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a b s t r a c t

The use of antibiotics in animal feeding has been banned in many countries because of increasing
concerns about the development of bacterial resistance to antibiotics and potential issues on food safety.
Searching for antibiotic substitutes is essential. Applying transgenerational epigenetic technology to
animal production could be an alternative. Some environmental changes can be transferred to memory-
like responses in the offspring through epigenetic mechanisms without changing the DNA sequence. In
this paper, we reviewed those nutrients and non-nutritional additives that have transgenerational
epigenetic effects, including some amino acids, vitamins, and polysaccharides. The paternal trans-
generational nutritional epigenetic regulation was particularly focused on mechanism of the substantial
contribution of male stud animals to the animal industries. We illustrated the effects of paternal
transgenerational epigenetics on the metabolism and immunity in farming animals and proposed
strategies to modulate male breeding livestock or poultry.
© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).
1. Introduction

The genetic selection of the growth performance and nutrient
optimization in domestic animals has significantly increased their
growth performance and shortened their growth cycles (Diao et al.,
2018; Gjedrem et al., 2012; Gu et al., 2011; Guti�errez-Gil et al.,
2015). The selection is usually accompanied by increasing meta-
bolic processes that might compromise the immune capacity in the
body, leading to the occurrence of epidemiological diseases and
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retardation of animal growth. To overcome these issues, the use of
antibiotics growth promoters (AGPs) was widely adopted in the
feed industries. Particularly, AGPs have been used as a growth
promoter for a long time to maintain gut health and improve feed
conversion efficiency (Dibner and Richards, 2005). However, the
use of AGPs has been gradually banned in recent years worldwide
due to their harmful roles in disturbing healthy intestinal micro-
biota and developing antibiotic resistance (Bengtsson and Wierup,
2006; Li et al., 2018d; Wu et al., 2018, 2020a, 2020b). Therefore, the
use of AGPs in animal feeding has been gradually banned in recent
years worldwide. However, banning the use of AGPs may increase
the risk of conditioned pathogen infection in domestic animals and
increase the feeding costs, meanwhile, it might increase the risk of
infection in human beings (Huyghebaert et al., 2011; Laxminarayan
et al., 2016). These situations highlight the need to explore novel
alternatives to AGPs, which can support the productive potential
and maintain the health of domestic animals. Recently, several
classes of AGPs replacers have been studied and suggested, such as
probiotics, prebiotics, antimicrobial peptides, polysaccharides, feed
enzyme additives (Li et al., 2018d; Wu et al., 2019c; Liu et al., 2020;
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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Yang et al., 2020a). However, these substitutes have been found not
as effective as antibiotics in microecological modulation (Liu et al.,
2020; Maria Cardinal et al., 2019; Yang et al., 2020a). Hence,
exploring new approaches to decrease the immune and metabolic
disorders related to no use of AGPs warrants investigating (Maria
Cardinal et al., 2019).

A stable gene expression pattern has been built via genetic se-
lection and the use of AGPs for a century. Briefly, continuous genetic
improvement of growth performance has continuously improved
the metabolism and feed utilization efficiency. Most of the intake
energy and nutrients are used for muscle and bone growth and fat
accumulation, but less was provided for immune organs and
function development (Berghof et al., 2013). For instance, with the
broilers' growth performance improvement, the total antibody ti-
ters, immunoglobulin M and immunoglobulin G content, as well as
the function of macrophages and natural killer cells of broilers were
all significantly reduced (Qureshi and Havenstein, 1994). Further,
the heat production of broilers continues to increase, and the anti-
stress ability of broilers was significantly decreased (Lara and
Rostagno, 2013). Notably, the use of AGPs can help to maintain
the health and then improve the growth performance, by over-
coming those potential issues induced by the stable gene expres-
sion pattern of decreased immune function, increased metabolic
heat production, and decreased anti-stress ability (Berghof et al.,
2013; Maria Cardinal et al., 2019). In order to maintain the
growth performance and health of domestic animals when the
AGPs were banned, a novel and stable gene expression pattern
should be built, by improving nutritional supplementation through
several generations of those domestic animals. The relationships
between gene expression patterns and environmental factors,
especially nutritional changes, are the core part of the research,
which could be easier linked to animal growth performances and
immune functions (DelCurto et al., 2013; Uddin et al., 2010; Li et al.,
2016; Lv et al., 2019). Therefore, applying transgenerational
epigenetic technology to animal production could be an alternative.
The altered nutritional supplementation can be transferred to
memory-like responses in the offspring through epigenetic mech-
anisms without changing DNA sequence (Wu et al., 2019a, 2019b).
Nutrients that are effective in the regulation of the metabolism and
immunity of animals include some functional nutrients and non-
nutritional additives, such as amino acids (Phang et al., 2013), vi-
tamins (Joubert et al., 2016), polysaccharides (Wu et al., 2017),
probiotics and prebiotics (Kumar et al., 2013), which may be can-
didates for epigenetic regulation.

