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Abstract: This study investigated the anti-obesity effects of collagen peptide derived from skate skin
on lipid metabolism in high-fat diet (HFD)-fed mice. All C57BL6/J male mice were fed a HFD with
60% kcal fat except for mice in the normal group which were fed a chow diet. The collagen-fed
groups received collagen peptide (1050 Da) orally (100, 200, or 300 mg/kg body weight per day) by
gavage, whereas the normal and control groups were given water (n = 9 per group). The body weight
gain and visceral adipose tissue weight were lower in the collagen-fed groups than in the control
group (p < 0.05). Plasma and hepatic lipid levels were significantly reduced by downregulating
the hepatic protein expression levels for fatty acid synthesis (sterol regulatory element binding
protein-1 (SREBP-1), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC)) and cholesterol
synthesis (SREBP-2 and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR)) and upregulating
those for β-oxidation (peroxisome proliferator-activated receptor alpha (PPAR-α) and carnitine
palmitoyltransferase 1 (CPT1)) and synthesis of bile acid (cytochrome P450 family 7 subfamily A
member 1 (CYP7A1)) (p < 0.05). In the collagen-fed groups, the hepatic protein expression level
of phosphorylated 5′ adenosine monophosphate-activated protein kinase (p-AMPK) and plasma
adiponectin levels were higher, and the leptin level was lower (p < 0.05). Histological analysis
revealed that collagen treatment suppressed hepatic lipid accumulation and reduced the lipid droplet
size in the adipose tissue. These effects were increased in a dose-dependent manner. The findings
indicated that skate collagen peptide has anti-obesity effects through suppression of fat accumulation
and regulation of lipid metabolism.
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1. Introduction

Obesity is characterized by an abnormal accumulation of body fat that contributes to the etiologies
of various metabolic disorders including dyslipidemia, hepatic steatosis, insulin resistance, and type
2 diabetes mellitus [1]. Obese individuals have high central adiposity due to the accumulation of
visceral adipose tissue, which may be linked to a significantly increased risk of hepatic steatosis.
The increased flux of non-esterified free fatty acid (NEFA) from the visceral fat to the liver is one of the
suggested underlying mechanisms [2]. In addition, hyperlipidemia is induced by the dysregulation of
hepatic lipid metabolism, which upregulates the synthesis of triglyceride (TG) and cholesterol and
downregulates fatty acid oxidation [1]. These metabolic reactions could accelerate fat accumulation in
the liver and exacerbate hepatic steatosis. Therefore, dietary approaches for attenuating hyperlipidemia,
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reducing free fatty acid levels, and inhibiting hepatic lipid synthesis and fat accumulation have
attracted interest in obesity prevention or treatment.

Collagen, a fibrous protein composed of amino acid sequence glycine (Gly)-proline (Pro)-X
and Gly-hydroxyproline (Hyp)-X, plays a vital role in the maintenance of the structure of
various tissues and organs in the body [3]. Collagen has been widely used as a material in the
food, cosmetic, and pharmaceutical industries due to its biological and functional properties [4].
Recently, marine collagen has been preferred over cattle or porcine collagen, because of bovine
spongiform encephalopathy and transmissible spongiform encephalopathy, or religious reasons [5].
The skin, scale, cartilage and bone of marine fish are good sources of collagen [6]. These parts are
by-products obtained during the processing of marine fish, which are considered as disposed waste [7].
Several studies have focused on the development of a technique to utilize marine collagen peptides
to reduce pollution. Marine collagen has various beneficial properties such as antioxidative [8–10],
anti-skin aging [11], antihypertensive [12,13], anti-ulcer [14], and bone integrity maintenance [15]
effects. Especially as a biomaterial in tissue engineering, marine collagen has less cross-linking and
higher solubility than bovine collagen, and exerts anti-ageing and anti-wrinkling effects [16].

