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Abstract

Molecular interaction networks establish all cell biological processes. The networks are under intensive research that is facilitated
by new high-throughput measurement techniques for the detection, quantification, and characterization of molecules and their
physical interactions. For the common model organism yeast Saccharomyces cerevisiae, public databases store a significant part
of the accumulated information and, on the way to better understanding of the cellular processes, there is a need to integrate
this information into a consistent reconstruction of the molecular interaction network. This work presents and validates RefRec,
the most comprehensive molecular interaction network reconstruction currently available for yeast. The reconstruction
integrates protein synthesis pathways, a metabolic network, and a protein-protein interaction network from major biological
databases. The core of the reconstruction is based on a reference object approach in which genes, transcripts, and proteins are
identified using their primary sequences. This enables their unambiguous identification and non-redundant integration. The
obtained total number of different molecular species and their connecting interactions is ,67,000. In order to demonstrate the
capacity of RefRec for functional predictions, it was used for simulating the gene knockout damage propagation in the molecular
interaction network in ,590,000 experimentally validated mutant strains. Based on the simulation results, a statistical classifier
was subsequently able to correctly predict the viability of most of the strains. The results also showed that the usage of different
types of molecular species in the reconstruction is important for accurate phenotype prediction. In general, the findings
demonstrate the benefits of global reconstructions of molecular interaction networks. With all the molecular species and their
physical interactions explicitly modeled, our reconstruction is able to serve as a valuable resource in additional analyses involving
objects from multiple molecular -omes. For that purpose, RefRec is freely available in the Systems Biology Markup Language
format.

Citation: Aho T, Almusa H, Matilainen J, Larjo A, Ruusuvuori P, et al. (2010) Reconstruction and Validation of RefRec: A Global Model for the Yeast Molecular
Interaction Network. PLoS ONE 5(5): e10662. doi:10.1371/journal.pone.0010662

Editor: Gustavo Goldman, Universidade de Sao Paulo, Brazil

Received October 6, 2009; Accepted April 15, 2010; Published May 14, 2010

Copyright: � 2010 Aho et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: At Tampere University of Technology, this work was supported by the Academy of Finland, (http://www.aka.fi, application number 213462, Finnish
Programme for Centres of Excellence in Research 2006–2011). Some of the work done at Medicel on data integration is supported by EU/FP7/HEALTH grant
(http://cordis.europa.eu/fp7/health/, APO-SYS/200767). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of
the manuscript.

Competing Interests: The commercial company Medicel set a pilot version of an integrated database at the disposal of the authors. This data is now (upon
publication) available as a downloadable, public, SBML format file, as indicated in the manuscript. The authors at that company (Almusa, Matilainen, Roos) appear
on the author list since they worked on the integration of the data from multiple databases into a single one and the other authors made use of this integrated
data.

* E-mail: tommi.aho@tut.fi

¤a Current address: Institute for Molecular Medicine Finland, Biomedicum Helsinki 2U, Helsinki, Finland
¤b Current address: Euformatics Ltd, Espoo, Finland
¤c Current address: Department of Signal Processing, Tampere University of Technology, Tampere, Finland

Introduction

Systems biology aims at producing information about system level

phenomena in cells. Therefore, knowledge about cellular compo-

nents, their interactions, and their state in different conditions needs

to be collected and integrated. Given the large amount of information

produced by the advanced measurement technologies in life sciences,

it is noteworthy that no network reconstruction integrates the

information globally and consistently, even not for the common

model organism yeast (Saccharomyces cerevisiae).

Exploring data from any single molecular -ome alone (such as

genome or proteome) only enables restricted systems understand-

ing. A more holistic view can be obtained through extensive

integration of molecular species and interactions related to

multiple -omes. These kinds of integrative reconstructions of

global cellular networks find many applications, for example, in

the building of predictive models of cellular phenomena and in the

description of measurement data in the context of a system.

Explicit representation of all molecular species and interactions

enables continuous integration of more data originating from

heterogeneous sources. For example, data from large genomic

variation studies of single nucleotide polymorphisms and copy

number variations can be associated with data obtained by

transcriptome quantization or protein profiling. Thus, network
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reconstructions which are general enough and not tailored for any

specific purpose, can be re-used in various studies.

Traditionally, there has been no unifying information model

conceptualizing and organizing the diverse information in the field

of molecular biology [1],[2]. Databases, typically storing focused

information about a single molecular -ome, use a rather narrow

information model to represent the objects and their properties. The

variability of information models originates from the diverse needs

of the respective research and from the difficulty to coordinate the

development of a comprehensive information model in a rapidly

changing experimental field. Such a lack of a more general

information model hampers the integration across research

domains. Integration of data from different databases introduces

problems like differences in object definitions, names, and data

versions. The larger the source databases are and the more complex

information they contain, the more difficult the integration

becomes. Therefore, there is a need for automated network

reconstruction tools which are capable of integrating information

from multiple databases covering multiple molecular -omes.

Metabolic network reconstructions are obtained by automated

methods which work mainly by using genomic sequence

information [3–8], but also by taking into account additional data

on e.g. mRNA co-expression [9], phylogenetic profiles [10], gene

clustering on chromosomes, protein fusion [11], and knowledge

about other thoroughly curated metabolic networks [12],[13].

There are also promising new methods as mass spectrometric

metabolome mapping, metabolite correlations, genetical genomics

of metabolism, and flux measurements [14]. One of the largest

reconstruction collections established using the automated recon-

struction methods is BioCyc [13] that currently covers more than

370 organism-specific databases. Interestingly, the BioCyC

collection does not contain a reconstruction for S. cerevisiae.

Instead, the first genome-scale draft reconstruction on yeast

metabolic network [15] has been iteratively refined with the help

of literature information, wet-lab experiments, and computational

modeling [16–19]. The genome-scale metabolic reconstructions

describe a fundamental but still a limited part of the entire

molecular interaction network of yeast. For example, the most

recent genome-scale metabolic reconstruction [19] contains 12.5%

of all yeast genes documented in the Ensembl database [20] and

10.3% of all the essential genes [21],[22]. Thus, comprehensive

systems understanding of the yeast cell can be promoted by

integration of additional data.

