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a b s t r a c t

Aging has significant effects on circadian behavior across a wide variety of species, but the underlying
mechanisms are poorly understood. Previous work has demonstrated the age-dependent decline in
behavioral output in the model organism Drosophila. We demonstrate that this age-dependent decline in
circadian output is combined with changes in daily activity of Drosophila. Aging also has a large impact
on sleep behavior, significantly increasing sleep duration while reducing latency. We used electrophys-
iology to record from large ventral lateral neurons of the Drosophila circadian clock, finding a significant
decrease in input resistance with age but no significant changes in spontaneous electrical activity or
membrane potential. We propose this change contributes to observed behavioral and sleep changes in
light-dark conditions. We also demonstrate a reduction in the daily plasticity of the architecture of the
small ventral lateral neurons, likely underlying the reduction in circadian rhythmicity during aging.
These results provide further insights into the effect of aging on circadian biology, demonstrating age-
related changes in electrical activity in conjunction with the decline in behavioral outputs.
� 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Circadian rhythms describe the near 24-hour cycle in behavior
and physiology, driven by the circadian clock, which allow organ-
isms to anticipate daily changes in their environment. Circadian
clocks in animals are fundamental biological components respon-
sible for the control of large aspects of physiology and behavior,
ranging from the sleep-wake cycle to rhythms in blood pressure
(Roenneberg and Merrow, 2016). Remarkably, the fundamental
molecular basis of the intracellular clock is well conserved from
Drosophila to mice and humans (Allada and Chung, 2010). The
health consequences of circadian misalignment as a result of our
modern lifestyles are dramatic, with links to cancer, depression, and
sleep disorders (Menet and Rosbash, 2011; Samuelsson et al., 2018;
West and Bechtold, 2015). With increasing human life spans and an
aging population, understanding how circadian rhythms change
during the aging process is of growing interest and medical
harmacology and Neurosci-
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relevance, with the population aged over 60 years set to more than
double by 2050 (UN, 2015).

It is well established that elderly individuals have increasing
difficulties sleeping at night and have increase in daytime sleep
episodes combined with generally going to sleep and waking up
earlier (Kondratova and Kondratov, 2012). The daily cycles of hor-
mone levels, body temperature, and the sleep-wake cycle are
modified with age in humans, causing disruption in behavior and
resultant reduction in the strength of the clock (Hofman and Swaab,
2006). Furthermore, circadian sleep-wake disorders are more
prevalent in older individuals (Kim and Duffy, 2018).

Using Drosophila offers numerous advantages for investigating
how aging affects the circadian clock, not least the strong history of
circadian research in the model organism, genetic tractability, short
lifespan (50e80 days), rapid generation time as well as clearly
defined and manipulatable neural circuits. Genetic analysis of
circadian behaviors has identified genes involved in generating
rhythmic transcription translation feedback loops comprising the
molecular clock of Drosophila (Allada and Chung, 2010; Hardin,
2011; Tataroglu and Emery, 2015), which in turn control a wide
range of physiological and cellular responses, likely through
rhythmic control of output genes.
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The Drosophila central clock consists of 150 dispersed but con-
nected circadian neurons that are classified by their anatomical
location, projection pattern, and the expression of clock genes
(Peschel and Helfrich-Förster, 2011). They function as a network to
drive rhythmic behavior (Top and Young, 2018). Examples of out-
puts from the molecular clock are the circadian remodeling of the
projections from the small ventral lateral clock neurons (s-LNvs) to
the dorsal protocerebrum (Fernández et al., 2008) and circadian
modulation of the firing frequency andmembrane potential (MP) of
clock neurons (Cao and Nitabach, 2008; Flourakis et al., 2015;
Sheeba et al., 2008b). Under laboratory conditions using a
12:12 hours light:dark (LD) cycle, Drosophila display morning and
evening peaks in locomotor activity with anticipation activity
before the transitions of lights-on and lights-off, with constant
darkness (DD) resulting in free-running activity with a period of
around 23.8 hours (Dubowy and Sehgal, 2017).