To extract collagen peptides, several marine species have been used including red snapper [3],
tuna [4], jelly fish [8], tilapia [10], salmon [17], cuttlefish [18], flatfish [19], pufferfish [20], bamboo shark [21],
cod [22], carp [23], catfish [24], paper nautilus [25], marine sponges [26] and skate [27]. In particular,
skate (Raja kenojei) is a popular food consumed in South Korea. As a result, large amounts of skate
skin are disposed of as waste. Our recent study showed the lipid-lowering effect of skate skin-derived
collagen peptide in genetic obese mice [28]. However, there is limited information on the effects of
marine collagen in a diet-induced obese animal model. In this study, the anti-obesity effects of skate
collagen peptide on improving lipid metabolism in high-fat diet (HFD)-induced obese mice were
investigated. In addition, three different doses were used to examine the dose-dependent effects.
Also, to elucidate the mechanism of its action with regard to synthesis and oxidation of fatty acid,
adenosine monophosphate-activated protein kinase (AMPK) activation was investigated in the liver.

2. Results

2.1. Effect of Skate Collagen Peptide on Body Weight Gain and Changes in Adipose Tissue Weight and Size

As shown in Figure 1A, there were no significant differences in the initial body weight among
the experimental groups. However, HFD intake for eight weeks significantly increased body weight
(p < 0.05). As a result, the final body weight was the highest in the control group (CON, 36.6 ± 1.0 g)
followed by the 100 mg/kg collagen-fed group (CL100, 34.2 ± 0.8 g), 200 mg/kg collagen-fed group
(CL200, 33.6± 1.1 g), 300 mg/kg collagen-fed group (CL300, 33.3± 1.0 g), and normal group (NOR, 26.0
± 0.4 g) (p < 0.05). Among HFD-fed mice groups, collagen intake did not affect the amount of daily
food intake (Figure 1B). The increased liver weight following HFD intake was reduced by collagen
treatment; however, the decrease was not significant (Figure 1C). Adipose tissue weights were higher
in the HFD-fed groups (Figure 1D–F). The weights of liver, visceral and subcutaneous adipose tissue
in the collagen-fed groups were significantly lower compared with that in the CON group (p < 0.05).
However, the epididymis adipose tissue was not significantly different among the HFD-fed groups.
Histological analysis of the adipose tissue revealed that HFD intake facilitated the differentiation and
enlargement of adipocytes. The lipid droplet size was smaller in the collagen fed-groups than in the
CON group.
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Figure 1. Effects of skate collagen peptide on body weight, food intake, and organ weight and 
histological analysis of adipose tissue in high-fat diet-fed C57BL6/J mice for eight weeks. Data are 
mean ± standard deviation (SD) (n = 9 per group). Normal (NOR) C57BL/6J mice fed a chow diet with 
water; control (CON) C57BL/6J mice fed a high fat diet (HFD) with water; collagen 100 (CL100), 
collagen 200 (CL200), and collagen 300 (CL300) C57BL/6J mice fed a HFD with oral administration of 
skate collagen peptide at a concentration of 100, 200, and 300 mg/kg body weight per day, 
respectively. a–c Different letters mean significant differences to one-way analysis of variance 
(ANOVA), followed by Duncan’s multiple-range test at p < 0.05. (A) change in body weight (bw) for 
10 week; (B) food intake; (C) liver weight per bw; (D) epididymal adipose tissue weight per bw; (E) 
visceral adipose tissue weight per bw; (F) subcutaneous adipose tissue weight per bw; (G) 
hematoxylin and eosin staining, magnification: 200×, bar: 50 μm. 