In this review, we explore the potential use of some of these
improved nutrients supplementation in epigenetic effects on the
growth performance and immune function in domestic animals,
especially improving the offspring growth and immune and then
eliminating the use of antibiotics in domestic animals.

2. Why should paternal transgenerational epigenetic
regulation be the focus?

Epigenetics refers to those studies on the inheritance of altered
genes expression without DNA sequence mutation during the
processes of cell mitosis, cell meiosis, biological development, and
reproduction in animals (Sasaki and Matsui, 2008). DNA methyl-
ation, histone modification, chromosome encoding, and non-
coding RNAs have been suggested to be involved in the regula-
tion and inheritance of gene expression alterations (Sharma, 2017;
Tollefsbol, 2014). Research on livestock epigenetics focuses mainly
on 2 aspects: how environmental factors gradually alter epigenetic
modifications of the genomes, thereby regulating the expression of
associated genes, and how these epigenetic modifications and
corresponding phenotypes are transmitted to their offspring. The
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latter aspect can be defined as transgenerational epigenetics and
likely, the influence of environmental factors is implemented on
epigenetic modifications in the germ cells.

Comparing transgenerational epigenetics with traditional ge-
netics, they both have the transgenerational inheritance ability, but
transgenerational epigenetics relates to the gene expression alter-
ation that gradually adapts to the resulting environmental changes,
likely being continuous, rather than gene mutation or the signifi-
cantly increased frequency of one genotyping in traditional ge-
netics (Nicoglou andMerlin, 2017; Tollefsbol, 2014). Herein, it refers
to the phenotypic alteration of the offspring without DNA sequence
changes. Studies on the mechanisms have found that environ-
mental factors could cause the alterations of DNA methylation,
histone modifications, and non-coding RNA expression, leading to
the changes in gene expression and physiological phenotypes in
parent animals, and as a result, phenotypic alterations appear in
their offspring (Tollefsbol, 2014). For instance, Dias and Ressler
(2014) exposed F0 mice to an odor (acetophenone) fear condition
before the conception and found that subsequently conceived F1
and F2 generations had an increased behavioral sensitivity to ace-
tophenone odor, but not to other odors. Sperm DNA CpG hypo-
methylation in odorant receptor Olfr151 gene in the conditioned F0
males and F1 naive offspring contributed to the transgenerational
epigenetic effects. In a rat model, transient exposure of the
gestating females during the period of gonadal sex determination
to the endocrine disruptors, vinclozolin (an antiandrogenic com-
pound) or methoxychlor (an estrogenic compound), induced a
decrease of spermatogenic capacity (cell number and viability) and
an increase of incidence of male infertility in the adult F1 genera-
tion (Anway et al., 2005). These effects were transmitted through
the male germline to nearly all males of subsequent generations
(i.e., F1 to F4). The transgenerational effect seemed to be associated
with the altered DNA methylation patterns in the germline (Anway
et al., 2005). These results prove that the environmental memory in
animals could be transmitted to the offspring through paternal
transgenerational epigenetic mechanisms.

Although more and more evidence has proved that the changes
in the maternal environment, especially the nutritional status
during pregnancy, could cause some epigenetic modifications and
then influence the gene expression during the embryonic stage,
fetal development, and even after birth (Cooney et al., 2002;
Lillycrop and Burdge, 2015), and theoretically, maternal and
paternal contributions equally to transgenerational epigenetic in-
formation to the offspring, more research has concentrated on the
paternal effect. Substantially greater influence of stud males than
females on the animal breeding is one of the reasons. Less
complexity in studying the transgenerational epigenetic mecha-
nisms in a paternal model minimizes the potential influence of
other pathways of nongenetic inheritance commonly in females
(gestation and lactation). Focusing on males, researchers can focus
on the environmental influences on the constituents of sperm and
seminal fluid. This male-centered approach, when it is carried out
in tightly-controlled laboratory conditions using isogenic pop-
ulations, has proven highly effective in minimizing genetic (DNA)
and environmental confounds. It has also yielded some of the most
compelling mechanistic evidence to date that environmentally-
induced epigenetic information could be packaged into the germ-
line and transmitted to the offspring, showing the corresponding
phenotypes in following generations (Ryan and Kuzawa, 2020).
Moreover, when referring to the animal industry, due to the use of
artificial insemination techniques, the paternal transgenerational
effect can be amplified markedly in the animal industry. For
instance, one breeder rooster can produce more than 100 broilers
per annum (Berghof et al., 2013; Frank et al., 2003), and the
offspring number can be much great in large animals (boars, rams,
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bulls). In addition, increasing evidence has shown that trans-
generational effects could be maintained for more than one gen-
eration (Sasaki and Matsui, 2008; Sharma, 2017).