The LNv neurons produce the neuropeptide pigment dispersing
factor (PDF), which acts to synchronize activity throughout the clock
circuit (Shafer and Yao, 2014). PDF acts through the PDF receptor that
has broad expression in the circadian network (Im and Taghert,
2010), with rhythmic synaptic release of the PDF neuropeptide
required for maintaining circadian rhythmicity under constant con-
ditions. The PDF neurons have been termed the “morning” cells due
to the absence of the morning (but not evening) peak of activity in
flies either having mutations in the pdf gene or lacking the PDF
neurons (Renn et al., 1999). Another group of clock neurons, the
dorsal lateral neurons and the PDF-negative 5th s-LNvs, have been
termed the “evening” cells as they are necessary for the evening
anticipation activity (Grima et al., 2004; Stoleru et al., 2004).

In Drosophila, aging has been shown to cause reduced and
weakened circadian activity in behavior, associated with declining
levels of PDF (Umezaki et al., 2012). Disruption of the clock has also
been shown to accelerate aging, in flies lacking a functional clock
(Hendricks et al., 2003; Krishnan et al., 2012; Vaccaro et al., 2017),
or keeping flies under mismatched lighting conditions (Klarsfeld
and Rouyer, 1998; Pittendrigh and Minis, 1972; Vaccaro et al.,
2016). Studies on how aging affects the molecular clock have re-
ported conflicting results: it has been found to remain robust in
aged flies (Luo et al., 2012) and to significantly decline in strength
with age (Rakshit et al., 2012). To date, no studies have been pub-
lished on the effect of aging on the electrical activity of clock neu-
rons in Drosophila. In mice, aging has been shown to result in
reduced amplitude of daily electrical rhythms, measured in vivo
using multiunit recordings (Nakamura et al., 2011) or from single
cells in slice preparations (Farajnia et al., 2012, 2015).

To investigate the effect of aging on circadian rhythms, we took
advantage of the Drosophila model that allows systematic moni-
toring of circadian and sleep behavior simultaneous from flies across
the range of lifespan. Furthermore, we determine the effect of aging
at the neuronal activity level by making patch-clamp recordings
from the large-LNv clock neurons from young and aged flies.

2. Materials and methods

2.1. Fly strains

The following fly stocks and their original sources were used:
Pdf::RFP (Ruben et al., 2012), iso31 (Ryder et al., 2004), Pdf-Gal4
(Bloomington stock centre, #6900) (Park and Hall, 1998), and UAS-
mCD8::GFP (Bloomington Stock Centre, #5137).

All flies were reared on a standard medium based on the
following recipe: 10l batches containing 400 ml malt extract,
200 ml molasses, 400 g polenta, 90 g active dried yeast, 50 g soya
flour, and 35 g granulated agar, with 40ml of propionic acid (Sigma-
Aldrich, #94425) and 100 ml of nipagin (Sigma-Aldrich, #H5501)
added after cooling. Flies for aging were collected and flipped onto
fresh food every 5 days andmaintained in an incubator at 25 �C and
humidity of 55%e65% with a 12:12 LD cycle.

2.2. Circadian behavior analysis

Locomotor activity of individual male flies (aged 1, 8, 15, 22, 29,
36, 43 and 49 days old) was measured using the Drosophila Activity
Monitoring system (DAM2, TriKinetics Inc, USA). Flies were trans-
ferred into DAM tubes after reaching the desired age and were
maintained for 5 days under 12:12 LD conditions, followed by DD.
The first 7 days of DD activity was used for circadian analysis, with
period and rhythmicity analysis performed inMATLAB using the Fly
toolbox (Levine et al., 2002).

2.3. Anticipation index analysis

The morning and evening anticipation indexes were calculated
from the activity of flies across the 5 days of LD activity. Morning
anticipation was calculated as previously described (Harrisingh
et al., 2007; Zhang and Emery, 2013). Briefly, the average activity
was calculated as the ratio of activity between ZT21.5e24 and
ZT17e19.5. Evening anticipationwas likewise calculated as the ratio
between ZT9.5e12 and ZT5e7.5.

2.4. Sleep analysis

Sleep data were analyzed using the Sleep and Circadian Analysis
MATLAB Program (Donelson et al., 2012). Individual raster plots of
activity were viewed, and flies that had died before the end of the
experiment were removed from the data. Data were analyzed
across the 24-hour period, the 12-hour “light phase” and the 12-
hour “dark phase.” Sleep is visualized by plotting the mean
amount of sleep in a 30-minute bin against the time of day, aver-
aged for the 5 days of the experiment. From the raw data of sleep
amounts and time, a series of measurements of sleep are calculated,
including “total sleep duration”dsum of all sleep episodes, “num-
ber of sleep episodes”dcount of all sleep episodes, “mean sleep
episode duration”daverage sleep duration (in minutes), and “sleep
latency”dthe time to the first sleep episodes (in minutes).