2.2. Effect of Skate Collagen Peptide on Lipid Levels in the Plasma and Hepatic Tissue 

Plasma lipid levels were higher in HFD-fed groups and were reduced by collagen intake (Figure 
2A–E). Plasma TG (Figure 2A) and NEFA (Figure 2B) levels were significantly lower in the CL200 
(30% and 30%, respectively) and CL300 (30% and 31%, respectively) groups compared with the levels 
in the CON group (p < 0.05). Plasma total cholesterol (TC) level was also lower; however, there was 
no significant difference in the HFD-fed groups (Figure 2C). Plasma low-density lipoprotein 
cholesterol (LDL-C) level was significantly lower in the CL200 and CL300 groups by 20% and 42%, 
respectively (Figure 2D, p < 0.05). In contrast, plasma high-density lipoprotein cholesterol (HDL-C) 
level was higher in the CL100, CL200, and CL300 groups by 245%, 276%, and 320%, respectively 
(Figure 2E, p < 0.05). Hepatic TG and TC levels were higher in the HFD-fed groups and were reduced 
by collagen intake (Figure 2F,G). In comparison with hepatic TG level in the CON group, the level 
was significantly lower in the CL200 and CL300 groups by 22% and 25%, respectively (Figure 2(F), p 
< 0.05). However, hepatic TC level was not significantly different between the CON and collagen-fed 
groups (Figure 2G). Histological analysis of the liver tissue revealed that lipid accumulation was 
increased by HFD intake and was suppressed by collagen intake. In particular, the degree of lipid 
accumulation in the CL200 and CL300 groups was similar to that in the NOR group. The histological 
results were in agreement with the changes in plasma and hepatic TG levels. 

Figure 1. Effects of skate collagen peptide on body weight, food intake, and organ weight and
histological analysis of adipose tissue in high-fat diet-fed C57BL6/J mice for eight weeks. Data are
mean ± standard deviation (SD) (n = 9 per group). Normal (NOR) C57BL/6J mice fed a chow diet
with water; control (CON) C57BL/6J mice fed a high fat diet (HFD) with water; collagen 100 (CL100),
collagen 200 (CL200), and collagen 300 (CL300) C57BL/6J mice fed a HFD with oral administration of
skate collagen peptide at a concentration of 100, 200, and 300 mg/kg body weight per day, respectively.
a–c Different letters mean significant differences to one-way analysis of variance (ANOVA), followed by
Duncan’s multiple-range test at p < 0.05. (A) change in body weight (bw) for 10 week; (B) food intake;
(C) liver weight per bw; (D) epididymal adipose tissue weight per bw; (E) visceral adipose tissue
weight per bw; (F) subcutaneous adipose tissue weight per bw; (G) hematoxylin and eosin staining,
magnification: 200×, bar: 50 µm.

2.2. Effect of Skate Collagen Peptide on Lipid Levels in the Plasma and Hepatic Tissue

Plasma lipid levels were higher in HFD-fed groups and were reduced by collagen intake
(Figure 2A–E). Plasma TG (Figure 2A) and NEFA (Figure 2B) levels were significantly lower in
the CL200 (30% and 30%, respectively) and CL300 (30% and 31%, respectively) groups compared with
the levels in the CON group (p < 0.05). Plasma total cholesterol (TC) level was also lower; however,
there was no significant difference in the HFD-fed groups (Figure 2C). Plasma low-density lipoprotein
cholesterol (LDL-C) level was significantly lower in the CL200 and CL300 groups by 20% and 42%,
respectively (Figure 2D, p < 0.05). In contrast, plasma high-density lipoprotein cholesterol (HDL-C)
level was higher in the CL100, CL200, and CL300 groups by 245%, 276%, and 320%, respectively
(Figure 2E, p < 0.05). Hepatic TG and TC levels were higher in the HFD-fed groups and were reduced
by collagen intake (Figure 2F,G). In comparison with hepatic TG level in the CON group, the level was
significantly lower in the CL200 and CL300 groups by 22% and 25%, respectively (Figure 2(F), p < 0.05).
However, hepatic TC level was not significantly different between the CON and collagen-fed groups
(Figure 2G). Histological analysis of the liver tissue revealed that lipid accumulation was increased by
HFD intake and was suppressed by collagen intake. In particular, the degree of lipid accumulation in
the CL200 and CL300 groups was similar to that in the NOR group. The histological results were in
agreement with the changes in plasma and hepatic TG levels.
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Figure 2. Effects of skate collagen peptide on plasma and hepatic lipid levels and histological analysis 
of liver tissue in high-fat diet-fed C57BL6/J mice for eight weeks. Data are mean ± SD (n = 9 per group). 
See the legend of Figure 1 for experimental groups in detail. a–d Different letters mean significant 
differences according to one-way ANOVA, followed by Duncan’s multiple-range test at p < 0.05. (A) 
plasma TG (triacylglycerol); (B) plasma NEFA (non-esterified free fatty acid); (C) plasma TC (total 
cholesterol); (D) plasma LDL-C (low-density lipoprotein cholesterol); (E) plasma HDL-C (high-
density lipoprotein cholesterol); (F) hepatic TG; (G) hepatic TC; (H) Oil red O staining, magnification: 
100×, bar: 100 μm. 