3. Paternal imprinted genes and mechanism of paternal
trans-epigenetics

Imprinted genes or genome provided the first mechanical evi-
dence for epigenetic research. In 1984, McGrath and Solter identi-
fied that the completion of mouse embryogenesis required both the
maternal and paternal genomes (McGrath and Solter, 1984). Soon
after, the identification of 3 imprinted genes, IGF2, IGF2R, and H19,
were reported respectively (Dean et al., 1998). Since then, more
imprinted genes involved in growth and development have been
identified (Edwards and Ferguson-Smith, 2007), and the underly-
ingmechanism of the imprinted genes has gradually been revealed.
DNA methylation has been proved to regulate the paternal and
maternal expression of IGF2 and H19 genes. In addition, H19 could
also serve as a long non-coding RNA to regulate the expression of
IGF2. And then the line between the imprinted gene expression and
the epigenetic modification, especially DNA methylation, has been
drawn (Murrell et al., 2004; Zhou et al., 2015). So far, there are
around 260 imprinted genes that have been identified in mice
(Tucci et al., 2019). Although the recent genome-wide character-
ization of imprinting suggests that there may be more than 1,000
loci with parent-of-origin allelic effects in embryonic and adult
mouse brains (Gregg et al., 2010a, 2010b). Of these genes, the
paternally expressed genes and their DNA methylation could in-
fluence the gene expression and development process in the
offspring, which could lay the foundation for the paternally trans-
generational epigenetic regulations (Liang et al., 2014; Soubry et al.,
2016; Zhang et al., 2019). With the development of whole-genome
methylome sequencing, the epigenetic reprogramming events
during the embryonic period or after birth have been identified in
mammals. In mammals, the development from fertilization to
gametogenesis does involve several major epigenetic “reprogram-
ming” events that reset the epigenetic state in germ cells (Table 1).
The first event occurs immediately following fertilization, when the
cellular differentiation states involved in programming sperm and
egg cells are cleared passively (through division without re-
methylation) or actively (through maternally-derived ten-eleven
translocation enzyme [Tet] DNA demethylase) (Li et al., 2018c;
Santos et al., 2002; Smith et al., 2012). The second event occurs
during the formation of primordial germ cells (PGCs) when PGC
lineage-specific epigenetic marks are cleared and replaced with
sex-specific DNA methylation (DNAm) in the developing germline
Table 1
Reprogramming of embryonic DNA methylation in human and model animals.

Species Occurrence of global
5-methylcytosine (5-mC)
reprogramming during
post-fertilization period

Genomic regions without global mC
reprogramming during post-fertilization p

Homo sapiens Occurred Imprinting control regions, long intersper
nuclear element (Guo et al., 2014; Smith
2014); endogenous retrovirus K transpos
(ERVK) (Gkountela et al., 2015; Smith et a
2014); Exons, 30 untranslated regions (UT
promoters, splice sites, and L1 Homo sapi
specific (L1HS) (Gkountela et al., 2015)

Mus musculus Occurred Intracisternal A particle (IAP), imprinting
control regions (Lane et al., 2015; Smith e
2012; Wang et al., 2014), Single-copy germ
expressed genes and somatically expresse
genes (Borgel et al., 2010)

Danio rerio Non-occurred Global paternal methylome inheritance (J
et al., 2013; Potok et al., 2013)
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(Guibert et al., 2012; Seisenberger et al., 2012). These 2 epigenetic
reprogramming events form the barriers of inter-and trans-gener-
ational epigenetic inheritance, subclasses of epigenetic inheritance
which can be defined by the timing of the exposure in relevance to
the stages of epigenetic reprogramming. Following these 2 events,
spermatogonia stem cells (SSCs) undergo the third epigenomic
reprogramming as they pass through the blood-testis barrier
(Phillips et al., 2010). However, although the epigenetic reprog-
ramming immediately after fertilization is extensive, it is not ab-
solute. In mammals, DNA demethylation occurs in the whole-
genome level after fertilization, but not in some loci, such as
intracisternal A particle (IAP) and some other imprinting regions
(Hackett et al., 2013). As the representation of oviparous, sperm
DNAmethylome is inherited in zebrafish early embryos (Jiang et al.,
2013). These remained regions contribute to the transgenerational
inheritance of epigenetic information from the father. In male an-
imals, differential methylation in imprinted regions also persists
through spermatogenesis, including the process of chromatin
repackaging (Sanford et al., 1987; Trasler, 2009). Thus, the epige-
netic state of imprinted genes in sperms is retained to varying
degrees in individual tissues throughout their lives and provides an
example of intergenerational epigenetic inheritance.