2.5. Electrophysiological recording of clock neurons

Whole-cell current clamp recordings were performed as previ-
ously described (Buhl et al., 2016; Chen et al., 2015). For visualiza-
tion of the large ventral lateral neurons (l-LNvs), Pdf::RFP flies were
used, which is a transgenic fusion of the Pdf promoter and mRFP1
that specifically labels the LNv neurons. Adult male flies were
maintained under a 12:12 LD cycle, and recordings were made at
either ZT7-9 (day condition) or ZT19-21 (night condition), where
ZT0 corresponds to lights-on.

First, flies were anesthetized using CO2, before decapitation, and
the brain removed by acute dissection with fine forceps in extra-
cellular saline solution containing (inmM) 101NaCl,1 CaCl2, 4MgCl2,
3 KCl, 5 glucose, 1.25 NaH2PO4, and 20.7 NaHCO3 at pH 7.2. The
photoreceptors, lamina, and as much membrane as possible were
removed, and whole brains were transferred to a recording chamber
(ALA Scientific) filled with extracellular solution and stably held
ventral side up using a custom-built wire harp. Cells were visualized
using an Axio Examiner Z1 (Zeiss) using a 63� water immersion
objective, l-LNvs were identified using 555 nm light generated using
a Colibri Examiner light source (Zeiss). All recordings were per-
formed at room temperature (20 �Ce22 �C) using thick-walled bo-
rosilicate glass electrodes (1B150F-4; World Precision Instruments)
ranging in resistance from 10e16 MU filled with intracellular
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solution containing (in mM): 102 K-gluconate, 0.085 CaCl2, 17 NaCl,
0.94 EGTA, 8.5 HEPES, 4Mg-ATP, and 0.5 Na-GTP at pH 7.2. Datawere
recorded using an Axon MultiClamp 700B amplifier, digitized with
an Axon Digidata 1440A (sample rate 20 kHz, 10 kHz Bessel filter)
and recorded using pClamp (10.5: Molecular Devices, CA, USA).
Chemicals were acquired from Sigma (Poole, UK).

The liquid junction potential was calculated as 13 mV and sub-
tracted post hoc from all the membrane voltages. A cell was included
in the analysis if the access resistance was less than 50 MU. MP and
the spontaneous firing rate (SFR) were measured after stabilizing for
2e3 minutes. Membrane input resistance (Rin) was calculated by
injecting hyperpolarizing current steps from�40 pA toþ5 pA in 5 pA
steps and measuring the resulting voltage change. Neuronal excit-
ability was measured by injecting a 500 ms long positive current
pulse in 2 pA increments with increasing amplitude up to þ40 pA
and manually counting the resulting spikes.

2.6. Immunohistochemistry and analysis

Flies were briefly anesthetized using CO2 and swiftly decapitated
and heads immediately placed into phosphate-buffered saline (PBS)
containing 4% paraformaldehyde (Image-iT Fixative Solution, Thermo
Fisher Scientific # R37814) and 0.008% Triton X-100 (Sigma) and fixed
for 45 minutes at room temperature. For all steps, tubes were covered
by foil to protect tissue from light exposure. Fixed heads were quickly
washed twice in 0.5% PBT (PBS with 0.5% Triton X-100) followed by
three 20-minute washes in PBT, before being dissected in 0.1% PBT.
Brains were blocked in 5% normal goat serum (NGS, Thermo Fisher
Scientific # 50197Z) for 30 minutes at room temperature. Brains were
then incubatedwith primary antibodies (Table 1) in 5% NGS at 4 �C for
36 hours on a rotator with tubes upright.

Brains were quickly washed twice in PBT, followed by three 20-
minute washes in PBT, with tubes upright on a rotator. Brains were
then incubated with secondary antibodies in 5% NGS for 3 hours at
room temperature, and then overnight at 4 �C. Brains were rinsed in
0.1% PBT, followed by three 20-minute washes in PBT, and rinsed
twice in PBS. Brains were then aligned on a microscope slide, with
wells created using imaging spacers (SecureSeal, Grace Bio-Labs
#654002), and then mounted in Vectashield hard set medium
(Vector Laboratories). The mounting media was allowed to harden
for 30minutes at room temperature, before storage at 4 �C. Coverslip
edges were sealed with clear solvent (CoverGrip, Biotium #23005).