One of the main properties of a comprehensive information

model is the use of so called reference objects which can be

identified unambiguously. For example, common or systematic

names of genes may change or become obsolete over the years and

therefore they do not serve for this purpose. In contrast, the

primary sequence is the most fundamental property of genes,

transcripts, and proteins, and thus their equivalency can be

exploited for the identification of the reference objects within

genomic, transcriptomic, and proteomic databases (see, e.g.,

[23–25]). We used this reference object approach by integrating

molecular species and interactions from different source databases

into a single network reconstruction called RefRec, thereby

introducing a reference object based reconstruction for the yeast

molecular interaction network. The RefRec reconstruction is

available in the BioModels database [26] with the accession

number MODEL3883569319. Metabolites in the reconstruction

were obtained from a single source database (Kyoto Encyclopedia

of Genes and Genomes, KEGG) [27–29] in order to avoid

namespace-related issues. Interestingly, an approach complemen-

tary to ours has recently been presented [19]. Reference objects

are there introduced for metabolites – by identifying them using

Simplified Molecular Input Line Entry System (SMILES) [30] and

International Chemical Identifiers (InChI) [31],[32] – while genes

and proteins are imported from single source databases.

In this work, we aimed to build and validate a global

reconstruction for the yeast molecular interaction network. The

RefRec reconstruction was obtained by integration of major

biological databases with the help of unique reference objects. The

reconstruction explicitly models the structure of protein synthesis

pathways, a metabolic network, and a protein-protein interaction

network. The provided database cross-references make it possible

to further extent the reconstruction with e.g. the knowledge of

gene regulation and signal transduction networks. In order to

validate the reconstruction and to demonstrate its biological

relevance for various applications, we exploited experimental

growth phenotype information for hundreds of thousands yeast

strains carrying genetic mutations. We showed that the phenotype

can be best predicted while taking all types of molecular species

and interactions into the consideration, and that the RefRec

reconstruction is capable for predicting the lethality of gene

knockouts affecting a substantial variety of biological processes.

Figure 1 outlines the analysis approaches applied in this research.

Results

Characteristics of the reconstruction
The global molecular interaction network for yeast was

reconstructed by integrating information from seven large

molecular databases. All the yeast related molecular species

(genes, transcripts, proteins, protein complexes, and metabolites)

and interactions were obtained from the databases and integrated

into a consistent and non-overlapping network reconstruction.

The total number of objects in RefRec is 67,228 which are divided

up according to their types in Table 1. The merge of proteins

originating from three databases (Ensembl, RefSeq, and UniProt)

resulted in a greater number of unique proteins than specified in

any single protein database. Metabolites and protein complex

assembly interactions were imported from single source databases

(KEGG and IntAct, respectively) which prevented the contradic-

tions in naming conventions. The reconstruction was supplement-

ed by such molecular species and interactions which were not

described in the used databases but whose existence is evident in a

complete physical interaction network. For example, transcription

processes are not explicitly represented in any database, but in a

physical interaction network they have their specific role.

Therefore, some objects documented in databases (i.e., genes,

transcripts, and protein-protein interactions) were used as source

information to instantiate the non-documented objects (i.e.,

transcriptions, translations, and protein complexes).

The reconstruction represents the molecular species and

interactions at protein synthesis pathways (from genes to proteins),

a metabolic network, and a protein-protein interaction network.

Figure 2 illustrates the structure of RefRec. In the protein synthesis

pathways, all the genes control their associated transcription

processes producing transcripts. Further, transcripts control their

translation processes producing the proteins. There are two genes

(gene loci YEL076C-A and YLR464W) whose transcripts have

identical nucleic acid coding sequences, and were therefore

considered as a single transcript. All transcripts have a known

protein product but, on the other hand, 163 proteins appear

without a transcript (these proteins are documented in RefSeq

and/or UniProt database but not in Ensembl that provides

information about the protein synthesis pathways). Proteins have a

central role in the network as they catalyze metabolic reactions

(650 proteins) and they are used as substrates in protein complex

RefRec Reconstruction
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assembly interactions (5,161 proteins). While the median number

of interactions per protein is four in our global reconstruction, the

most highly connected proteins (HSP72, HSP75, EF1A, and

UBC7) take part in more than 500 interactions. The number of

proteins per protein complex assembly interaction gives a median

of two and a maximum of 99 (the subunits of the 26S proteasome

and the proteasome interacting proteins). Especially highly

connected biomolecules can be also found in metabolism. The

most connected metabolite, water, acts in 527 metabolic reactions

as a substrate and in 239 reactions as a product. Common energy

carriers, such as adenosine triphosphate (ATP) and nicotinamide

adenine dinucleotide (NADH), are among the other highly

connected metabolites. In median, metabolites participate in four

metabolic reactions as a substrate or a product.

Gene knockout damages
Based on our established global molecular interaction network

reconstruction we estimated damages caused by gene knockouts.

Typically, a gene knockout results in the blockage of the

corresponding transcription process, which results in the blockage

of the transcript, and so forth. Depending on the network

structure, the blockage may propagate further to metabolism and

Figure 1. Overview to the presented analysis. The RefRec reconstruction was integrated from selected databases. The reconstruction was
converted to a set of model alternatives which were used to assess the importance of different molecular –omes for accurate phenotype prediction
(from top to down: RefRec; RefRec with KEGG replaced by iND750; RefRec without a metabolic network; RefRec without a protein-protein interaction
network; RefRec without a metabolic network and a protein-protein interaction network). All the model alternatives were analyzed using a single
analysis workflow that first estimates gene knockout damages in mutant strains and then trains a computational classifier to predict the mutant
viability.
doi:10.1371/journal.pone.0010662.g001

RefRec Reconstruction
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protein-protein interactions. Taken together, the set of the blocked

interactions and molecular species describes the damage caused by

the gene knockout to the molecular interaction network.

