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Abstract

One of the most precise methods to detect prostate cancer is by evaluation of a stained

biopsy by a pathologist under a microscope. Regions of the tissue are assessed and graded

according to the observed histological pattern. However, this is not only laborious, but also

relies on the experience of the pathologist and tends to suffer from the lack of reproducibility

of biopsy outcomes across pathologists. As a result, computational approaches are being

sought and machine learning has been gaining momentum in the prediction of the Gleason

grade group. To date, machine learning literature has addressed this problem by using fea-

tures from magnetic resonance imaging images, whole slide images, tissue microarrays,

gene expression data, and clinical features. However, there is a gap with regards to predict-

ing the Gleason grade group using DNA sequences as the only input source to the machine

learning models. In this work, using whole genome sequence data from South African pros-

tate cancer patients, an application of machine learning and biological experiments were

combined to understand the challenges that are associated with the prediction of the Glea-

son grade group. A series of machine learning binary classifiers (XGBoost, LSTM, GRU,

LR, RF) were created only relying on DNA sequences input features. All the models were

not able to adequately discriminate between the DNA sequences of the studied Gleason

grade groups (Gleason grade group 1 and 5). However, the models were further evaluated

in the prediction of tumor DNA sequences from matched-normal DNA sequences, given

DNA sequences as the only input source. In this new problem, the models performed

acceptably better than before with the XGBoost model achieving the highest accuracy of 74

± 01, F1 score of 79 ± 01, recall of 99 ± 0.0, and precision of 66 ± 0.1.
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1 Introduction

Prostate cancer is the leading male cancer in South Africa and is the second most frequently

diagnosed cancer among men globally [1]. As men live longer, there is an increase in the

occurrence and mortality of the disease [2]. Except for age, the main risk factor is hereditary.

Other factors such as race, high-calorie diet, and exposure to heavy metals have a significant

impact on the risk of occurring the disease [3, 4].

When it comes to the diagnosis of prostate cancer, a prostate biopsy procedure is com-

mon [5]. This procedure involves the extraction of tissue samples from the prostate by using

specialised biopsy needles. It is typically performed by using an ultrasound probe that is

placed in the rectum which than produces a real-time image of the prostate. The samples

produced from this procedure are then taken to a pathologist for evaluation and grading

[6, 7].

The Gleason grade group system is the most reliable method and criterion for selection of

therapy. In 2014, the International Society of Urological Pathology (ISUP) [8] released supple-

mentary guidance on an improved prostate cancer grading system called the ISUP-Grade

Group. This system is simpler, with just five grades, 1 to 5, to describe the growth of the

tumor. Grade 1 refers to the least aggressive growth of the tumor, and grade 5 refers to the

most aggressive growth [9].

Due to the difficulty and natural subjectivity of this system, Gleason grading is affected by

large discordance rates among pathologists (30-50%) [10–15]. However, grades provided by

experts with numerous years of experience are more accurate and precise more than grades

provided by pathologists with only a few years of experience [16–19], indicating the need to

improve the clinical usefulness of the system by improving grading discordance and accuracy

[20].

In this work, the DNA sequences that were sequenced from patients that present with a

Gleason grade 1 and 5 are studied. The objective of this work is to find discriminatory features

within the DNA sequences, and map them to their correct Gleason grade group using machine

learning. Two key cancer genes are investigated: BRCA 1 and BRCA 2. These genes have been

key genes of interest in prostate cancer [21]. Studies that interrogated these two genes suggest

that men who harbor a disease-associated BRCA 2 allele have an increased predisposition of

prostate cancer (2 to 5-fold increased risk). This finding suggests that deleterious mutations in

BRCA 2 play a significant role in the susceptibility of prostate cancer [22, 23]. Different from

BRCA 2 mutations, mutations in BRCA 1 have been inconsistently correlated with the risk of

prostate cancer. Studies that have evaluated prostate cancer risk in men that carry BRCA 1

mutations have reportedly been negligible, but not insignificant [24, 25]. The contributions of

this work are summarised as follows:

• this study specifically compares two extremes of the Gleason grade group (Gleason grade

group 1 and 5)

• while previous studies have used medical images and clinical features [26–31] as input to

their Gleason grade group predictor models, this study explores the challenges that are

encountered when blood DNA sequences are used as the only input source to the machine

learning models.

This work is divided as follows: first, a literature review will be given that highlights the gap

in the prediction of the Gleason grade group in the context of machine learning. Second, the

data and description of methods will be discussed. Finally, the results, discussion, and conclu-

sion section will follow.
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2 Literature survey

Recently, deep learning has emerged as a powerful tool to automate the Gleason Grading sys-

tem. Deep learning systems make use of multi-faceted neural networks that are able to extract

complex features from data. Recent work [26] designed a Gleason score annotator by using a

convolutional neural network (MobileNet) on tissue microarrays images. The final output

layer of this architecture produced a probability distribution over four possible Gleason classes.