Brains were imaged using a Leica TCS SP8 AOBS confocal laser
scanning microscope attached to a Leica DMi8 inverted epifluor-
escence microscope, equipped with “hybrid” Gallium arsenide phos-
phide detectors with the green channel imaged at 480e551 nm and
the red at 571e650 nm. We used a 20� glycerol immersion objective
(HC PL APO CS2; Leica) and obtained confocal stacks with a 2 mm step
size and 512� 512 pixels. The obtained confocal stacks were analyzed
using the Fiji implementation of ImageJ (Schindelin et al., 2012). Be-
sides contrast, brightness, color scheme, and orientation adjustments,
no further manipulations were made to the images.

To quantify the axonal arbor of the dorsal projections, we used
an adaptation of the Sholl method (Sholl, 1953), as has been pre-
viously reported (Fernández et al., 2008). Briefly, using 6 evenly
spaced (10 mm) concentric rings centered at the first branching of
the dorsal projections and counting the number of intersections of
each projection with the rings. Scoring was performed blind to the
experimental condition.

2.7. Statistical analysis

All statistical analyses were performed using GraphPad Prism 7
(GraphPad Software, USA), with an a level of p < 0.05 considered
significant. Data for aging experiments showed non-normal
distribution and were plotted as the median with interquartile
range; the nonparametric Kruskal-Wallis test was used, with post
hoc analysis conducted using Dunn’s test. For aging data, statistical
comparisons between groups were compared to the D1 group.

For electrophysiological and imaging experiments, groups were
compared using two-way ANOVA with Tukey’s multiple compari-
sons test, with “age” and “time of day” as factors.

3. Results

3.1. Aging caused a weakening in circadian behavioral output and
lengthening of the free-running period

To address the impact of aging on the circadian clock, we used
Drosophila to conduct a comprehensive behavioral analysis of
circadian activity of male flies at 1-week intervals during the aging
process. Flies were first kept for 5 days in a 12 hours:12 hours LD
cycle and showed normal diurnal behavior, with morning and
evening peaks of activity (Fig.1A). Flies were thenmaintained in DD
and showed typical free-running behavior. In agreement with
previously reported work (Rakshit et al., 2012; Umezaki et al.,
2012), we found that aging resulted in a significant decline in the
strength of circadian locomotor activity under free-running con-
ditions (Fig. 1B, p ¼ 0.0001, Kruskal-Wallis statistic ¼ 27.17), with a
steep decline in flies aged 36 days and older and a significant
lengthening of the period of the observed behavioral activity
(Fig. 1C, p < 0.0001, Kruskal-Wallis statistic ¼ 95.3). There we also
found a significant age-related reduction in total locomotor activity
(Fig. 1D, p < 0.0001, Kruskal-Wallis statistic ¼ 37.89).

3.2. Aging alters daily activity structure in light-dark conditions and
reduces anticipatory behavior

Given that there was a reduction in the amount of locomotor
activity in older flies (Fig. 1D), we sought to further examine how the
daily structure of activity under normal LD conditions was altered by
the aging process. Some of the hallmark features of daily activity of
male flies recorded using the DAM system are the morning and
evening peaks in locomotor activity (Dubowy and Sehgal, 2017) and
anticipation of the light-dark transition (see Fig. 2A). Both the peaks
of activity and anticipation behavior are affected bymanipulations of
the circadian system (Lear et al., 2009). We investigated the effect of
age on morning and evening anticipation by first normalizing loco-
motor activity for an individual fly to be the percentage of the daily
total (Fig. 2B). The anticipation index was then quantified as the
proportion of an individual fly’s daily activity occurring in the
2.5 hours immediately before the LD transition compared with the
2.5 hours in the middle of the day/night (Harrisingh et al., 2007).
Older flies showed a significant reduction in morning anticipation
index compared with young flies (p < 0.0001, Kruskal-Wallis
statistic ¼ 28.93), and a slight reduction in evening anticipation in-
dex (p < 0.0001, Kruskal-Wallis statistic ¼ 32.45) (Fig. 2C).