2.3. Effect of Skate Collagen Peptide on β-Oxidation in the Liver 

The protein expression levels of peroxisome proliferator-activated receptor alpha (PPAR-α) and 
carnitine palmitoyltransferase 1 (CPT1) (proteins involved in β-oxidation) were significantly higher 
in the CL200 (159% and 163%, respectively) and CL300 (146% and 151%, respectively) groups 
compared with their expression levels in the CON group (p < 0.05) (Figure 3). 

 
Figure 3. Effects of skate collagen peptide on hepatic protein expression for β-oxidation in high-fat 
diet-fed C57BL6/J mice for eight weeks. Data are mean ± SD (n = 9 per group). See the legend of Figure 
1 for experimental groups in detail. a,b Different letters mean significant differences according to one-
way ANOVA, followed by Duncan’s multiple-range test at p < 0.05. PPARα, peroxisome proliferator-
activated receptor alpha; CPT1, carnitine palmitoyltransferase 1. 

Figure 2. Effects of skate collagen peptide on plasma and hepatic lipid levels and histological
analysis of liver tissue in high-fat diet-fed C57BL6/J mice for eight weeks. Data are mean ± SD
(n = 9 per group). See the legend of Figure 1 for experimental groups in detail. a–d Different letters
mean significant differences according to one-way ANOVA, followed by Duncan’s multiple-range
test at p < 0.05. (A) plasma TG (triacylglycerol); (B) plasma NEFA (non-esterified free fatty acid);
(C) plasma TC (total cholesterol); (D) plasma LDL-C (low-density lipoprotein cholesterol); (E) plasma
HDL-C (high-density lipoprotein cholesterol); (F) hepatic TG; (G) hepatic TC; (H) Oil red O staining,
magnification: 100×, bar: 100 µm.

2.3. Effect of Skate Collagen Peptide on β-Oxidation in the Liver

The protein expression levels of peroxisome proliferator-activated receptor alpha (PPAR-α) and
carnitine palmitoyltransferase 1 (CPT1) (proteins involved in β-oxidation) were significantly higher in
the CL200 (159% and 163%, respectively) and CL300 (146% and 151%, respectively) groups compared
with their expression levels in the CON group (p < 0.05) (Figure 3).
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Figure 3. Effects of skate collagen peptide on hepatic protein expression for β-oxidation in high-fat
diet-fed C57BL6/J mice for eight weeks. Data are mean ± SD (n = 9 per group). See the legend of
Figure 1 for experimental groups in detail. a,b Different letters mean significant differences according
to one-way ANOVA, followed by Duncan’s multiple-range test at p < 0.05. PPARα, peroxisome
proliferator-activated receptor alpha; CPT1, carnitine palmitoyltransferase 1.
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2.4. Effect of Skate Collagen Peptide on Fatty Acid Synthesis in the Liver