We estimated the network damage using two alternative

approaches. First, the whole RefRec reconstruction was translated

to a Boolean model, and the damage propagation of a knockout

was simulated using a Boolean simulation algorithm (see Materials

and Methods for details). Second, the metabolic part of RefRec

was replaced by an alternative metabolic reconstruction iND750

[16]. The replacement included metabolic reactions, metabolites,

and simplified direct regulation of metabolic reactions by the

genes. Again, the damage in the non-metabolic part of the

reconstruction was estimated using the Boolean method but a flux

balance based method [33] was used to estimate the damage

within the metabolic iND750 reconstruction. The damages

estimated based on the iND750 reconstruction are called

unconditional because we assumed aerobic cultivation conditions

and a complex medium. The same knockouts assuming any

reduced medium would at least contain the same unconditional

damage, in addition to a possible conditional damage.

As depicted in Table 2, the damages for a genome-wide set of

single gene knockouts [22] were estimated to propagate to all the

five molecular -omes but with varying probability. For example, a

gene knockout always resulted in the blockage of the correspond-

ing transcription, transcript, and translation. However, proteins

were not damaged in all the cases because a few proteins have

alternative routes of production. Protein complex assembly

interactions were typically affected, the average number of blocked

assembly interactions being around ten per knockout but with

large variation. Metabolic reactions and metabolites had a

substantially lower probability to be affected by a gene knockout

because the number of metabolic enzymes is considerably smaller

than the number of proteins involved in the protein-protein

interaction network. The total number of blocked molecular

species and interactions within the reconstruction varied between

4 and 1797 (cf. Figure 3). The damages propagated more

frequently to the KEGG reconstruction than to the iND750

reconstruction. However, the analysis of the iND750 reconstruc-

tion resulted in larger damage estimates than the analysis of the

KEGG reconstruction.

Unconditionally essential molecular species and
interactions

All types of molecular species and interactions include objects

that can be considered unconditionally essential for viability. This

was shown with the help of an essentiality score that we calculated

for each of the molecular species and interactions (commonly

called as ‘objects’). The score was defined as the fraction of

experimentally validated lethal knockouts blocking a particular

object within the set of all experimental knockouts that block this

object. A possible bias may be introduced to the score because

experimental knockouts are not evenly nor comprehensively

distributed to the network but they concentrate on specific parts

of it. For example, if only a single knockout indicating essentiality

for an object is available, essentiality will be inferred. But as more

knockouts are added, the chances of inferring essentiality will drop,

simply because some of the new experiments might not infer

essentiality. Thus, the fewer knockouts block an object, the more

biased its score may be. In the score calculation we used

experimentally obtained viability information and our computa-

Table 1. Origin and number of the molecular species and interactions in the reconstruction.

Database Gene Transcription Transcript Translation Protein

Protein
complex
assembly
interaction

Protein
complex

Metabolic
reaction Metabolite

Information for the
reconstruction
structure

Ensembl [20] 6,648 (o, r) 6,647 (o, r) 6,617 (o, r)

RefSeq [23] 5,819 (o, r)

UniProt [48] 6,126 (o, r)

KEGG COMPOUND [27] 812 (o)

KEGG GLYCAN [28] 55 (o)

KEGG REACTION [29] 2,304 (o) 822 (x)

IntAct [49] 5,161 (x) 15,366 (o)

Instantiated objects 6,648 6,647 15,366

Cross-references to
additional databases

PubChem [50] 799

ChEBI [51] 591

Unique totals 6,648 6,648 6,647 6,647 6,780 15,366 15,366 2,304 822

Unique molecular
species

36,263

Unique interactions 30,965

Unique objects 67,228

RefRec represents physical interactions between the molecular species and explicitly reconstructs all the involved objects. Objects originating from the databases (o),
reference objects obtained by sequence comparisons (r), and objects represented in databases by name-based cross-references to other databases (x).
doi:10.1371/journal.pone.0010662.t001

RefRec Reconstruction
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Figure 2. Structural details of RefRec. The entire reconstruction is visualized in top right where different types of molecular species are grouped
to layers (from top to down: genome, transcriptome, proteome, protein complexes, and metabolome) and interactions are depicted by the
connecting edges. Structural details are shown from each of the layers as follows: Ovals represent interactions and the other nodes represent
molecular species of different types. The Ensembl database provides source information for protein synthesis pathways. Two genes (labeled as G[N])
are transcribed to transcripts (Tr[N]) and further translated to proteins (P[N]). The KEGG database provides knowledge for the metabolic network
including metabolites / compounds (C[N]) and metabolic reactions. The enzymatic activity of proteins is described by the Swiss-Prot ENZYME database
that is used to connect the proteins to the metabolic reactions. The protein-protein interaction network including the protein complex assembly
interactions and the protein complexes / macromolecular complexes (M[N]) is based on the IntAct database. The IntAct database does not provide
information about enzymatic activity for protein complexes, and therefore protein complexes do not catalyze any interaction in the reconstruction. A
dashed arrow presents the control of an interaction by a molecular species. A solid arrow presents material flow.
doi:10.1371/journal.pone.0010662.g002

Table 2. Statistics about damage estimates for single gene knockouts.