3.3. Aging alters the daily structure of sleep

Given that there is a strong connection between the circadian
clock and sleep, we sought to also investigate how sleep is altered
by age. Sleep analysis was performed for the 5 days under an LD
cycle at the start of the circadian experiment, with sleep classified
under the common convention of periods of immobility longer than
5 minutes in duration (Hendricks et al., 2000; Shaw et al., 2000).

The daily structure of sleep in older male flies was noticeably
different to that of young flies (Fig. 3A) with a visible increase in the
amount of daytime sleep and a shift toward sleep earlier in the day.
Quantification of total sleep showed a significant effect of age (p ¼
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0.0006, Kruskal-Wallis statistic¼ 25.7) (Fig. 3B). Looking only at sleep
during the daytime (Fig. 3C), there was a significant increase with age
(p < 0.0001, Kruskal-Wallis statistic ¼ 33.83); however, there was no
effect of age on night-time sleep (p ¼ 0.31 Kruskal-Wallis statistic ¼
8.253) (Fig. 3D). Measuring the latency of sleep after the LD transitions
demonstrated a significant reduction in the speed at which older flies
started sleeping both during the day (p < 0.0001, Kruskal-Wallis
statistic ¼ 102.7) (Fig. 3E) and night (p < 0.0001, Kruskal-Wallis
statistic ¼ 61.33) (Fig. 3F). Analyzing the parameters of sleep
episodes, we found that therewas a significant increase in the number
of sleep episodes with age (p < 0.0001, Kruskal-Wallis statistic ¼
58.79) (Fig. 3G) and a significant difference in mean sleep episode
duration (p < 0.0001, Kruskal-Wallis statistic ¼ 32.56) (Fig. 3H).

3.4. Electrical properties of clock neurons are altered by aging

We have demonstrated that the aging process causes signifi-
cant changes to the behavioral outputs of the circadian clock
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circuit of Drosophila and therefore set out to investigate if these
were underpinned by changes in clock neuronal activity. To
measure the effects of aging on clock neurons, we made re-
cordings from the prominent wake-promoting and arousal l-LNv
neurons, the most accessible and well-studied group of clock
neurons in Drosophila (Buhl et al., 2016; Cao and Nitabach, 2008;
Parisky et al., 2008; Sheeba et al., 2008a). Recordings were made
during the day and at night in explant brain preparations made
from young (day [d] 1e5) and middle-aged (d28-35) flies (Fig. 4)
and measured the electrophysiological properties of these cells
(Fig. 5). Recordings from flies older than 35 days were limited due
to the technical difficulties making stable recordings from aged
neurons, with older brains being more difficult to dissect cleanly
and difficulties to achieve good seals and access due to changes in
the older membranes.

As previously reported, young l-LNvs showed a strong day-
night difference in both their SFR and MP (Buhl et al., 2016;
Cao and Nitabach, 2008; Sheeba et al., 2008b), but the
response to an injected current pulse or the input resistance did
not differ significantly between day and night (Fig. 5). Here we
report that the diurnal modulation of SFR and MP are maintained
in the l-LNvs recorded from 28- to 35-day-old flies, with no
difference found in the response to a current injection between
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Fig. 4. Electrophysiological characterization of l-LNv clock neurons. Membrane potential and
color-coded as indicated) of wild-type l-LNvs from young (day 1e5) and aged (day 28e35)
lateral neurons. (For interpretation of the references to color in this figure legend, the read
young and aged flies. Interestingly, we report a significant
decrease in the input resistance of aged l-LNvs (Fig. 5D),
indicative of an increase in overall conductance across the
membrane.
3.5. s-LNv terminal remodeling is reduced by aging