The protein expression level of sterol regulatory element binding protein-1 (SREBP-1)
(mature/precursor), a transcription factor for fatty acid synthesis, was significantly reduced in the
CL100, CL200, and CL300 groups by 13%, 18%, and 18%, respectively, compared with its expression
level in the CON group (Figure 4, p < 0.05). The protein expression level of fatty acid synthase (FAS)
was significantly lower in the CL200 and CL300 groups by 28% and 29%, respectively (p < 0.05).
In addition, the protein expression level of acetyl-CoA carboxylase (ACC) was significantly reduced in
the CL300 group by 39% (p < 0.05).
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Figure 4. Effects of skate collagen peptide on hepatic protein expression for fatty acid synthesis in
high-fat diet-fed C57BL6/J mice for eight weeks. Data are mean ± SD (n = 9 per group). See the legend
of Figure 1 for experimental groups in detail. a–c Different letters mean significant differences according
to one-way ANOVA, followed by Duncan’s multiple-range test at p < 0.05. SREBP-1, sterol regulatory
element binding protein-1; FAS, fatty acid synthase; ACC, acetyl-CoA carboxylase.

2.5. Effect of Skate Collagen Peptide on Cholesterol Metabolism in the Liver

The protein expression level of SREBP-2 (mature/precursor), a transcription factor for cholesterol
synthesis, was significantly reduced in the CL200 and CL300 groups by 12% and 13%, respectively,
compared with its expression level in the CON group (Figure 5, p < 0.05). The protein expression
level of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) was significantly lower in the CL300
group by 32% (p < 0.05). On the other hand, the protein expression level of cytochrome P450 family
7 subfamily A member 1 (CYP7A1) was significantly reduced in the CL200 and CL300 groups by
161% and 176%, respectively (p < 0.05).
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export in high-fat diet-fed C57BL6/J mice for eight weeks. Data are mean ± SD (n = 9 per group). See
the legend of Figure 1 for experimental groups in detail. a–c Different letters mean significant differences
according to one-way ANOVA, followed by Duncan’s multiple-range test at p < 0.05. SREBP-2, sterol
regulatory element binding protein-2; HMGCR, 3-hydroxy-3-methylglutaryl-CoA reductase; CYP7A1,
cytochrome P450 family 7 subfamily A member 1.
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2.6. Effect of Skate Collagen Peptide on AMPK in the Liver

In comparison with the protein expression level of phosphorylated 5′ adenosine
monophosphate-activated protein kinase (p-AMPK) in the CON group, its expression level was
significantly higher in the collagen-fed groups. In the CL300 group, it was significantly higher by 156%
(Figure 6, p < 0.05).
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2.7. Effect of Skate Collagen Peptide on Adiponectin and Leptin Levels

Collagen intake reduced leptin levels and increased adiponectin levels in the collagen-fed groups
compared with the levels in the CON group (Table 1). The adiponectin level in the CL100, CL200,
and CL300 groups was higher by 110%, 123%, and 131%, respectively (p < 0.05). In contrast, the leptin
level in the CL300 group was significantly reduced by 23% (p < 0.05).

Table 1. Changes in leptin and adiponectin levels of high-fat diet-fed C57BL6/J mice for eight weeks.

Group (1) Leptin Adiponectin

NOR 54.6 ± 5.0 c 198.6 ± 14.1 d

CON 122.6 ± 34.9 a 214.4 ± 46.3 c,d

CL100 98.0 ± 24.6 a,b 236.3 ± 21.5 b,c

CL200 97.0 ± 22.9 a,b 263.8 ± 35.3 a,b

CL300 94.0 ± 15.2 b 281.1 ± 17.9 a

Data are mean ± SD (n = 9 per group). (1) See the legend of Figure 1 for experimental groups in detail. a–d Different
letters mean significant differences according to one-way ANOVA, followed by Duncan’s multiple-range test at p < 0.05.

3. Discussion

Owing to overnutrition and lifestyle changes, the prevalence of obesity has greatly increased
worldwide. Researches have attempted to identify food materials or agents that can ameliorate obesity.
A HFD-induced obese animal is pathophysiologically similar to an obese person [29]. As a result of
the high caloric density, the consumption of a HFD causes obesity by increasing lipid levels and the
adipocyte number and size [30]. Marine-derived nutrients and bioactive components have excellent
potential as functional food ingredients due to their beneficial health effects [31]. Marine collagen
peptides rich in glycine, glutamic acid, proline, and hydroxyproline are produced by the enzymatic
hydrolysis of collagen. Among several amino acids in collagen peptides, the lipid-lowering effect of
glycine has been reported [32,33]. In this study, the anti-obesity effects of collagen peptide derived
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from skate skin were evaluated and were found to be mediated through the regulation of hepatic lipid
metabolism-related transcription factors and enzymes.

