicting a maximum soluble production of 97.9 mg/L which was in good 
correlation with the experimental value of 112.4 mg/L However, predicted value by ANN model (106.1 mg/L) 
was closer to the experimental result (112.4 mg/L) than that predicted by RSM (97.9 mg/L). Encouraging results 
of this study show that machine learning approaches can be applied for efficient soluble production of scFv which 
is highly applicable in diagnostic and therapeutic purposes.
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