A key limitation in this work is that the training, testing, and validation sets were too small,

which led to some bias in the predictions produced by the model. A recent study [27] similar

to this one also used a convolutional neural network (Inception V3) to develop a Gleason

score annotator using whole slide images. In addition to predicting a Gleason pattern, this

architecture first provided a probability distribution over an image being benign or malignant.

Different from the above work, a study [28] applied a convolutional neural network on multi-

parametric magnetic resonance imaging (mpMRI) images of prostate cancer patients to extract

deep entropy features. Then, the features extracted from the convolutional neural network

were used as input to a Random Forest model for prediction of the Gleason grade group. Even

though the training data was too small, the performance measure would have been more reli-

able if the models were cross-validated. Biopsy images of patients who underwent a prostate

biopsy following suspicion of prostate cancer has also been used as input to convolutional neu-

ral networks (U-Net and an Inception-v3 Network) for the prediction of the Gleason grade

group and cancer detection [29, 30]. To validate the performance of the deep learning system,

the predictions from the models were compared with those of pathologists where a high agree-

ment was found between the deep learning systems and the pathologists.

Unlike using convolutional neural networks for the prediction of the Gleason grade group,

a study [31] developed a machine learning assisted model that predicts the probability of a

patient having a Gleason grade upgrade before treatment. The input used to the machine

learning models (Logistic Regression, Random Forest, Support Vector Machine) were clinical

features such as age, prostate-specific antigen (PSA) level, and the clinical stage.

Overall, much emphasis has been placed on creating machine learning models that predict

the Gleason grade group from medical images and clinical data. To the best of our knowledge,

this is the first study that focuses on DNA sequences as the only input source to a Gleason

grade group prediction model. This work explores the challenges that are associated with find-

ing discriminatory signatures within the DNA sequences of patients that present with a Glea-

son grade group of 1 and 5.

3 Data description, data representation methods, machine learning

algorithms, and sequence similarity

3.1 Data description

Patients were recruited and consented according to approval granted from the University of

Pretoria Faculty of Health Sciences Research Ethics Committee 43/2010 (South Africa); DNA

sequencing was generated under approval granted from the St. Vincent’s Hospital Human

Research Ethics Committee (HREC) SVH/15/227 in Sydney (Australia), and this study was

approved by the Faculty of Engineering, Built Environment & IT (Ethics Reference No: 43/

2010; 11 August 2020). The data was fully anonymized before analysis.

The DNA sequences of twelve patients with a histopathological ISUP-GG of 1 (low risk

prostate cancer) and 5 (high-risk prostate cancer) were selected for analysis. The DNA

sequences were aligned using the BWA-MEM aligner [32] to produce BAM files. The BAM
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files were converted to FASTA files using samtools [33] and an in-house python script was

used for pre-processing and removing IDs from the blood DNA sequences.

The blood DNA sequences were then truncated into k-mers. k-mers are defined as all the

possible substrings of length k that are contained in a sequence [34]. The classification problem

in this work is defined as follows: given a DNA sequence x that consists of k-mers of size 63,

can a machine learning function f learn the correct mapping from the input x to the outcome

variable y (Gleason grade group of 5 or 1):

y ¼ f ðxÞ ð1Þ

After preprocessing, the data was transformed into the below data structure (Fig 1).

3.2 Data representation methods

To vectorize the k-mers, the Term Frequency—Inverse Document Frequency (TF-IDF) [35]

algorithm were used. TF-IDF is a statistical method that calculates how significant a token or

word is to a document in a set of documents. Two matrices are used to calculate the TF-IDF

score: term frequency (TF), which is a measure of how many times a token appears in a docu-

ment and inverse document frequency (IDF), is a measurement of how frequent or rare a

token is in the entire document set. Multiplying these two measurements produces a TF-IDF

score of each word in the document [36]. The main disadvantage of TF-IDF is that it produces

extremely high dimensional vectors [37]. To overcome this, the Principal Component Analysis

(PCA) [38] was used as a data reduction technique to transform the high dimensional vectors

into 2-dimensional (d) vectors.

The other vectorization method that was used was the Skip-gram method from the word2-
vec algorithm. This vectorization method was chosen as it has been found to be robust with

regards to transforming DNA or genomic data into dense vector representations in prepara-

tion for machine learning [39–42]. In the context of this work, the usefulness of the Skip-gram

model lies in determining k-mers that are important in predicting the surrounding k-mers in a

DNA sequence. Precisely, given a sequence of training k-mers w1, w2, w3, . . ., wT the training

objective of the Skip-gram model is to maximise the average log probability:

1

T

XT

t¼1

X

� c�j�c;j6¼0

logpðwtþjjwtÞ ð2Þ

where c is the size of the context k-mers in the training set.

Fig 1. Blood DNA sequences x transformed into k-mers with their corresponding Gleason grade group y.

https://doi.org/10.1371/journal.pone.0267714.g001
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In this work, the Skip-gram k-mer tokens were represented by a continuous vector of size

100, and summed up with other vectors of the same sequence to give a single continuous vec-

tor that represents the entire sequence.