In an obese state, hyperlipidemia is closely associated with fat accumulation in major organs such
as the liver and adipose tissue. In the present study, the HFD-fed groups had higher plasma TG, NFFA,
and LDL-C levels and lower plasma HDL-C levels; these effects were reversed following collagen
peptide administration. However, a change in TC level was not observed. The decrease in the lipid
levels of collagen-fed groups might be attributed to the reduction in body weight gain and visceral and
subcutaneous adipose tissue weights. Additionally, the collagen-fed groups had a lower level of hepatic
TG, which was consistent with liver histological results. The TG-lowering effect of collagen suppressed
adipose tissue differentiation, as demonstrated by the histological analysis of the adipose tissue.
In comparison with CON mice, collagen-fed mice had smaller adipocytes. Our results were consistent
with those of a previous study, in which the concentration of TG, TC, and LDL-C in HFD-fed rats
was reduced by supplementation with marine collagen peptides [34]. Similarly, the intake of collagen
derived from salmon [35], flathead mullet [36], and skate [28] could decrease plasma lipid levels in
animals. Lipid-lowering effects were also observed in a human study showing that marine collagen
peptides reduced the level of TG, free fatty acid, TC, and LDL-C, and increased that of HDL-C [37].
The intake of gelatin, a mixture of water-soluble protein derived from collagen, was reported to
markedly reduce serum TG and TC levels in mice [38]. These effects might be associated with the
properties of amino acid-rich collagen. A previous study found a negative correlation between plasma
TG and the levels of hydroxyproline, glycine, and proline in collagen [35]. In particular, glycine
intake was reported to decrease plasma free fatty acid and adipose cell size in sucrose-fed rats [32].
These results suggest that collagen peptides rich in glycine may exert hypolipidemic effects in the
plasma and liver.

Abnormal fat accumulation is caused by an imbalance between lipid synthesis (lipogenesis)
and breakdown (lipolysis or β-oxidation). Lipogenesis is transcriptionally regulated by SREBP-1,
which controls the lipogenic enzymes FAS and ACC [39]. On one hand, PPAR-α is a transcription
factor that facilitates fatty acid oxidation by upregulating target genes such as CPT1 [40]. In the
current study, the hepatic protein expression levels of SREBP-1, ACC, and FAS (involved in fatty acid
synthesis) in the collagen-fed groups were suppressed compared with those in the CON group. On the
other hand, β-oxidation was enhanced in the collagen-fed groups by upregulating the PPAR-α and
CPT1 levels. These results were consistent with those of a previous study showing that the intake
of collagen peptide decreased fatty acid synthesis and increased β-oxidation in the liver of db/db
mice [28]. Similarly, tuna-derived peptide was found to decrease the expression levels of SREBP-1,
FAS, and ACC in differentiated 3T3-L1 adipocytes [41]. It is possible that glycine-rich collagen has
a regulatory effect on some factors related to storage and energy burning, such as PPAR-α, -γ, -δ,
and uncoupling protein type 2 [33]. Our results suggested that supplementation with skate collagen
peptide effectively attenuated hepatic fat accumulation by improving fatty acid metabolism through
the inhibition of fatty acid synthesis and facilitation of β-oxidation in the liver of HFD-fed mice.