Different from mammals, Zebrafish and other non-mammalian
(anamniote) vertebrates lack global 5-methylcytosine (5-mC)
erasure (Bogdanovic et al., 2011; Hontelez et al., 2015; Jiang et al.,
2013; Macleod et al., 1999; Potok et al., 2013; Veenstra and
Wolffe, 2001), which occurs after fertilization and persists during
blastula stages inmammals (Oswald et al., 2000; Smith et al., 2012).
However, zebrafish inherit the paternal DNA methylome configu-
ration (Jiang et al., 2013; Potok et al., 2013) (Table 1). Recent studies
demonstrated the absence of global DNAmethylation erasure in the
zebrafish germline and extensive amplification and demethylation
of the oocyte-specific fem-rDNA cluster during gonad trans-
formation, which suggested the retention of paternal epigenetic
memory in the developing zebrafish germline (Iwanami et al.,
2020; Skvortsova et al., 2019). These studies have proved the ex-
istence of paternal transgenerational epigenetics in non-
mammalian (anamniote) vertebrates.

4. Paternal transgenerational epigenetic mechanisms
relating to the environmental changes in animals

DNAmethylation that occurs in the 3 reprogramming periods in
mammals and the retention of paternal DNA methylome in both
offspring embryos and germline of non-mammalian (anamniote)
vertebrates could contribute to the transgenerational epigenetic
eriod
Occurrence of global
mC reprogramming in
primordial germ cells

Genomic regions without reprogramming in
primordial germ cells

sed
et al.,
ons
l.,
Rs),
ens-

Occurred Exons, 3ʹ UTRs, promoters, splice sites,
enhancers, gene bodies, CpG islands (CGIs) and
repeats, L1HS, long interspersed nuclear
element, short interspersed nuclear elements
(Alu), and ERVK (Gkountela et al., 2015; Guo
et al., 2015; Tang et al., 2015)

t al.,
line-
d

Occurred IAPs, Promoter and non-IAP-related CGIs, ERVK
(Guibert et al., 2012; Hackett et al., 2013;
Seisenberger et al., 2012; Skvortsova et al.,
2018)

iang Non-occurred Retention of paternal epigenetic memory
(Skvortsova et al., 2019)
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inheritance in humans and domestic animals (Bogdanovic et al.,
2011; Hontelez et al., 2015; Iwanami et al., 2020; Jiang et al.,
2013; Macleod et al., 1999; Oswald et al., 2000; Potok et al., 2013;
Skvortsova et al., 2019; Smith et al., 2012; Veenstra and Wolffe,
2001). Studies on the mechanisms that mediate the paternal
transgenerational epigenetic regulation processes have proved that
paternal environmental exposures, such as diets (Guo et al., 2020;
Lane et al., 2015; Li et al., 2019; Schagdarsurengin et al., 2012; Yang
et al., 2020b), environmental pollution (Bautista et al., 2020; Shukla
et al., 2019) or toxicants (DeCourten et al., 2020; Zhang et al., 2019),
and psychosocial stresses (Blaze and Roth, 2015; Cunningham et al.,
2021) could influence the spermatozoa DNA methylation and then
the gene expression and behaviors in the offspring.

Except for DNA methylation, the covalent modifications of his-
tones also mediate the parental effects (Campos et al., 2014). It has
been confirmed that histone modifications at some loci are
certainly transmitted between generations in mammals
(Brykczynska et al., 2010; Hammoud et al., 2009; Lismer et al.,
2020), fishes (Wang et al., 2016), and worms (Tabuchi et al.,
2018). Thus, it is plausible that they could also underlie some
paternal effects. Similar to DNA methylation, the inheritance of
significantly altered paternal histone modification through sperm
is the key to transgenerational inheritance. In mammalian sperm,
the majority of nucleosomes are replaced with protamines to
facilitate the compaction of the paternal genome (Fang et al., 2019).
Nevertheless, a small percentage of nucleosomes and their associ-
ated histone post-translational modifications (PTMs) are retained,
thereby forming a potential platform for the intergenerational
transmission of regulatory states (Stensballe et al., 2013; Alhasan
et al., 2020). Recent genome-wide studies revealed the existence
of robust inheritance of trimethylation of lysine 4 on histone H3
protein subunit (H3K4me3) and trimethylation of lysine 27 on
histone H3 protein subunit (H3K27me3) patterns through oocytes
in mice and their role in the regulation of embryonic development
(Guo et al., 2020; Vidal et al., 2013; Gray et al., 2017; €Ortqvist et al.,
2017). In line with these findings, overexpression of human lysine
specific demethylase 1 (LSD1) in the developing mouse sperm
resulted in the reduction of dimethylation of lysine 4 on histone H3
protein subunit (H3K4me2) at promoters of genes regulating
developmental and metabolic processes and was accompanied by
deregulation of gene expression in early F1 embryos (€Ortqvist et al.,
2017). Notably, these changes promoted developmental defects in
the offspring and were transmitted across three generations,
indicative of transgenerational epigenetic effects. Further in Cae-
norhabditis elegans, an epigenetic memory of germline transcrip-
tion, mediated histone H3K36 trimethylation (H3K36me3) on
active genes and H3K27me3 on repressed genes, is passed from one
generation to the next generation and essential for germline
viability (Kreher et al., 2018; Tabuchi et al., 2018). These results
demonstrate an example of non-environmentally responsive
epigenetic inheritance that is critical for normal development and
physiology.