3.3 Machine learning algorithms

After obtaining the 2-d TF-IDF vectors from PCA, they were used as features to several

machine learning models: Gradient boosting algorithm: eXtreme Gradient Boosting

(XGBoost), Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and Random

Forest (RF). XGBoost is an ensemble boosting learning method that makes use of several

learners to make predictions. This method is different from other ensemble methods as it

builds a sequence of originally weak models into progressively more powerful models, where

the errors made by previous models are corrected in subsequent models [43]. The steps

involved in the ensemble technique are as follows:

• first, an initial model Fo is initialised to predict the target variable y. This model produces a

residual error (y − Fo).

• next, an additive learner h1 is fit onto the the residuals from the previous step.

• than, Fo and h1 are summed to produce f1, which is the boosted version of fo. The residual

error from f1 will be lower in comparison to the residuals of fo:

F1ðxÞ ( Fo þ h1ðxÞ ð3Þ

To improve the performance of f1, the residuals of f1 can be modeled to create a new model

f2:

F2ðxÞ ( F1ðxÞ þ h2ðxÞ ð4Þ

This procedure can be performed for a few iterations m until residual errors have been mini-

mised as much as possible:

FmðxÞ ( Fm� 1ðxÞ þ hmðxÞ ð5Þ

Instead of fitting the additive learners hm(x) on the residuals, fitting it on the gradient of

the loss function makes this process more generic and applicable across all loss functions.

Hence, XGBoost uses the gradient descent algorithm to minimise the loss [43, 44].

The LSTM and GRU are variants of Recurrent Neural Networks (RNNs) that regulate

information through the network by using several gates. The gates regulate the flow of infor-

mation by learning which timestamps are important to keep or discard [45].

In an LSTM cell (Fig 2) the sigmoid function called the forget gate is responsible for decid-

ing which information will be discarded from the cell state. This gate takes as input xt and the

previous hidden state ht−1, than outputs a value between 0 and 1 for each value in the cell state

Ct−1. If the value is 1, the information from the previous hidden state will be kept and if the

value is 0, the information from the previous previous hidden state will be discarded [46–48]:

ft ¼ sðWf � ½ht� 1; xt� þ bf Þ ð6Þ

Next, the input gate it has to determine which new information will be added in the cell

state. Than, a tanh layer will create a vector of new candidate values ~Ct , that will be added to
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the cell state:

it ¼ sðWi � ½ht� 1; xt� þ biÞ ð7Þ

~C ¼ tanhðWC � ½ht� 1; xt� þ bCÞ ð8Þ

To update the old cell state Ct−1 into the new cell state Ct, the old state is multiplied by ft.
Next, it � ~Ct is added, which are the new candidate values:

Ct ¼ ft � Ct� 1 þ it � ~Ct ð9Þ

Finally, the output that is based on the cell state is given. The cell state is put through a tanh
function and multiplied by the output of the sigmoid gate: [46–48]

ot ¼ sðW � ½ht� 1; xt� þ b�Þ ð10Þ

ht ¼ ot � tanhðCtÞ ð11Þ

A three layer LSTM architecture was selected with a total of 224 hidden units. The output

layer consisted of a sigmoid activation function that provides a probability distribution of a

sequence either belonging to a patient with a Gleason grade group of 1 or 5. The training data-

set was divided over 50 batches and trained over 5 epochs. Dropout rate at 60% was used to

control overfitting of the model.

GRUs (Fig 3) are similar to LSTMs in that they both use gates to regulate the flow of infor-

mation. GRUs are faster to train than LSTMs, and also have have a simpler architecture [49–

51].

Inside a GRU cell, at each timestamp t, the cell takes an input Xt and the hidden state ht−1

from the previous timestamp. Next, the cell will output a new hidden state ht which will be fed

Fig 2. Architecture of an LSTM unit [59].

https://doi.org/10.1371/journal.pone.0267714.g002

PLOS ONE Discriminatory Gleason grade group signatures of prostate cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0267714 June 9, 2022 6 / 17

https://doi.org/10.1371/journal.pone.0267714.g002
https://doi.org/10.1371/journal.pone.0267714


as input to the next timestamp. Unlike the LSTM that has three gates, the GRU has two gates:

the update gate and the reset gate. The reset gate rt is in charge of the short-term memory of

the network. It is responsible for deciding which timestamps to discard [49–51]:

rt ¼ sðXt � Ur þ Ht� 1 �WrÞ ð12Þ

rt will output a value between 0 and 1 due to the sigmoid function. As previously men-

tioned, if the output value is equal to 1, this means that the timestamps from the previous hid-

den state ht−1 will be kept. And if the output value is 0, the timestamps from the previous

hidden state ht−1 will be discarded [49–51].

To generate the hidden state Ĥ t of a GRU cell, a two-step process is followed. First, a candi-

date hidden state Ĥ t needs to be generated:

Ĥ t ¼ tanhðXt � Ug þ ðrt � Ht� 1Þ �WgÞ ð13Þ

the input Xt and the hidden state from the previous timestamp Ht−1 are multiplied by the out-

put of the reset gate rt. Next, this is passed to a tanh function which outputs the candidates hid-

den state Ĥ t. The usefulness of this equation is important in showing how the value of the

reset gate is used to control how much influence the previous hidden state can have on the can-

didate state [49–51].