It has previously been demonstrated that the dorsal projections
of the s-LNv neurons show daily remodeling in complexity under
clock control (Fernández et al., 2008). To test if this was still
occurring in older flies, day/night changes in PDF terminal
morphology were measured in flies aged 30 days (Fig. 6). Using the
previously published protocol (Fernández et al., 2008), we found
that the remodeling was no longer a significant feature in aged
brains. There was a significant overall effect of time of day (p ¼
0.0045, two-way ANOVA, F(1,24) ¼ 9.822), but no effect of age (p ¼
0.5286, two-way ANOVA, F(1,24) ¼ 0.4088). Multiple comparisons
tests showed the magnitude of the day-night difference was
reduced in older flies and no longer being significantly different
between day and night (p¼ 0.6138, Tukey’s test, DF¼ 24, q¼ 1.741)
(Fig. 6C).
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spontaneous activity (left panels) and firing response to a current pulse (right panels,
flies recorded at day (ZT 7e9) and night (ZT 19e21). Abbreviation: l-LNv, large ventral
er is referred to the Web version of this article.)
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Fig. 5. Quantitative analysis of electrophysiological properties of large lateral ventral clock neurons (l-LNv) from young (day 1e5) and middle-aged (day 28e35) flies in day and
night conditions. (A) Analysis of input resistance (Rin) showed a highly significant effect of age (p < 0.0001) and an effect of time of day (p < 0.005) but no interaction. (B) Analysis of
the spontaneous firing rate (SFR) showed a significant effect of time of day (p < 0.0001) but no effect of age. (C) Analysis of the membrane potential (MP) values again showed only a
significant effect of time of day (p < 0.0001) but not age. (D) Analysis of the responses to an injected current pulse (fþ40pA) showed no significant effects. Data were analyzed using
two-way ANOVAwith Tukey’s multiple comparisons test, ** representing p < 0.01, *** p < 0.001, error bars show the mean � SEM. Each data point represents a single l-LNv neuron.
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4. Discussion

Aging is known to have a significant impact on circadian
behavior but what effect this has at a neuronal level is poorly un-
derstood. In this study, we have conducted a systematic analysis of
the effect of aging on circadian behavior and related this to elec-
trical activity of l-LNv clock neurons finding a significant reduction
in the input resistance of aged neurons.
41TZ3D2TZ3D

D30 ZT2 D30 ZT14

A

Fig. 6. Daily reorganization in the PDF terminals is reduced by aging. (A) pdf >mCD8-GFP wi
anti-PDF (magenta) antibodies. Scale bar ¼ 50 mm. (B) Schematic depiction of how the qu
tersections between the concentric rings and the axonal projections was quantified and sho
two-way ANOVA with Tukey’s multiple comparisons test, * represents p < 0.05. N > 6 for
group of s-LNv neurons. Abbreviations: PDF, pigment dispersing factor; s-LNv, small ventra
reader is referred to the Web version of this article.)
Our behavioral experiments complement the work of previous
studies in showing that the strength of the free-running behavior
weakens and period lengthens with age (Umezaki et al., 2012). In
addition, we go further by using a systematic approach to monitor
flies at 1-week intervals across the aging process and show that
there is an age-dependent decrease in rhythm strength (Fig.1B) and
an equivalent increase in period length with age (Fig. 1C). Mouse
experiments have found that aging results in a lengthening in
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Table 1
Antibodies used and sources

Antibodies Concentration Source

Primary
Mouse monoclonal anti-PDF 1:200 Developmental Studies

Hybridoma Bank, #PDF-C7
Rabbit polyclonal anti-GFP 1:1000 Life Technologies # A11122

Secondary
Alexa Fluor Plus 488
Goat anti-mouse

1:1000 Life Technologies # A32723

Alexa Fluor Plus 555
Goat anti-rabbit

1:100 Life Technologies # A32732
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period in both behavioral activity (Turek et al., 1995; Valentinuzzi
et al., 1997) and molecular rhythms in the suprachiasmatic nu-
cleus (Nakamura et al., 2015).

We further sought to investigate how the daily structure of ac-
tivity under LD conditions is altered by aging, by quantifying
changes in morning and evening anticipatory activity (Fig. 2). We
found that there was a significant effect of age on both the morning
and evening anticipation indexes (Fig. 2C), with a greater reduction
in the morning peak. LNv neurons are required for correct morning
anticipation (Grima et al., 2004; Stoleru et al., 2004) and are
obvious candidates for involvement in an age-related decline in this
anticipatory behavior. Morning anticipatory behavior is also linked
to expression of PDF, with pdf 01 and PDF-RNAi flies showing sig-
nificant reductions in morning anticipation (Shafer and Taghert,
2009). A reduction in PDF expression in aged flies has previously
been demonstrated (Umezaki et al., 2012), providing further evi-
dence for the importance of PDF in maintaining healthy rhythms
with age and supporting a hypothesis that reduced PDF signaling
with age underlies the weakening of behavioral rhythmicity.