AMPK has emerged as a regulator of energy balance that affects whole-body fuel utilization.
AMPK can induce fatty acid oxidation and inhibit the synthesis of hepatic fatty acid, cholesterol and
adipocyte differentiation [42]. A previous study showed that AMPK activation could ameliorate
lipogenesis in the liver of mice by suppressing SREBP-1 and -2, inhibiting their target enzyme
expression [43]. In contrast, the inhibition of AMPK could increase the accumulation of hepatocellular
lipids in hepatocytes [44]. Moreover, AMPK is involved in the regulation of adipokines such as
adiponectin and leptin, which can stimulate the phosphorylation of AMPK [45]. In obesity-induced
animals, decreased adiponectin levels and increased leptin levels in the plasma have been observed [46].
However, after weight reduction, these effects were reversed with the augmentation of AMPK
activation. AMPK is an important metabolic regulator; thus, it is recognized as a key target for obesity
prevention. In the present study, the intake of collagen peptide increased the hepatic protein expression
of p-AMPK. Furthermore, adiponectin and leptin levels were increased and decreased, respectively,
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in the plasma. In a previous study, the serum adiponectin level of patients with type 2 diabetes
was increased following treatment with marine collagen peptides for three months compared with
that of healthy control patients [37]. Furthermore, glycine treatment was reported to decrease leptin
and increase adiponectin in 3T3-L1 adipocytes [33,47]. Therefore, AMPK activation and adipokine
regulation by skate collagen peptide might reduce lipid accumulation through the inhibition of lipid
synthesis and activation of energy production in the liver.

The reduction in plasma lipid level following the intake of fish collagen peptides is closely
associated with the amino acids in the peptides. According to a previous study, the peptides in
protein hydrolysates have different biological effects and physicochemical properties depending on
the molecular weight or structure of the amino acids [35]. The structure and molecular weight of
collagen peptides vary according to the type, source, and preparation method of the collagen [35].
The production of low molecular weight fragments is easier using collagen from marine sources than
from land vertebrates [48]. Nevertheless, further research is required to study the health benefits
of marine collagens with different molecular weights obtained via ultrafiltration. In conclusion,
our findings revealed that the intake of collagen peptide of skate skin might exert anti-obesity activities
through reduction of body weight gain and visceral adipose tissue, and improve the dyslipidemia via
regulation of hepatic lipid metabolism and activation of AMPK, as well as its targeted adiponectin.

4. Materials and Methods

4.1. Animals and Diets

Male C57BL6/J mice (5 weeks old) were purchased from Orient, Inc. (Seongnam, Korea). The mice
were raised under controlled temperature (23 ± 1 ◦C) and humidity (50 ± 5%) conditions with
a 12 h light-dark cycle. After a 1 week acclimation period, the mice were divided into five groups
(n = 9 per group) based on body weight as follows; (1) normal group (NOR), given AIN-76A chow
diet and water as vehicle by gavage; (2) control group (CON), given HFD and water as vehicle by
gavage; (3) CL100, given HFD and 100 mg/kg body weight (bw)/day of skate collagen peptide
by gavage; (4) CL200, given HFD and 200 mg/kg bw/day of skate collagen peptide by gavage;
CL300, given HFD and 300 mg/kg bw/day of skate collagen peptide by gavage. The dosage given
to the mice was converted from a human equivalent dosage: assuming the human equivalent dose
for 1.0 g/60 kg/day × 12.3 = 0.2 g/kg/day. A conversion coefficient of 2.3 was used to account for
differences between mice and humans [49]. To examine the dose-dependent effects, three different
doses were determined for oral administration based on a previous study [30]. HFD with 60% kcal
fat was provided from Central Lab Animal Inc. (Seoul, Korea) which has been commonly used
for the development of obesity in experimental rodent models [50]. Skate collagen peptide was
dissolved in water and orally administered to mice. The collagen peptide was obtained from Yeongsan
Skate Co., Ltd. (Jeollanam-do, Korea) with an average molecular weight of 1050 Da. The amino acid
composition of the collagen sample used in this study was as follows: glycine 22.09%, glutamate 10.78%,
proline 9.02%, alanine 7.66%, arginine 7.84%, aspartate 7.11%, hydroxyproline 6.85%, serine 5.71%,
lysine 3.49%, leucine 3.67%, threonine 3.42%, valine 3.34%, isoleucine 2.45%, phenylalanine 2.23%,
methionine 2.15%, histidine 1.38%, and others 0.81%. The mice had free access to the diet and water.
The dietary intake was checked daily and body weight was measured every week. After 8 weeks,
all mice were fasted for 12 h and sacrificed after CO2 anesthetization. Blood was obtained using heparin
tubes from the heart and the organs were collected after perfusion with ice-cold phosphate-buffered
saline (PBS, 10 mM, pH 7.2). Epididymis adipose tissue was derived from the fat attached to the two
testicles of the mice. Visceral adipose tissue was excised from the perirenal fat depot. Subcutaneous
adipose tissue was collected from the fat located beneath the skin of the legs. The organs were stored
at −80 ◦C until use. The study was approved by the Pusan National University Institutional Animal
Care and Use Committee (Approval number: PNU-2016-1640).
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4.2. Plasma Lipid, Aminotransferase, and Adipokines Levels