Similarly, the GRU cell also has an update gate which is responsible for determining how

much past information needs to be kept:

ut ¼ sðXt � Uu þHt� 1 �WuÞ ð14Þ

This equation is similar to the one used by the reset gate, the only key differences are the

new weight matrices Uu and Wu [49–51].

The GRU models were configured with a stack of four hidden layers and a total of 240 hid-

den units. The output layer was also a dense layer with a sigmoid activation function, and the

model was trained over 5 epochs with the training set divided over 50 batches. Dropout (at

Fig 3. Architecture of a GRU unit [59].

https://doi.org/10.1371/journal.pone.0267714.g003

PLOS ONE Discriminatory Gleason grade group signatures of prostate cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0267714 June 9, 2022 7 / 17

https://doi.org/10.1371/journal.pone.0267714.g003
https://doi.org/10.1371/journal.pone.0267714


60%) was also used to control overfitting. All the machine learning models were validated via a

Repeated k-fold cross validation (cv) (cv = 5, runs = 5). The experiments in this work were

conducted on a NVIDIA Tesla P100 GPU virtual machine with 100 GB of memory.

RF was also used to find discriminatory signatures between Gleason grade group 1 and 5

blood DNA sequences. In RF, several decision trees are created simultaneously. In the final

prediction, the multiple decision trees are merged in order to determine the final answer,

which will be the average of all the decision trees [52]. To decide how the nodes of the decision

trees would branch, the default Gini index was used:

Gini ¼ 1 �
XC

i¼1

ðpiÞ
2

ð15Þ

Where pi is the relative frequency and c represents the number of classes. This equation makes

use of the class and probability to determine the Gini of each branch on a node [52].

Another binary machine learning model that was used was the Logistic Regression (LR).

The Skip-gram k-mer features were used as input to a Logistic Regression (LR) model. A logis-

tic regression model is a machine learning model that uses a decision boundary to separate a

set of data points into their distinct classes. A logistic regression is comparable to linear regres-

sion, the key difference between them is that logistic regression is used when the target variable

is categorical, while linear regression is used when the target variable is continuous. In this

study, the target variable is categorical (1 = Gleason grade group of 5, 0 = Gleason grade group

of 1). Logistic regression uses a Sigmoid function to convert the probability values z to be in

the range between 0 and 1:

SðzÞ ¼
1

1þ �z
ð16Þ

This function transforms −1, 0 and +1 to 0, 0.5, and 1 respectively. If the probability

value z for a data point is close to +1, this is an indication that the data point is above the

decision boundary, hence it will belong to the positive class. In contrast, If the the probability

value z for a data point is close to −1, it means that the data point is below the decision

boundary, meaning it belongs to the negative class. If the data point is predicted to be on the

decision boundary, the value of z is 0, and the Sigmoid function will transform it to 0.5, mean-

ing that it has a 50% probability of belonging to the positive class [53, 54].

3.4 Sequence similarity

Multicollinearity is a problem in machine learning where two or more predictor variables are

highly correlated with each other [55]. This presents a problem because the individual effects

of the predictor variable on the target variable would not be distinguishable. One of the meth-

ods that is applied to deal with multicollinearity in machine learning is to remove the collinear

variables. In the context of this work, removing collinear k-mers would result in a completely

new set of DNA sequences since the sequences would have to be truncated either in the begin-

ning, middle, or at the end. In the context of this work, multicollinearity can also be equated to

sequence similarity in genomics. Sequence similarity is an important concept in genomics that

refers to the degree of similarity between sequences [56]. This is often indicated as a percentage

of identical bases over a given length of the alignment. The Basic Local Alignment Search Tool

(BLAST) was used to evaluate the similarity between blood DNA sequences [57]. When a

sequence similarity test is performed between a pair of sequences, several attributes are

returned such as the E value, query cover, and percent identity. In this work, only the percent
identity is reported. The percent identity refers to how similar the query sequence is to the
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subject sequence. Specifically, it describes the number of bases that are identical in the

sequences. A significant match is 100% [58].

A figure (Fig 4) has been generated to provided an overview of all the methods that were

used in this work.

4 Results and discussion

4.1 Sequence similarity results and TF-IDF Visualizations

For both BRCA 1 and BRCA 2, the results (Tables 1 and 2) illustrate that most sequences are

highly similar with a percent identity of 90-100%. The lowest percent identity across the

sequences is 70-80%, which is still too high. This indicates that blood DNA sequences that are

derived from patients that present with Gleason grade group of 5 are not that very different

from patients that present with a Gleason grade group of 1. There might exist a small region of

dissimilarity, however, at this stage, the number of sequences available for this experiment are

inadequate to capture the region of dissimilarity. It is probable that hundreds of thousands of

DNA sequences are required to capture this region.