The l-LNv neurons are involved in promoting arousal (Chung et
al., 2009; Sheeba et al., 2008a) and regulating sleep and latency
during the early night (Liu et al., 2014). We made use of the DAM
recording system to monitor sleep under LD conditions, using the
widely accepted definition of sleep as period of immobility greater
than 5minutes (Shaw et al., 2000). Aging is known to cause changes
in the sleep profile across many organisms including mice
(Valentinuzzi et al., 1997), nonhuman primates (Zhdanova et al.,
2011), and humans (Moraes et al., 2014). Previous Drosophila
studies on the effects of aging on sleep have reported that sleep
becomes more fragmented with age (Koh et al., 2006; Vienne et al.,
2016), showing a similar increase in sleep episode number and
decrease in mean sleep episode duration comparedwith our results
(Fig. 3G and H).

Electrical silencing of LNv neurons causes deficits in free-
running clock behavior (Depetris-Chauvin et al., 2011), demon-
strating a link between electrical activity and behavior. Most elec-
trophysiological studies use young flies aged between 3 and 7 days
for recordings (Cao and Nitabach, 2008), with a limited amount of
recordings made from 25-day-old flies only looking at the active
firing properties of the neurons (Sheeba et al., 2008b). Here we
report the effect of aging on l-LNv neuronal activity and electrical
properties. We perform whole-cell patch clamp recordings from
young and aged neurons and report no major differences in the
observed spontaneous activity of l-LNv neurons (Fig. 4). Further
analysis of the electrical properties of l-LNv neurons showed that
there was a significant effect of age in reducing the input resistance,
which surprisingly did not affect SFR, MP or excitability (Fig. 5). We
propose the age-related changes in l-LNv properties are linked with
the observed changes in activity and sleep during light-dark
conditions.

There are multiple possible explanations for a decrease in
input resistance without changing the active properties of the
neurons. One hypothesis would be the involvement of chloride
(Cl�) channels, which could become open and decrease resis-
tance without changing the MP, alternatively, the observed
reduction in input resistance could result from age-related
changes in the composition of ion channels in the membrane,
with future experiments needed to evaluate between potential
hypotheses. The l-LNv express the GABAA receptor Resistant to
dieldrin (Rdl), which when activated by GABA selectively con-
ducts Cl� through its pore. Rdl has important roles in promoting
sleep, with a mutation in Rdl that causes extended channel
openings resulting in increased sleep duration and decreased
latency (Agosto et al., 2008; Parisky et al., 2008). Conversely,
knocking down the Rdl gene in the PDF neurons reduces sleep,
again suggesting GABA regulates sleep through the LNvs and Rdl
receptor function (Chung et al., 2009). Therefore, it is possible
that during aging, there is an increase in GABA activation through
Rdl in the l-LNvs, causing increased Cl� conductance. This in-
crease in Cl� conductance may contribute to the observed
reduction in input resistance recorded and also drive the increase
in sleep duration and decreased sleep latency in aged flies.

Studies of aging on electrical activity of mouse clock neurons
found no effect of age on input resistance but reveal a reduction in
the difference between day and night firing rates (Farajnia et al.,
2012), showing differences of the effects of aging between
different clock neurons in Drosophila and mouse.

Our electrophysiological experiments were limited to the l-
LNvs, so we can only link the changes in neuronal properties we
observed to the changes in morning activity and sleep in LD
conditions as the l-LNv do not maintain molecular oscillations in
DD (Grima et al., 2004), although it is possible that similar
changes in neuronal properties are occurring in the s-LNvs where
molecular oscillations do persist in constant conditions. We
sought to investigate changes to the s-LNv neurons, namely the
remodeling of the s-LNv dorsal projections. Analysis of the
branching of the s-LNv projections demonstrated that the day-
night difference in complexity is reduced by aging (Fig. 6),
indicating changes in the distribution of the PDF release network
in older flies. Given the role of PDF in regulating the activity of
different groups of clock neurons, namely through excitation of
dorsal clock neurons (Seluzicki et al., 2014), changes in PDF
signaling would contribute to changes in the clock network as a
whole. The s-LNv neurons are known to be important for
maintaining behavioral rhythmicity under constant conditions,
and we propose this weakening of s-LNv terminal remodeling
underlies the age-related weakening in circadian locomotor
behavior.

Our study builds upon the existing literature demonstrating
an age-dependent decline in circadian behavioral outputs and
importantly links this to changes in the electrophysiological and
structural properties of clock neurons. Further work is necessary
to fully understand what the implications of these changes are
for the circadian clock network as a whole and if similar
changes are occurring in other groups of clock neurons in
Drosophila.
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