Object type Analysis method Damage probability
Mean number of blocked
objects in a damage (+SD)

Gene B 1 1 (0)

Transcription B 1 1 (0)

Transcript B 1 1 (0)

Translation B 1 1 (0)

Protein B 0.99 1 (0)

Protein complex assembly interaction B 0.81 10.6 (26.7)

Protein complex B 0.81 10.6 (26.7)

Metabolic reaction (KEGG) B 0.1 4 (5.1)

Metabolite (KEGG) B 0.02 3 (2.8)

Metabolic reaction (iND750) FBA 0.05 12.2 (25.1)

Metabolite (iND750) FBA 0.04 10.8 (20.1)

Damages estimated using Boolean simulation (B) or flux balance analysis (FBA).
doi:10.1371/journal.pone.0010662.t002

RefRec Reconstruction
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tional damage estimates of ,590,000 mutant yeast strains carrying

single, double, or triple gene mutations (see the description of the

experimental data in Materials and Methods and Table 3). As

illustrated in Figure 4, all types of molecular species and

interactions include objects whose blockage is related to the

inviable phenotype either invariably (i.e. the objects have

essentiality score one and they are now called unconditionally

essential) or on some occasions (essentiality score greater than zero

but less than one).

The essentiality score detects 689 unconditionally essential

genes. For these genes, the used experimental dataset gives no

evidence about cultivation conditions or parallel additional gene

mutations that would rescue the cell from the lethal effects of their

knockouts (96% of these unconditionally essential genes have also

been documented within the set of 1,100 essential genes in a single

gene knockout study [22]). In order to outline the most important

processes for the cellular viability, we mapped the unconditionally

essential genes to the biological processes described in Gene

Ontology (GO, accessed June 14th 2007) [34]. Table S1 lists the

unconditionally essential genes together with the biological

processes that were significantly enriched (according to the two-

sided Fisher’s exact probability test with P,0.05; all yeast genes as

the reference set) and contained at least ten unconditionally

essential genes. Figure 5 presents a representative partial list of the

significantly enriched processes. Most of the enriched processes

can be categorized under four general themes also shown in

Figure 5. The enriched processes represent central cellular

phenomena and they involve all types of molecular species and

interactions.

The 658 unconditionally essential protein complexes included

well known necessary protein complexes, such as RNase MRP that

cleaves the yeast pre-rRNA, and Tim23 involved in protein

translocation. In addition, hundreds of protein pairs mainly

detected by the yeast two-hybrid technique were found uncondi-

tionally essential. The synthetic lethal gene pairs identified e.g. in

[35],[36] manifest themselves as the production blockage of these

bimolecular protein complexes.

In the KEGG metabolic reconstruction, the number of

unconditionally essential metabolic reactions and metabolites

was 243 and 45, respectively. These objects are involved in

necessary metabolic processes, such as energy metabolism (e.g.

glucose-6-phosphate isomerase), riboflavin metabolism (e.g. FMN

and riboflavin), and fatty acid biosynthesis (e.g. acetoacetyl ACP).

In contrast, the metabolic reconstruction iND750 contained 18

unconditionally essential reactions and 8 unconditionally essential

metabolites. Also they are mainly related to vital processes like

energy metabolism (e.g. citrate synthase), biosynthesis of amino

acids, purines, and pyrimidines (e.g. dihydrofolate reductase), and

transport of metabolites (e.g. glutamine transport). The majority

(10) of the unconditionally essential reactions identified using

iND750 were also identified using KEGG while the uncondition-

ally essential metabolites identified using the two reconstructions

did not overlap. The differences in the results between KEGG and

iND750 are discussed in Discussion.

Prediction of growth phenotypes
In addition to the explorative analysis of the unconditionally

essential molecular species and interactions, we used RefRec to

predict the growth phenotypes for the ,590,000 single, double,

and triple gene knockout yeast mutants. We trained a support

vector machine classifier to produce knockout lethality predictions

based on the damage estimates of the knockouts. As described in

Materials and Methods, the essentiality score was calculated for a

training data set and used to reduce the complexity of the problem

prior to the classifier training. In each of the following analyses, the

classifier was trained and tested ten times with randomly chosen

samples in order to implement the randomized hold-out

validation. The prediction performance was evaluated using the

true positive rate (defined as the fraction of inviable phenotypes

correctly predicted) and the false positive rate (the fraction of

viable phenotypes incorrectly predicted as inviable).

As depicted in Figures 6 and 7, the sensitivity of detecting the

inviable phenotype and the prediction confidence were affected by

the total number of training samples, and especially the fraction of

inviable phenotypes in them. Depending on these two parameters,

the classification was able to predict correctly up to 79% of the

inviable phenotypes while the false positive rate varied between

8% and 25%.

We further examined the significance of different types of

molecular species and interactions for the successful lethality

Figure 3. Size distribution of the damage estimates for single
gene knockouts. The damages are estimated by Boolean analysis of
the RefRec reconstruction.
doi:10.1371/journal.pone.0010662.g003

Table 3. Experimental yeast mutant data used in the analysis.

Data source
Number of deleted
or mutated genes

Viable mutant
strains

Inviable mutant
strains

Unique totals for data
sources

[22] 1 4,670 1,100 5,770

SGD 2 7,063 8,996 15,080

[36] 2 578,663 2,323 573,605

[36] 3 178 12 190

Unique totals for phenotypes 580,188 10,108

Viable mutant strains consist of normal and slow growing mutant strains. The unique totals are shown as the information in the data sources partly overlaps.
doi:10.1371/journal.pone.0010662.t003

RefRec Reconstruction
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prediction. In this case, the number of learning samples was set to

7,000, the fraction of inviable learning samples was set to 0.2, and

different types of molecular species and interactions were excluded

from RefRec in turn prior to the classification. As depicted in

Figure 8, the change of the metabolic reconstruction from KEGG

to iND750 had practically no effect to the prediction performance.

A more notable difference took place when the classifier was

trained without damage estimates from any metabolic reconstruc-

tion. The damage estimates related to the protein-protein

interaction network had the greatest effect to the true positive

rate. The lowest fraction of correctly predicted inviable pheno-

types was obtained when the damage estimates of both the

protein-protein interaction network and the metabolic network

were not available for the classifier training, i.e. the training was

based only on damage estimates of protein synthesis pathways.