Next, the impact of this high similarity is investigated in the machine learning models to

determine if discriminatory signatures (region of dissimilarity) within the DNA sequences can

be detected and mapped to their correct Gleason grade group.

To ensure that the machine learning models are trained on distinct sequences, highly simi-

lar sequences were removed using BLAST. Before the removal of highly similar sequences, the

total number of blood DNA sequences from the BRCA 1 gene were 235 711. For BRCA 2, the

total number of the sequences were 243 822. After the removal of highly similar sequences, the

table (Table 3) shows the new data distribution and the total number of sequences in each

class. Blood DNA sequences that shared more than 25 bases of homology were considered as

similar and were thus removed.

In keeping with the high sequence similarity observation amongst the blood DNA

sequences as shown above, the TF-IDF visualisation of the k-mers (Figs 5 and 6), also show

that there is a great overlap between the k-mer features of the two Gleason grade groups as no

separable clusters were detected.

4.2 Machine learning results

The RF model achieved the highest accuracy as shown (Table 4). However, the recall was too

high. This is an indication that the majority of the DNA sequences were predicted as positive

Fig 4. This figure represents the summary of all the methods that were executed in this work.

https://doi.org/10.1371/journal.pone.0267714.g004
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(Gleason grade group 5), with very few true negatives (Fig 7). This trend was also observed

with the other models as well, which is an indication that not enough learning was achieved.

Considering the results of the BRCA 2 gene (Table 5), the LR and GRU models achieved the

highest accuracy while having the highest recalls indicating that a large number of sequences

were predicted as positive. The confusion matrix of the GRU model is shown (Fig 8).

Table 1. Sequence similarity within a Gleason grade group of 5 and 1 for BRCA 1 blood DNA sequences.

Grouped by percentage of identical matches Total no. of local alignments

Gleason grade group 5 90-100 7170891

80-90 3685304

70-80 62500

Gleason grade group 1 90-100 7270628

80-90 3732281

70-80 56560

https://doi.org/10.1371/journal.pone.0267714.t001

Table 2. Sequence similarity within a Gleason grade group of 5 and 1 for BRCA 2 blood DNA sequences.

Grouped by percentage of identical matches Total no. of local alignments

Gleason grade group 5 90-100 6256450

80-90 910123

70-80 17970

Gleason grade group 1 90-100 6510144

80-90 932427

70-80 16167

https://doi.org/10.1371/journal.pone.0267714.t002

Table 3. Data count and distribution of classes after the removal of highly similar DNA sequences.

Gleason grade group 5 Gleason grade group 1

BRCA 1 3111� 58% 2210� 42%

BRCA 2 3108� 62% 1941� 38%

https://doi.org/10.1371/journal.pone.0267714.t003

Fig 5. Visualisation of TF-IDF kmers for BRCA 1.

https://doi.org/10.1371/journal.pone.0267714.g005
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While some of machine learning models achieved just above average performance, they all

seemed to classify most blood DNA sequences as positive (Gleason grade group 5), which sug-

gests that no discriminatory signatures were discovered within the blood DNA sequences of

patients that present with a Gleason grade group of 5 and Gleason grade group of 1. This find-

ing further stipulates that are still a lot of opportunities for improvement with regards to

designing more robust data representation methods and machine learning classifiers that

Fig 6. Visualisation of TF-IDF kmers for BRCA 2 kmers.

https://doi.org/10.1371/journal.pone.0267714.g006

Table 4. This table shows the results of the machine learning models using data from the BRCA 1 gene.

Acc (%) F1 (%) Recall (%) Precision (%)

XGBoost 57 ± 1.6 69 ± 1.3 85 ± 2.0 58 ± 1.8

LSTM 58 ± 1.5 74 ± 1.3 100 ± 0.0 58 ± 1.5

GRU 58 ± 1.1 74 ± 0.9 100 ± 0.0 58 ± 1.1

LR 58 ± 1.7 73 ± 1.3 98 ± 0.7 58 ± 1.6

Random Forest 59 ± 1.7 74 ± 1.4 98 ± 0.8 59 ± 1.7

https://doi.org/10.1371/journal.pone.0267714.t004

Fig 7. Confusion matrix of the Random Forest model for BRCA 1.

https://doi.org/10.1371/journal.pone.0267714.g007
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are adequately sensitive to detect discriminatory Gleason grade groups signatures in DNA

sequences.

4.3 Prediction of tumor DNA sequences

Having observed that the above machine learning models were not able to adequately find dis-

criminatory signatures in the DNA sequences of the two Gleason grade groups, a new classifi-

cation question was formulated: Given tumor and matched-normal DNA sequences, can the
models predict tumor DNA sequences?. This new problem was formulated to further assess the

usefulness of the machine learning models and determine if other classification problems can

be learned using DNA sequences as the only input source to the models. In addition, a bigger

dataset was used that contained 304 450 tumor DNA sequences and 305 214 matched-normal

DNA sequences from the APC gene of colorectal cancer patients.