Moreover, the blood-testis barrier, which is tightly controlled, is
also known to be permeable to a range of biologically active mol-
ecules, including numerous proteins and a rich assemblage of
coding and non-coding RNAs (Ryan and Kuzawa, 2020;
Schagdarsurengin et al., 2012). Both coding and noncoding RNAs
circulate ubiquitously in the body as “exosomes”. As tiny lipid
vesicles, the exosomes could be secreted from most cell and tissue
types (Li et al., 2014). These RNA-containing exosomes are abun-
dant in the blood, lymph tissues, cerebrospinal fluid, breast milk,
and semen, and can pass through the blood-testis barrier (Hu et al.,
2014; Zhang et al., 2012). Herein, the non-coding RNAs, including
Piwi-interacting RNA (piRNAs), microRNAs (miRNAs), transfer RNA-
derived small RNAs (tsRNAs), and long non-coding RNAs (lncRNAs),
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could also contribute to the paternal trans-epigenetic process
(Casier et al., 2019; Ord et al., 2020; Yan, 2014). Notably, small non-
coding RNAs (sncRNAs), tsRNAs, piRNAs, and miRNAs are emerging
as possible mediators of environmental information transmission
through sperm in mammals (Chen et al., 2016a; Dupont et al., 2019;
Ord et al., 2020; Rodgers et al., 2013, 2015; Sarker et al., 2019; Yan,
2014). In several cases, a zygotic injection of total sperm miRNA
(Chen et al., 2016b; Sarker et al., 2019; Wu et al., 2019a), sncRNA
fractions, or specific sncRNAs (Klastrup et al., 2019; Ord et al., 2020;
Zhang et al., 2018), and tsRNAs (Chen et al., 2016a) could partially or
fully recapitulate the paternally acquired phenotypes. Further, the
spermatozoal sncRNAs sequencing results have suggested the
transgenerational epigenetic roles of piRNAs and lncRNAs in
regulating the offspringmetabolism or phenotype changes (Kimura
et al., 2020; Ord et al., 2020).

Recently, the roles of gut microbiota in transgenerational “epi-
genetics” have been proposed. A recent study has proved that the
gut microbiome is environmentally contingent but its heritability is
universal (Grieneisen et al., 2021). For instance, the changes of
maternal microbiota could influence the metabolic phenotype
(Kimura et al., 2020), programing (Ja�sarevi�c and Bale, 2019),
behavior (Liu et al., 2021), and immune responses in the offspring
(Nyangahu et al., 2018). Further, the epigenetic inheritance induced
by microbiota alteration could also be related to the changed
microbiota production abundance, such as the increased short-
chain fatty acids (SCFAs) (Li, 2018c; Remely et al., 2014). Notably,
the inheritance of the gutmicrobiota from thematernal vaginal and
meconium microbiota or even maternal intestinal microbiota have
also been widely suggested (He et al., 2020; Kimura et al., 2020; Li,
2018c; Liu et al., 2021; Mortensen et al., 2021; Myles et al., 2013).
Two studies on the transgenerational roles of paternal microbiota
suggested that a paternal pre-conceptional unhealthy diet predis-
posed the offspring to the alterations of intestinal microbiota, liver
function, and immune responses in the offspring (Laxminarayan
et al., 2016; Nguyen et al., 2020). These researches suggested the
potential inheritance effects of paternal microbiota on offspring
phenotypes and microbiota, although the link between the epige-
netic modifications and intestinal microbiota has not been fully
established. Overall, the paternal transgenerational regulatory roles
in offspringmicrobiota needmore attention. It is worthmentioning
that these epigenetic mechanisms are not working along, and may
work synergistically or concomitantly to regulate the offspring's
gene expression and phenotypes.

Overall, the epigenetics modification that includes DNA
methylation, Histonemodification, non-coding RNAs expression, as
well as the gut microbiota inheritance could all contribute to the
transgenerational epigenetic inheritance process that may be
affected by the paternal nutrients' supplementation.