The coverage and phenotype prediction performance of RefRec

is illustrated through Gene Ontology that provides a holistic view

to all the biological processes, molecular functions and cellular

locations. In gene knockout phenotype prediction, a comprehen-

sive reconstruction should in particular involve the biological

processes essential for the cell. For example, the representation of

the pentose-phosphate shunt in iND750 provides means to

correctly predict the growth phenotype for the knockout of

YPR074C (transketolase 1) under several cultivation conditions

([16], Supplementary material). In contrast, biological processes

imperfectly represented in a reconstruction may result in

prediction failures. In the case of iND750, this is reflected by the

fact that the involvement of a gene in a non-metabolic process has

been reported as the major reason for false predictions [16].

Figure 9 summarizes the coverage of selected GO categories by

the genes represented in RefRec and iND750. While RefRec

covers all the genes in all the categories, iND750 involves them

only partially as it represents 11% of the yeast genes. In addition,

Figure 9 shows the success of phenotype predictions for mutants

carrying a knockout gene involved in a given category. A

prediction based on RefRec was considered correct if most the

repeated classification analyses (using the same training samples as

in Figure 8) suggested the correct phenotype, and incorrect if most

them suggested the incorrect phenotype. The success of predic-

tions was relatively independent on the examined process, and on

average 81% of the mutant phenotypes were correctly predicted

per category. The predictions were best for the genes related to

tRNA metabolism and protein complex assembly and worst for

the genes related to vitamin, cofactor, and sulfur metabolism. In

contrast, the prediction success depends significantly on the

damaged process in the case of iND750 that was analyzed in an

earlier study under seven cultivation conditions with the cell

biomass production as the phenotype estimate [16]. There, the

phenotype was best predicted for the genes involved in aromatic

compound metabolism and vitamin metabolism. On the other

hand, most of the predictions related to tRNA metabolism were

incorrect, and in the case of six categories the phenotype could be

predicted only for a small proportion of knockouts because the

needed parts of the molecular interaction network were not

represented by the reconstruction.

Discussion

The presented global reconstruction RefRec summarizes most

of the current knowledge of the yeast molecular interaction

network. The network explicitly represents all the known genes,

transcripts, proteins, metabolites, and protein complexes together

with transcriptions, translations, metabolic reactions, and protein-

protein interactions. The information about the genome, tran-

scriptome, proteome, and metabolome may be considered

relatively comprehensive because the complete yeast genome has

been available since 1996 [37] and the yeast metabolism has been

intensively studied (see, e.g. [38]). The information about the

protein-protein interaction network remains still incomplete, as it

is estimated that only about half of the protein-protein interactions

Figure 4. Essentiality scores for molecular species and interactions. The essentiality score indicates the relative frequency of the
experimentally observed inviable phenotype under the cases where the examined molecular species or interaction was blocked. The objects are
sorted in the descending order of the essentiality score. In panel A, the graphs indicated in the legend are merged because of negligible differences
between them. In panel B, 1,005 metabolic KEGG reactions having the score value zero are not shown.
doi:10.1371/journal.pone.0010662.g004

RefRec Reconstruction
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have been identified [39]. The explicit representation of all

molecular species and interactions in the network provides a clear

and transparent view which is needed for applications working

with multiple molecular –omes. At this stage, the reconstruction

excludes transcriptional regulation because no database describes

such genome-wide knowledge on the regulation functions that

would be needed in the damage estimation and the reconstruction

validation. The addition of this type of knowledge would be a

useful next step towards a more complete network reconstruction.

Another step towards a more complete reconstruction would also

be the integration of RefRec with the consensus reconstruction of

yeast metabolism [19]. The integration of the manually curated

and continuously updated consensus network with RefRec would

improve the quality of the metabolic network in RefRec and

provide additional features for the consensus network.

Unique identification of objects is required for any large-scale

integration. RefRec makes use of the reference object approach in

which genes, transcripts, and proteins are identified using the

knowledge of their primary sequence while metabolites and

protein complexes are imported from single data sources. As an

example of the importance of reference objects for large-scale data

Figure 5. Gene Ontology enrichment analysis for the unconditionally essential genes. The figure presents a representative partial list of
the significantly enriched GO Biological Process categories associated with the unconditionally essential genes. Note the wide scope of the term
metabolism in Gene Ontology where metabolic processes are associated with all types of molecular species.
doi:10.1371/journal.pone.0010662.g005

Figure 6. Prediction performance of the inviable phenotype
affected by the number of training samples. In each case, 1/6 of
the training samples are inviable. The average in the repeated analysis is
represented using the central mark, and the whiskers represent the
standard deviation excluding outliers.
doi:10.1371/journal.pone.0010662.g006
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integration and production of coherent reconstructions, we note

the extent to which the metabolic reconstructions KEGG and

iND750 diverge (e.g., 22% of the metabolites in iND750 could not

be matched with the metabolites in KEGG using comparisons of

identifier strings), and how the recent community effort also

utilizes the reference object approach to produce the consensus

reconstruction that encapsulates previous metabolic reconstruc-

tions of yeast [19]. In the future, it is highly desirable that the

reference approaches become more common as they provide a

framework solid enough to large-scale integration of databases and

reconstructions, as well as to cope with the growing amount of

molecular data.

The global molecular interaction network reconstruction

RefRec is freely available in the BioModels database in the

Systems Biology Markup Language format (SBML) [40],[41]

allowing additional analyses (see http://sbml.org to browse a large

number of software supporting SBML). The format exploits

Minimum Information Requested in the Annotation of biochem-

ical Models (MIRIAM) [42] which is used to link the molecular

species in RefRec to respective stable identifiers of the original

source databases. This allows for unique identification of the

objects in the databases and search of their additional features.