The three machine learning models (LR, RF, and XGBoost) were evaluated to establish if

they can distinguish tumor DNA sequences from normal DNA sequences. The results

(Table 6) show an overall improvement in the performance of the models compared to the

results seen in the previous section of the prediction of the Gleason grade group. In the

Table 5. This table shows the results of the machine learning models using data from the BRCA 2 gene.

Acc (%) F1 (%) Recall (%) Precision (%)

LSTM 58 ± 1.5 73 ± 1.3 100 ± 0 58 ± 1.6

XGBoost 61 ± 1.3 74 ± 1 93 ± 1.3 62 ± 1.4

Random Forest 61 ± 0.1 75 ± 0.8 99 ± 0.6 61 ± 1.1

LR 62 ± 1.3 76 ± 0.1 99 ± 0.2 62 ± 1.3

GRU 62 ± 1.2 77 ± 0.9 100 ± 0 62 ± 1.2

https://doi.org/10.1371/journal.pone.0267714.t005

Fig 8. Confusion matrix of the GRU model for BRCA 2.

https://doi.org/10.1371/journal.pone.0267714.g008

Table 6. This table shows the results of the machine learning models using data from the APC gene.

Acc (%) F1 (%) Recall (%) Precision (%)

LR 65 ± 0.1 67 ± 0.1 71 ± 0.1 63 ± 0.1

Random Forest 71 ± 0.1 75 ± 0.3 87 ± 0.3 66 ± 0.3

XGBoost 74 ± 0.1 79 ± 0.1 99 ± 0.0 66 ± 0.1

https://doi.org/10.1371/journal.pone.0267714.t006
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previous section, the models struggled to predict the Gleason grade group given DNA

sequences and in this section of results, although there is plenty of room for improvement; the

models were able to satisfactorily separate tumor DNA sequences from matched-normal DNA

sequences. The confusion matrix of the highest performing model (XGBoost) is shown (Fig 9).

The main limitations of this work include the use of a small sample size, particularly the

BRCA 1 and BRCA 2 DNA sequences. For this reason, the machine learning models were not

able to competently distinguish Gleason grade group of 5 DNA sequences from Gleason grade

group of 1 DNA sequences. The other limitation in this work include the lack of sufficient

prior research on this topic, particularly research that has used DNA sequences as the only

input source to machine learning or deep learning classifiers in the prediction of the Gleason

grade group problem. Subsequently, it was difficult to benchmark the results of this work with

those in the literature.

5 Conclusion

The goal of this work was to apply machine learning algorithms in the prediction of the Glea-

son grade group in blood DNA sequences of high-risk and low-risk prostate cancer patients.

The machine learning models were not able to sufficiently discriminate between Gleason

grade group of 5 DNA sequences from Gleason grade group of 1 DNA sequences. The reasons

for this occurred as a result of having a large number of sequences that share a substantial

amount of sequence homology. Even though this was circumvented by removing highly simi-

lar sequences, it was still not sufficient as the machine learning classifiers still produced a high

number of false positives and a negligible amount of true negatives. Since the machine learning

models were not able to discriminate between the DNA sequences of the two Gleason grade

groups, they were further evaluated to determine their usefulness in the prediction of tumor

Fig 9. Confusion matrix of the XGBoost model for the APC gene.

https://doi.org/10.1371/journal.pone.0267714.g009
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DNA sequences from matched-normal DNA sequences. In this new problem, the models per-

formed acceptably better than before.

The future work involves the design of better data representation techniques that are sensi-

tive enough to discover discriminatory signatures in small sample sizes of DNA sequences.

These techniques should be generic in that they should not only be sensitive towards Gleason

grade groups, but should extend to other prediction problems that are important in machine

learning and cancer research.
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Gleason grading among 337 European pathologists. Histopathology. 2013; 62(2):247–256. https://doi.

org/10.1111/his.12008 PMID: 23240715

13. Abdollahi A, Meysamie A, Sheikhbahaei S, Ahmadi A, Moradi-Tabriz H, Bakhshandeh M, et al. Inter/

intra-observer reproducibility of Gleason scoring in prostate adenocarcinoma in Iranian pathologists.

Urology journal. 2012; 9(2):486–490. PMID: 22641492

14. Allsbrook WC Jr, Mangold KA, Johnson MH, Lane RB, Lane CG, Amin MB, et al. Interobserver repro-

ducibility of Gleason grading of prostatic carcinoma: urologic pathologists. Human pathology. 2001; 32

(1):74–80. https://doi.org/10.1053/hupa.2001.21135

15. Veloso SG, Lima MF, Salles PG, Berenstein CK, Scalon JD, Bambirra EA. Interobserver agreement of

Gleason score and modified Gleason score in needle biopsy and in surgical specimen of prostate can-

cer. International braz j urol. 2007; 33:639–651. https://doi.org/10.1590/S1677-55382007000500005

PMID: 17980061

16. Bottke D, Golz R, Störkel S, Hinke A, Siegmann A, Hertle L, et al. Phase 3 study of adjuvant radiother-

apy versus wait and see in pT3 prostate cancer: impact of pathology review on analysis. European urol-

ogy. 2013; 64(2):193–198. https://doi.org/10.1016/j.eururo.2013.03.029 PMID: 23522911

17. van der Kwast TH, Collette L, Van Poppel H, Van Cangh P, Vekemans K, DaPozzo L, et al. Impact of

pathology review of stage and margin status of radical prostatectomy specimens (EORTC trial 22911).