The levels of plasma TG, TC, and HDL-C were measured using commercially available kits
(AM157S-K, AM202-K, and AM203-K; Asan Pharmaceutical Co., Seoul, Korea). NEFA was determined
using commercial kits (ab65341; Abcam Inc., Cambridge, MA, USA). Plasma LDL-C level was
calculated using a previously reported method [51] In addition, commercial kits were used to
evaluate adipokines such as leptin (#ADI-900-019A; Enzo Life Sciences AG, Lausen, Switzerland) and
adiponectin (LF-EK0239; AbFrontier, Seoul, Korea).

4.3. Hepatic Lipid Concentration

The hepatic lipids of the liver homogenate were extracted according to a modified method [52].
In brief, liver tissue was homogenized in PBS and extracted using chloroform and methanol (2:1, v/v).
The extracts were vortexed for 2 h, filtered, and dried. Hepatic TG and TC levels were measured with
the same commercial kit used for measuring plasma lipid levels.

4.4. Western Blot Analysis

Quantitation of protein was carried out by Western blot assay as previously described [53].
In brief, protein was separated by sodium dodecylsulfate polyacrylamide gel and transferred to
a nitrocellulose membrane (Amersham Biosciences, Uppsla, Sweden). The targeted protein band
was detected using CAS-400 (Core Bio, Seoul, Korea). The calculation was performed using ImageJ
software (National Institutes of Health, Bethesda, MD, USA). Protein expression was normalized to
that of β-actin. The primary antibodies used in this study were β-actin (ab8227) and FAS (ab22759),
which were purchased from Abcam Inc. (Cambridge, UK). Phospho-AMPKα (p-AMPK, #2535) was
obtained from Cell Signaling Technology (Beverly, MA, USA). SREBP-1 (sc-8984), ACC (sc-26817),
PPAR-α (sc-9000), CPT1 (sc-139482), SREBP-2 (sc-5603), HMGCR (sc-33827), and CYP7A1 (sc-25536)
were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA). The secondary horseradish
peroxidase-conjugated antibodies (from Abcam Inc.) were donkey anti-rabbit IgG H&L (ab6802),
rabbit anti-goat IgG H&L (ab6741), and rabbit anti-mouse IgG H&L (ab6728).

4.5. Histological Analysis

The liver and adipose tissue were fixed in 4% formalin for preparation of frozen and paraffin
blocks, respectively. Sections of the frozen-blocked liver tissues were cut at a thickness of 3 µm using
a microtome (CM1510S-3; Leica, Wetzlar, Germany) and stained with Oil Red O. Sections of the
paraffin-blocked adipose tissue were cut using a microtome at a thickness of 3 µm (Microm HM 325;
Thermo Fisher Scientific, Waltham, MA, USA) and stained with hematoxylin and eosin. The slides
were examined under an optical microscope (Nikon ECLIPSE Ti; Nikon Corp., Tokyo, Japan).

4.6. Statistical Analysis

Data are presented as the mean ± SD. Statistical analysis was performed using SPSS version
23 (SPSS Inc., Chicago, IL, USA). The significance of differences were determined by one-way analysis
of variance (ANOVA) followed by Duncan’s multiple-range test. Differences with p < 0.05 were
considered significant.
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