The comprehensiveness of RefRec provides potential for

various analytical tasks. For example, we examined the portion

of metabolism within the entire molecular interaction network,

and estimated metabolic damages caused by gene knockouts. We

found that metabolism constitutes 4.7% of the network, and the

fraction is about the same if the KEGG metabolic reconstruction is

replaced by the iND750 metabolic reconstruction (i.e., 4.6%, see

the statistics of non-unique objects for iND750 in Table 4). A

greater number of metabolic reactions are enzyme catalyzed in

KEGG than in iND750 (2034 vs. 1063), and thereby the damage

frequency of the metabolic reactions of KEGG was twofold in

comparison to iND750. However, the flux balance based damage

estimation method used for iND750 predicted five times larger

damages in metabolism than the Boolean method used for the

KEGG reconstruction (see Table 2). The difference is explained

by more rigorous constraints applied by the flux balance method.

The iND750 reconstruction brings additional value for the

damage analysis by the means of compartmentalization of

metabolites and reactions into distinct subcellular locations. While

the KEGG reconstruction assumes all metabolic pathways to

locate in a single cellular space, the iND750 reconstruction

represents 8 compartments whose pathway damages can be

studied separately. The explicit modeling of transport reactions

between the compartments and exchange reactions between the

intra- and extra-cellular spaces facilitates the iND750 reconstruc-

tion to simulate various cultivation conditions. In this study, we

assumed a complex medium and aerobic cultivation in order to

estimate the unconditional damages of gene knockouts. This made

it possible to study a large number of experimental gene knockouts

– however it occurred at the expense of producing more accurate

conditional estimates on the damages.

The unconditionally essential molecular species and interactions

were determined based on the unconditional damage estimates of

experimentally validated gene knockouts. About 1.7% of the

studied knockouts were lethal and, out of them, 16.1% produced a

blockage in the metabolism while 97.3% blocked protein-protein

interactions. The result highlights the importance of the protein-

protein interaction network for cellular viability. The calculated

essentiality score suggested 689 unconditionally essential genes

whose knockout always resulted in the inviable phenotype in the

studied experimental context. These genes were primarily involved

in central biological processes operating with all types of molecular

species (genes, transcripts, proteins, metabolites, and protein

complexes). This suggests that a reconstruction should involve

these processes in order to produce comprehensive growth

phenotype predictions. Specifically, the reconstruction should

represent the needed molecular species and interaction types.

The notable difference in the number of unconditionally

essential metabolic reactions in the KEGG vs. iND750 metabolic

reconstruction reflects the properties of the two alternatives and

their analysis methods. The iND750 reconstruction contains more

Figure 7. Prediction performance of the inviable phenotype
affected by the fraction of inviable training samples. The total
number of training samples is fixed to 7,000, and the test varies the
number of inviable training samples within them. The average in the
repeated analysis is represented using the central mark, and the
whiskers represent the standard deviation excluding outliers.
doi:10.1371/journal.pone.0010662.g007

Figure 8. Prediction performance of the inviable phenotype
affected by the available molecular -omes. RefRec with iND750
refers to the modified RefRec where the metabolic damage is estimated
using the iND750 reconstruction instead of the KEGG reconstruction.
The average in the repeated analysis is represented using the central
mark, and the whiskers represent the standard deviation excluding
outliers.
doi:10.1371/journal.pone.0010662.g008
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than 600 metabolic reactions for which the flux balance method

cannot determine any flux under any condition. These reactions

are constitutively blocked by pathway dead-ends that take place

because of gaps in the current understanding (e.g., erroneous or

missing gene annotations), or simple decisions about the

reconstruction boundaries. Although the flux balance method

did not enable the damage estimation for the constitutively

blocked reactions of iND750, it was possible to estimate the

corresponding damages with the KEGG reconstruction and the

Boolean method. For example, the Boolean method correctly

predicted the essentiality of the alanine-tRNA ligase catalyzed

reaction (needed in protein synthesis) while the corresponding

reaction was constitutively blocked in iND750 and there caused

failed predictions ([16], Supplementary material). The difference

in the number of unconditionally essential reactions in the two

metabolic reconstructions may also be explained by the damage

sizes the analysis methods estimate for metabolism. As presented in

Table 2, damages reach metabolic reactions more often but they

block a smaller number of objects in the KEGG reconstruction

than in the iND750 reconstruction. For the KEGG reconstruction

this implies that reactions blocked by lethal knockouts are rarely

blocked by viable knockouts, thereby giving them a high

essentiality score. Thus, the predicted unconditionally essential

reactions possibly include reactions that would not appear

unconditionally essential in a closer examination.

The RefRec reconstruction was successfully validated using

predictions of cellular inviability. The applied computational

predictor correctly predicted most of the inviable phenotypes

based on the damage estimates of the gene knockouts. The

damages in the protein-protein interaction network had a greater

Figure 9. Growth phenotype prediction performance in relation to damage involvement in various biological processes. The
selected Gene Ontology categories describe biological processes working with multiple molecular -omes and covering a large number of genes
(given in parentheses). For the both reconstructions, bar lengths represent the number of single gene knockout predictions in proportion to the total
number of genes in a category. The predictions with RefRec are produced using the unconditional damage estimates (this study) while the
predictions with iND750 are produced using cellular growth estimates under seven cultivation conditions [16]. Note the more restricted scope of the
term metabolism in RefRec and iND750 in comparison to Gene Ontology that associates metabolic processes with all types of molecular species.
doi:10.1371/journal.pone.0010662.g009

Table 4. Number of unique molecular species and interactions in the iND750 metabolic reconstruction.

Gene Transcription Transcript Translation Protein
Protein complex
assembly interaction

Protein
complex

Metabolic
reaction Metabolite

Number of objects 750 711 1,489 (1,812) 646 (1,177)

Molecular species total 2,115 (2,646)

Interactions total 1,489 (1,812)

Objects total 3,604 (4,458)

In parenthesis is given the number of non-unique objects, i.e., a unique object is counted as often as it exists in different compartments.
doi:10.1371/journal.pone.0010662.t004
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effect on the phenotype prediction than the damages in the

metabolic network as was shown by the exclusion of the protein-

protein interaction network which dramatically reduced the

number of correctly predicted inviable phenotypes. This might

simply be due to the much higher coverage of the genome for the

protein interaction network than for the metabolic network.