5. The use of antibiotics on the health, metabolism, and
development of offspring

Aforementioned, the environmental factors could induce
transgenerational epigenetic regulation in both humans and ani-
mals. Among them, antimicrobial reagents, antibiotics, in partic-
ular, have been a mainstay of modern medicine and animal feeding
for the past eight decades (Laxminarayan et al., 2016; Lees et al.,
2021). However, the side effects, such as the development of anti-
biotic resistance and drug residues in animal products have been
widely reported (Cheng et al., 2014; Lees et al., 2021; Marshall and
Levy, 2011). Specifically, the increasing use of antibiotics at sub-
therapeutic concentrations for growth promotion and disease
prevention (for example, as a substitute for hygiene) is placing
substantial selection pressure on the evolution of resistance to
antibiotics (Iwu et al., 2020). The worldwide antimicrobial
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consumption in farming animals is projected to rise from 63,151
tons in 2010 to 105,596 tons in 2030, placing great selection pres-
sure on resistant bacteria (Manikandan et al., 2020). The unregu-
lated use of antibiotics in animal feeding could further pollute
water and soils with the discharge of animal manures (Zhu et al.,
2013), which could, in turn, lead to more resistant pathogens and
then influence human health. Indeed, the antibiotic residues in
animal products, water, and soils could further increase the risk of
human antibiotic exposure.

The use of antibiotics could also influence an animal's evolution
by epigenetic modification. Recently, several studies have reported
that the use of antibiotics during pregnancy could increase the risk
of the development of asthma in offspring childhood (Alhasan et al.,
2020; Stensballe et al., 2013). Meanwhile, exposure to antibiotics
during pregnancy, but not in infantile age, is associated with an
increased risk of very early onset inflammatory bowel disease
regardless of gastroenteritis (€Ortqvist et al., 2019). The changes in
the intestinal microbiota and methylation of the imprinting genes
are assumed to be the reasons for the increased risk from antibi-
otics exposure during pregnancy (Gray et al., 2017; Vidal et al.,
2013). As for the transgenerational effects on the occurrence of
childhood asthma in the offspring, both paternal antibiotics and
maternal antibiotics exposures showed a similar effect (Loewen
et al., 2018; €Ortqvist et al., 2017). Even so, the potential trans-
generational epigenetic mechanisms of paternal and maternal an-
tibiotics exposures, especially the potential interaction between
inheritable microbiota alteration and epigenetic modifications,
have not been investigated yet, and are worth further study.
Fig. 1. The potential epigenetic mechanisms reveal how paternal nutrient supplementation
foods that affect the DNA methylation and demethylation process. (B) Foods that affect the h
process. (D) Foods that may affect the gut microbiota. AGO ¼ argonaute protein; dsRNA ¼ do
histone H3 protein subunit; Tet ¼ ten-eleven translocation enzyme; THF ¼ tetrahydrogen fol
hydroxymethylcytosine; 5-mC ¼ 5-methylcytosine.

146
6. Nutritional regulation of paternal transgenerational
epigenetics focuses on the growth and immune function of
animals

The main reason for using antibiotics in domestic animals is to
inhibit pathogenic bacteria and to regulate immune functions in
the gut, so the growth performance can be improved. This approach
could also be replaced with applying those nutrients that have
transgenerational epigenetic effects on immune function and the
regulation of metabolic processes. Yet, a large number of in vitro
studies have shown that some macronutrients such as fat and
protein, and some micronutrients including vitamins could be
involved in epigenetic regulation. These dietary nutrients could
regulate immune and development processes in four epigenetic
regulatory ways (Fig. 1). Firstly, some nutrients can act as methyl or
acetyl donors, or act as the conferment of methylation and
acetylation-related enzymes that participate in the DNA methyl-
ation and histone modification of the genes involved in the growth
and immunity (Fig. 1A and B). For instance, folic acid, choline,
betaine, and methionine contribute to the one-carbon metabolism
that is directly involved in DNA methylation or histone regulation,
which plays the roles in the regulation of gene expression of lipid
and glucose metabolism, immune function, and nucleic acid
metabolism (Friso et al., 2017; Mentch et al., 2015; Shyh-Chang
et al., 2013) (Fig. 1A). Sinclair et al. (2007) reported that the re-
striction of the folate, methionine and another one-carbon meta-
bolism related metabolites during pregnancy could reduce the
methylation level of CpG island in the offspring genome, which
affected offspring gene expression. (A) Methyl donor foods or demethylation related
istone acetylation process. (C) Foods that were not directly involved in the epigenetics
uble-stranded RNA; H3K4 ¼ lysine 4 on histone H3 protein subunit; H3K9 ¼ lysine 9 on
ic acid; SAM ¼ S-adenosylmethionine; SAH ¼ S-adenosyl-L-homocysteine; 5-hmC ¼ 5-
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could lead to preterm delivery and abnormal development of the
offspring; Timely folate supplementation could reverse these ef-
fects by altering the genomic DNA methylation (Sinclair et al.,
2007). Another study in chicken demonstrated that paternal
folate supplementation could have trans-generational regulation
on the lipid and glucose metabolism in broiler offspring, where the
energy utilizationwas improved by increasing gluconeogenesis and
glycolysis while reducing lipid catabolism (Wu et al., 2019a).
Furthermore, the sperm DNA methylation was involved in the
methionine synthase reductase (Mtrr) mutation-induced offspring
abnormal development (Padmanabhan et al., 2013). In addition,
vitamin B6, vitamin B12, alpha-ketoglutarate, Fe2þ, vitamin C
(ascorbic acid), and Zn2þ all act as the cofactors to these enzymes
that are involved in the one-carbon metabolism or directly serve as
the coenzyme of DNA methyltransferase (DNMT), Tet, and histone
deacetylase (HDAC) enzymes. These nutrients could also influence
DNA methylation or histone methylation process and then regulate
the metabolism and development process of the offspring (Anand
and Marmorstein, 2007; Friso et al., 2017; Szarc vel Szic et al.,
2010; Teperino et al., 2010; Young et al., 2015). Except for the
methyl donors, nutrients functioning as acetyl donors can affect
histone acetylation through the gene expression process (Fig. 1B).
Briefly, the metabolism of glucose, lipids, and proteins are all
involved in acetyl-coenzyme A (Acetyl-CoA), which serves as the
main donor of acetyl moiety. Thus, these nutrients could be asso-
ciated with the regulation of offspring immune function and
growth through histone acetylation modification (Wellen et al.,
2009).