Virchows Archiv. 2006; 449(4):428–434. https://doi.org/10.1007/s00428-006-0254-x PMID: 16941153

18. Kvåle R, Møller B, Wahlqvist R, Fosså SD, Berner A, Busch C, et al. Concordance between Gleason

scores of needle biopsies and radical prostatectomy specimens: a population-based study. BJU inter-

national. 2009; 103(12):1647–1654. https://doi.org/10.1111/j.1464-410X.2008.08255.x PMID:

19154461

19. Montironi R, Lopez-Beltran A, Cheng L, Montorsi F, Scarpelli M. Central prostate pathology review:

should it be mandatory. Eur Urol. 2013; 64(2):199–201. https://doi.org/10.1016/j.eururo.2013.04.002

PMID: 23608669

20. Wulczyn E, Nagpal K, Symonds M, Moran M, Plass M, Reihs R, et al. Predicting prostate cancer spe-

cific-mortality with artificial intelligence-based Gleason grading. Communications Medicine. 2021; 1

(1):1–8. https://doi.org/10.1038/s43856-021-00005-3

21. Agalliu I, Gern R, Leanza S, Burk RD. Associations of high-grade prostate cancer with BRCA1 and

BRCA2 founder mutations. Clinical Cancer Research. 2009; 15(3):1112–1120. https://doi.org/10.1158/

1078-0432.CCR-08-1822 PMID: 19188187

22. Easton D, Thompson D, McGuffog L, Haites N, Schofield A, Scott R, et al. Cancer risks in BRCA2 muta-

tion carriers. The breast cancer linkage consortium J Natl Cancer Inst. 1999; 91(15):1310–1316.

23. Johannsson O, Loman N, Möller T, Kristoffersson U, Borg Å, Olsson H. Incidence of malignant tumours

in relatives of BRCA1 and BRCA2 germline mutation carriers. European journal of cancer. 1999; 35

(8):1248–1257. https://doi.org/10.1016/S0959-8049(99)00135-5 PMID: 10615237

24. Castro E, Eeles R. The role of BRCA1 and BRCA2 in prostate cancer. Asian journal of andrology. 2012;

14(3):409. https://doi.org/10.1038/aja.2011.150 PMID: 22522501

25. Nyberg T, Frost D, Barrowdale D, Evans DG, Bancroft E, Adlard J, et al. Prostate cancer risks for male

BRCA1 and BRCA2 mutation carriers: A prospective cohort study. European urology. 2020; 77(1):24–

35. https://doi.org/10.1016/j.eururo.2019.08.025 PMID: 31495749

26. Arvaniti E, Fricker KS, Moret M, Rupp N, Hermanns T, Fankhauser C, et al. Automated Gleason grading

of prostate cancer tissue microarrays via deep learning. Scientific reports. 2018; 8(1):1–11. https://doi.

org/10.1038/s41598-018-30535-1 PMID: 30104757

PLOS ONE Discriminatory Gleason grade group signatures of prostate cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0267714 June 9, 2022 15 / 17

https://doi.org/10.1097/PAS.0000000000000642
http://www.ncbi.nlm.nih.gov/pubmed/27023325
https://doi.org/10.1016/j.eururo.2015.06.046
http://www.ncbi.nlm.nih.gov/pubmed/26166626
https://doi.org/10.1007/BF02550141
http://www.ncbi.nlm.nih.gov/pubmed/8738623
https://doi.org/10.1111/j.1365-2559.2006.02393.x
http://www.ncbi.nlm.nih.gov/pubmed/16681679
https://doi.org/10.1111/his.12008
https://doi.org/10.1111/his.12008
http://www.ncbi.nlm.nih.gov/pubmed/23240715
http://www.ncbi.nlm.nih.gov/pubmed/22641492
https://doi.org/10.1053/hupa.2001.21135
https://doi.org/10.1590/S1677-55382007000500005
http://www.ncbi.nlm.nih.gov/pubmed/17980061
https://doi.org/10.1016/j.eururo.2013.03.029
http://www.ncbi.nlm.nih.gov/pubmed/23522911
https://doi.org/10.1007/s00428-006-0254-x
http://www.ncbi.nlm.nih.gov/pubmed/16941153
https://doi.org/10.1111/j.1464-410X.2008.08255.x
http://www.ncbi.nlm.nih.gov/pubmed/19154461
https://doi.org/10.1016/j.eururo.2013.04.002
http://www.ncbi.nlm.nih.gov/pubmed/23608669
https://doi.org/10.1038/s43856-021-00005-3
https://doi.org/10.1158/1078-0432.CCR-08-1822
https://doi.org/10.1158/1078-0432.CCR-08-1822
http://www.ncbi.nlm.nih.gov/pubmed/19188187
https://doi.org/10.1016/S0959-8049(99)00135-5
http://www.ncbi.nlm.nih.gov/pubmed/10615237
https://doi.org/10.1038/aja.2011.150
http://www.ncbi.nlm.nih.gov/pubmed/22522501
https://doi.org/10.1016/j.eururo.2019.08.025
http://www.ncbi.nlm.nih.gov/pubmed/31495749
https://doi.org/10.1038/s41598-018-30535-1
https://doi.org/10.1038/s41598-018-30535-1
http://www.ncbi.nlm.nih.gov/pubmed/30104757
https://doi.org/10.1371/journal.pone.0267714