Another holistic view to the reconstruction and its predictive

performance was given through the Gene Ontology. As the

RefRec reconstruction represents all the yeast genes, it also

involves all the biological processes described in Gene Ontology.

The comprehensiveness of RefRec was illustrated by the

phenotype predictions which were found relatively independent

on the examined processes that widely covered different molecular

-omes and cellular phenomena. Altogether, the presented global

reconstruction for the yeast molecular interaction network

provides a sound foundation for further expansion and refinement,

as well as for various systems biology approaches exploiting it. For

example, the reconstruction may promote synthetic biology and

strain optimization approaches by describing systemic context for

the examined phenomena and providing integration facility for

data from heterogeneous sources.

Materials and Methods

Building the RefRec reconstruction
Medicel Integrator software system (version 2.5, Medicel, Ltd.,

Espoo, Finland) and its comprehensive data schema were used for

consistent integration of the information from the molecular

databases presented in Table 1.

A unique set of molecular species was obtained from the

source databases. Genes and transcripts were obtained from the

Ensembl database while Ensembl, RefSeq and UniProt were used

as the source databases for proteins. Within all three types of

molecular species, primary sequences were used to identify the

objects and, thereby, redundant objects were merged if they had

100% sequence identity (nucleic acid sequence from the first to

the last exon of genes, nucleic acid sequence of coding sequences

of transcripts, and amino acid sequence of proteins). As an

example, the numbers of internally redundant gene, transcript,

and protein entries in Ensembl database were 0, 50, and 80,

respectively. Protein complexes were instantiated based on

protein-protein interactions described in the IntAct database.

Their identification was based on the identifiers of IntAct, as well

as its cross references to the UniProt protein database.

Metabolites were obtained from the KEGG GLYCAN and

KEGG COMPOUND databases, and they were identified using

the namespace of KEGG. Thus, the identification of protein

complexes and metabolites relied on the namespaces of single

databases. In the SBML representation of the network, all the

molecular species are linked to their respective source databases

using the recommended stable identifiers of the respective

databases and the MIRIAM recommendations [42].

The set of the unique molecular species were connected by

interactions. The reconstruction contains four types of interactions

(transcriptions, translations, metabolic reactions, and assemblies of

protein complexes) of which transcriptions and translations are not

explicitly represented in any of the used source database. Therefore, a

transcription was instantiated for each of the genes and a translation

was instantiated for each of the transcripts. Metabolic reactions were

obtained from the KEGG REACTION database which provides the

knowledge about the substrates, the products, and the Enzyme

Committee (EC) numbers for the metabolic reactions. EC numbers

were used to connect the metabolic reactions with proteins having the

respective catalytic activity according to the Swiss-Prot ENZYME

database [43]. A separate metabolic reaction was reconstructed for

each of the proteins capable for catalyzing a specific biochemical

transformation. Reversible metabolic reactions were represented as

two irreversible reactions in opposite directions. The IntAct database

provided the knowledge for the protein complex assembly interac-

tions. The assembly interactions were assumed to be irreversible, i.e.,

no respective disassembly interactions were reconstructed.

Phenotype data on yeast mutants
Growth phenotypes of genetically mutated yeast strains are studied

in several large-scale experiments in order to assess the essentiality of

single genes (see, e.g. [21],[22]) and to explore phenomena related to

knockouts of multiple genes (see, e.g. [35],[36]).

The phenotypic data on experimentally studied yeast mutants

was obtained from three sources which provided partially

overlapping information. First, the phenotypic information of

single gene deletion mutants originates from [22]. The second

source of phenotypic data was a set of large-scale experiments

conducted using a synthetic genetic array [35],[36]. In these

experiments, a large number of strains carrying a double gene

mutation are produced by crossing mutations in 132 query genes

into a set of ,4,700 gene deletion mutants. In addition, these

experiments describe the viability of a few hundred triple mutation

strains. The third source, Saccharomyces Genome Database

(SGD, http://www.yeastgenome.org/, accessed March 27th 2008)

summarizes numerous experimental results from original publica-

tions including the aforementioned data sources [22],[35],[36].

The SGD database was queried for synthetic genetic interactions

including: synthetic lethal interactions where a double gene

deletion or mutation causes an inviable mutant; synthetic growth

defect interactions where a double gene deletion or mutation

causes slow growing mutants; and synthetic rescue interactions

where a gene mutation or deletion rescues the lethality or growth

defect of a strain which is mutated or deleted for another gene.

Table 3 summarizes numbers of mutated strains. The damage

estimates, the essentiality score, and the computational classifica-

tion were based on the data in Table 3.

Boolean model and its analysis
The global molecular interaction network reconstruction was

translated into a Boolean model which makes it possible to estimate

the blocked molecular species and interactions and, thereby, the

damage the gene knockouts cause to the molecular network. In the

Boolean model, the possible blockage of each of the objects is

represented by a Boolean-valued feasibility variable. The feasibility

describes whether a molecular species exists in its functional form

(Boolean value ‘True’) or not (‘False’), and, whether an interaction

may occur (‘True’) or not (‘False’). The feasibility of an object is

determined using an associated Boolean rule. The rules for

interactions are based on molecular species required by the

interaction (e.g., substrates and enzymes in the case of metabolic

reactions, and transcripts in the case of translations). Thus,

the feasibility F of an interaction I is determined as FI~
Fs(1) ^ Fs(2) ^ ::: ^ Fs(N) where Fs(k),k~1,2,:::,N are the feasibilities

of the molecular species needed by I, and ‘^’ is the logical ‘and’

operator. On the other hand, the rules of the molecular species

are based on the interactions producing them. The feasibility

of a molecular species S is determined by the rule FS~
Fi(1) _ Fi(2) _ ::: _ Fi(N) where Fi(k),k~1,2,:::,N are the feasibilities

of the interactions producing S, and ‘_’ is the logical ‘or’ operator.