Except for these nutrients, some other metabolites that are not
directly involved in the epigenetics process can also exhibit a
transgenerational epigenetic regulatory effect (Fig. 1C). For
instance, the paternal astragalus polysaccharide supplementation
to broilers affected the offspring's immune functions, including
enhancing spleen immunity and modulating the transgenerational
endotoxin tolerance-like function in the jejunum, which are asso-
ciated with the fight against pathogen infections (Li et al., 2018a,
2018b). Vitamin A is involved in the trans-generational effect on the
offspring's immune function, such as the increase of intestinal
Peyer's patches numbers (van de Pavert et al., 2014). Notably, the
time window is crucial for these nutrients to implement the trans-
generational influence on the offspring metabolism and immune
function, for example, during the spermatogonia stem cell forma-
tion and the spermatogenesis periods (Bogdanovic et al., 2011;
Hackett and Surani, 2013; Hontelez et al., 2015; Jiang et al., 2013;
Macleod et al., 1999; Oswald et al., 2000; Potok et al., 2013; Sanford
et al., 1987; Smith et al., 2012; Trasler, 2009; Veenstra and Wolffe,
2001). Folate is involved in the DNA methylation process in
broilers, and a folate supplementation could affect the spermato-
zoal miRNA and lncRNA expression profiles and regulate the off-
spring's metabolism (Wu et al., 2019a). Paternal lipid
supplementation affected the sperm's tsRNA expression and
induced an alteration of the glucose metabolism and increases in-
sulin resistance in the offspring (Yan, 2014). These researches
suggest that the aforementioned nutrients could play a trans-
generational epigenetic regulation role without directly taking part
in the epigenetic modification process.

It has been reported that the parental microbiota can modulate
offspring's development, body mass, and fecundity in a polypha-
gous fruit fly (Nguyen et al., 2020). A recent study proved that
paternal exposure to inorganic arsenic altered the intestinal
microbiome which was involved in the trans-generationally regu-
latory effects on the offspring lipid metabolism (Gong et al., 2021).
The gut microbiome heritability is universal, and the inheritance of
the gut microbiome could link with the inheritable genomic and
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even epigenetic information (Grieneisen et al., 2021). In other
words, the above epigenetic modification alterations such as
inheritable small RNAs, DNA methylations, and Histone modifica-
tions information could further influence the gut microbiota colo-
nization, which could, in turn, induce the heritable gut microbiota
(Fig. 1D). Further, considering the sperms and seminal fluid contain
microbiota (Baud et al., 2019; Javurek et al., 2017), it may also be
possible a change in paternal microbiota that could influence the
offspring microbiota or directly interact with the epigenetic
modification. Polysaccharides, probiotics, and prebiotics all affect
the microbiota, so their potential effects on the offspring micro-
biota or epigenetics modification need further studies.