27. Ström P, Kartasalo K, Olsson H, Solorzano L, Delahunt B, Berney DM, et al. Artificial intelligence for

diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study. The Lancet

Oncology. 2020; 21(2):222–232. https://doi.org/10.1016/S1470-2045(19)30738-7 PMID: 31926806

28. Chaddad A, Kucharczyk MJ, Desrosiers C, Okuwobi IP, Katib Y, Zhang M, et al. Deep radiomic analysis

to predict gleason score in prostate cancer. IEEE Access. 2020; 8:167767–167778. https://doi.org/10.

1109/ACCESS.2020.3023902

29. Bulten W, Pinckaers H, van Boven H, Vink R, de Bel T, van Ginneken B, et al. Automated deep-learning

system for Gleason grading of prostate cancer using biopsies: a diagnostic study. The Lancet Oncol-

ogy. 2020; 21(2):233–241. https://doi.org/10.1016/S1470-2045(19)30739-9 PMID: 31926805

30. Lucas M, Jansen I, Savci-Heijink CD, Meijer SL, de Boer OJ, van Leeuwen TG, et al. Deep learning for

automatic Gleason pattern classification for grade group determination of prostate biopsies. Virchows

Archiv. 2019; 475(1):77–83. https://doi.org/10.1007/s00428-019-02577-x PMID: 31098801

31. Liu H, Tang K, Peng E, Wang L, Xia D, Chen Z. Predicting Prostate Cancer Upgrading of Biopsy Glea-

son Grade Group at Radical Prostatectomy Using Machine Learning-Assisted Decision-Support Mod-

els. Cancer Management and Research. 2020; 12:13099. https://doi.org/10.2147/CMAR.S286167

PMID: 33376402

32. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv preprint

arXiv:13033997. 2013.

33. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format

and SAMtools. Bioinformatics. 2009; 25(16):2078–2079. https://doi.org/10.1093/bioinformatics/btp352

PMID: 19505943

34. Fletez-Brant C, Lee D, McCallion AS, Beer MA. kmer-SVM: a web server for identifying predictive regu-

latory sequence features in genomic data sets. Nucleic acids research. 2013; 41(W1):W544–W556.

https://doi.org/10.1093/nar/gkt519 PMID: 23771147

35. Bafna P, Pramod D, Vaidya A. Document clustering: TF-IDF approach. In: 2016 International Confer-

ence on Electrical, Electronics, and Optimization Techniques (ICEEOT). IEEE; 2016. p. 61–66.

36. Qaiser S, Ali R. Text mining: use of TF-IDF to examine the relevance of words to documents. Interna-

tional Journal of Computer Applications. 2018; 181(1):25–29. https://doi.org/10.5120/ijca2018917395

37. Shahmirzadi O, Lugowski A, Younge K. Text similarity in vector space models: a comparative study. In:

2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA). IEEE; 2019.

p. 659–666.

38. Bro R, Smilde AK. Principal component analysis. Analytical methods. 2014; 6(9):2812–2831. https://

doi.org/10.1039/C3AY41907J

39. Ng P. dna2vec: Consistent vector representations of variable-length k-mers. arXiv preprint

arXiv:170106279. 2017.

40. Zou Q, Xing P, Wei L, Liu B. Gene2vec: gene subsequence embedding for prediction of mammalian

N6-methyladenosine sites from mRNA. Rna. 2019; 25(2):205–218. https://doi.org/10.1261/rna.069112.

118 PMID: 30425123

41. Asgari E, Mofrad MR. Continuous distributed representation of biological sequences for deep proteo-

mics and genomics. PloS one. 2015; 10(11):e0141287. https://doi.org/10.1371/journal.pone.0141287

PMID: 26555596

42. Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in vector space.

arXiv preprint arXiv:13013781. 2013.

43. Chen T, Guestrin C. Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd acm sigkdd

international conference on knowledge discovery and data mining; 2016. p. 785–794.

44. Elavarasan D, Vincent DR. Reinforced XGBoost machine learning model for sustainable intelligent

agrarian applications. Journal of Intelligent & Fuzzy Systems. 2020;(Preprint):1–16.

45. Yang S, Yu X, Zhou Y. Lstm and gru neural network performance comparison study: Taking yelp review

dataset as an example. In: 2020 International workshop on electronic communication and artificial intel-

ligence (IWECAI). IEEE; 2020. p. 98–101.
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