Gene knockout damages were estimated in the Integrator

software system by simulating the constructed set of Boolean rules.

A knockout was introduced by setting the given gene infeasible

while all the other molecular species and interactions were set
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feasible. The rule set was then evaluated until all the feasibility

values were fixed. The size of the final set of infeasible objects

quantified the damage of the knockout. The approach has

similarities to the methods used by [44],[16],[45].

Metabolic reconstruction iND750 and its analysis
In order to exploit a constraint-based analysis method for the

damage estimation in metabolism, we performed a joint analysis with

RefRec and the metabolic reconstruction iND750 [16]. The iND750

reconstruction was used to replace the KEGG metabolic reconstruc-

tion in RefRec. By changing a single data source to another, we

avoided discrepancies between the two sources, e.g., different

metabolite naming conventions between KEGG and iND750.

Table 4 presents statistics for the genome-scale metabolic

reconstruction iND750. Major differences to the KEGG recon-

struction include the compartmentalization to 8 compartments in

which the species and interactions are located, as well as transport

reactions between the compartments and exchange reactions

between extra- and intra-cellular spaces. In the statistics, reversible

metabolic reactions are considered as two irreversible reactions in

opposite directions which makes Tables 1 and 4 comparable. The

iND750 reconstruction does not explicitly model transcriptions,

transcripts, translations, protein complex assembly interactions, or

protein complexes. Instead, they are modeled using gene-protein-

reaction (GPR) associations.

The metabolic damage was estimated using a combination of

Boolean reasoning and a flux balance based method. The GPR

associations were interpreted as Boolean rules whose evaluation

indicate whether a gene knockout causes the lack of an enzyme and

thereby the blockage of the respective metabolic reaction [16]. A flux

balance based method [33] was used to detect additional metabolic

reactions which were blocked, i.e., they could not carry a flux under

the given conditions. The blockage of metabolites was determined

based on the calculated blockage information of the metabolic

reactions and the contents of the cultivation medium. A metabolite

was considered blocked if all the reactions producing it were blocked

and its uptake was not possible from the cultivation medium.

In order to estimate unconditional metabolic damages (i.e., the

objects blocked under all cultivation conditions), we assumed

complex cultivation medium and aerobic conditions. Further, we

assumed the capability of the cell to uptake and secrete all the

metabolites for which the respective exchange reactions exist. The

reactions blocked under these conditions are blocked under all

other conditions, too [33]. The calculations were performed using

MATLAB (version 2008b, The MathWorks, Inc., Natick, MA,

US) and lp_solve (version 5.5, http://lpsolve.sourceforge.net/).

Classification of growth phenotypes
The lethality of the ,590,000 experimentally validated single,

double, and triple gene knockouts was predicted using their

damage estimates. As the damage was quantified by the Boolean-

valued feasibility for the molecular species and interactions, the

input data for the classification was a binary matrix with ,590,000

rows (i.e., samples) and ,67,000 columns (i.e., variables).

The feasibility data was preprocessed by excluding redundant

information. If two or more molecular species or interactions

(i and j) had the same feasibility under all the N knockouts

Fi(n)~Fj(n),n~1,2,:::,N,i=j, the variables were merged and

considered as a single variable Fi. Typically, this merged the

corresponding genes, transcriptions, transcripts, translations, and

proteins together because of their direct relations on protein

synthesis pathways. The preprocessing reduced the number of the

variables from 67,288 to 18,366 without using the phenotype

information to be predicted.

Prior to each classification, the samples were randomly divided

into training and testing sets. In the case of Figure 8, the training

samples always contained 1,400 lethal and 5,600 non-lethal

knockouts. With the help of the training samples, the number of

variables was further reduced by choosing feature variables for the

classifier training. A variable i was used as a feature variable if its

essentiality score si was greater than 0.5 in the training set. The

essentiality score was calculated as si~P(00lethal00DFi~
00false00),

i.e., the probability of an inviable phenotype given the variable i

was infeasible. The feature selection typically extracted ,4,000

feature variables from the set of 18,366 variables.

Eventually, the selected training samples (7,000 in the case of

Figure 8) were represented as binary vectors whose elements

described the feasibility for the ,4,000 feature variables (i.e., selected

molecular species, interactions, and their merged sets formed during

the preprocessing step). The training samples, associated with their

corresponding experimental phenotype knowledge, were used to

train a maximum margin support vector machine classifier (a

MATLAB implementation of a learning-based algorithm for binary

classification) [46],[47] to predict the knockout lethality. In our case,

the computational complexity of the classification problem limited

the maximal number of training samples to 7,000. The classifier

determined an optimal hyperplane in the ,4,000 dimensional

Boolean space to separate the viable and the inviable samples. The

samples reserved for the testing were subsequently used to assess the

classifier performance. For each of the test samples, the classifier

calculated the corresponding ,4,000 dimensional binary vector and

checked at which side of the hyperplane the vector laid.

Supporting Information

Table S1 Unconditionally essential genes and their enrichments

in GO Biological Processes.

Found at: doi:10.1371/journal.pone.0010662.s001 (0.10 MB

XLS)
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16. Duarte NC, Herrgård MJ, Palsson BØ (2004) Reconstruction and Validation of

Saccharomyces cerevisiae iND750, a Fully Compartmentalized Genome-Scale
Metabolic Model. Genome Res 14: 1298–1309.

17. Kuepfer L, Sauer U, Blank LM (2005) Metabolic functions of duplicate genes in

Saccharomyces cerevisiae. Genome Res 15: 1421–1430.

18. Nookaew I, Jewett MC, Meechai A, Thammarongtham C, Laoteng K, et al.
(2008) The genome-scale metabolic model iIN800 of Saccharomyces cerevisiae and

its validation: a scaffold to query lipid metabolism. BMC Syst Biol 2: 71.
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