To understand the paternal nutritional effects on the offspring
metabolism, immune, and growth performance in domestic ani-
mals, more researches have been conducted. In a three-generation
study in pigs, the F0 generation boars were fed a diet supple-
mented with methylating micronutrients, and the F2 generation
had lower fat percentage and increased shoulder muscle per-
centage compared with un-supplementation control; The signif-
icant differences in hepatics DNA methylation were noted in the
F0 and F2 generations (Braunschweig et al., 2012). In a chicken
model, paternal folate supplementation to broilers altered sper-
matozoal miRNAs and lncRNAs, leading to the transgenerational
effects on the lipid and glucose metabolism in the offspring
(Wu et al., 2019a). A paternal dietary methionine supplementa-
tion to chicken improved the carcass traits and meat quality in
their progeny (Elsharkawy et al., 2021). A paternal dietary Astra-
galus polysaccharide supplementation to broilers affected the
sperm DNA methylome and induced transgenerational endotoxin
tolerance-like effect in the jejunum mucosa and spleen in the
offspring, enhancing their ability to reduce inflection caused by
pathogen infection (Li et al., 2018a, 2018b). Furthermore, epige-
netic modifications in the sperm of cattle were associated with
environmental changes (Rahman et al., 2014; Wu and Sirard,
2020). A recent study with cattle suggested that the paternal
genome and epigenome could impact the gestation length
potentially through regulation of embryonic development (Fang
et al., 2019). Although these studies suggest that paternal nutri-
tion improvement may regulate offspring development and
metabolism, limited studies have been conducted so far to
determine the effect of nutrition on the epigenetic maturity of
male gametes in cows, cattle, and lambs, and its consequence on
subsequent offspring.

In summary, those nutrients could directly take roles in the
epigenetic process, or chronically affect the gene expression path-
ways and spermatozoal epigenetic markers such as non-coding
RNAs or DNA methylation, therefore, showing transgenerational
effects on the immune and growth performance of the offspring.
There could be a possibility to use these nutrients as substitutes for
antibiotics in animal production.

7. Opportunity of reducing the antibiotics used in animal
feeding when considering the paternal transgenerational
nutritional epigenetic effects

The transgenerational epigenetic inheritance induced by
paternal nutrition supplementation has been widely suggested in
human offspring health and disease regulation (Dimofski et al.,
2021). In comparison, limited study has been performed to
study the paternal nutritional effects on offspring metabolism and
growth. Through those above discussions in this review, we hope
the paternal transgenerational nutritional epigenetic effects to
reduce the use of antibiotics in animal feeding could raise more
attention. Since we want to find suitable nutrients which could
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exhibit paternal transgenerational effects on offspring health,
metabolism, and growth, I do believe 3 aspects of research are
worthy of further study. Firstly, the paternal transgenerational
effects of antibiotics, as well as the banning of antibiotics in do-
mestic animals, can be studied when considering the epigenetic
modification changes and gene expression changes, as well as the
gut microbiota changes that related to their health, metabolism,
and growth performance. Secondly, more research should be
performed to study the differential paternal transgenerational
epigenetic mechanism between those nutrients that could take
part in the epigenetics modification process, and those nutrients
could only chronically affect the gene expression pathways and
spermatozoal epigenetic markers such as non-coding RNAs or
DNA methylation (Wu et al., 2019a; Li et al., 2018a, 2018b).
Notably, more researches focused on the potential paternal
transgenerational epigenetic effects and mechanisms of these
antibiotics-replacement nutrients, that could exhibit the immune
regulation or growth-promoting effects, are derived more atten-
tion and needed further research. Herein, the potential antibiotics
replacement nutrients which may have paternal transgenera-
tional effects can be selected. Last but not the least, further good
quality data are needed to define the real effect dose of those
antibiotics' replacement nutrients in different feeding conditions
so that we can finally welcome the coming of antibiotics-free
animal feeding century.

8. Conclusion

A stable gene expression pattern, that includes the significantly
increased metabolic function and decreased immune and anti-
stress functions, has been built via genetic selection and the use
of AGPs. In order to maintain the growth performance and health of
domestic animals when the AGPs were banned, the paternal
nutritional epigenetic effects, which includes the formation and
inheritance of spermatozoal DNA methylation, histone modifica-
tion, chromatin degeneration, and non-coding RNAs differential
expression, may contribute to improve the immune and anti-stress
functions, enhance intestinal health, maintain high digestion, ab-
sorption, and metabolic functions. Hence, further research and
application of transgenerational epigenetic regulation theory in the
animal production process will solve the problems left by genetic
breeding from the direction of gene epigenetic modification and
expression regulation. These effects might become a novel method
to maintain or enhance animals' growth and health. Based on the
analysis of the epigenetic mechanism of inheritance and the
epigenetic regulation by nutrition, we believed that paternal
nutritional manipulation on epigenetic modification of those genes
relating to the metabolism and immunity could improve the
growth performance and immune function in livestock and poultry.
By further identifying the underlying transgenerational epigenetic
mechanism, the appropriate nutritional requirements of breeder
animals should be reconsidered.
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