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Abstract

Background: Panax japonicus C. A. Mey. is a rare traditional Chinese herbal medicine that uses ginsenosides as its main
active ingredient. Rice does not produce ginsenosides because it lacks a key rate-limiting enzyme (3-amyrin synthase,
BAS); however, it produces a secondary metabolite, 2,3-oxidosqualene, which is a precursor for ginsenoside biosynthesis.

Results: In the present study, the P. japonicus BAS gene was transformed into the rice cultivar Taijing 9" using an
Agrobacterium-mediated approach, resulting in 68 rice transgenic plants of the T, generation. Transfer-DNA (T-DNA)
insertion sites in homozygous lines of the T, generation were determined by using high-efficiency thermal asymmetric
interlaced PCR (hiTAIL-PCR) and were found to vary among the tested lines. Approximately 1-2 copies of the 3AS gene
were detected in transgenic rice plants. Real-time PCR and Western blotting analyses showed that the transformed BAS
gene could be overexpressed and -amyrin synthase could be expressed in rice. HPLC analysis showed that the
concentration of oleanane-type sapogenin oleanolic acid in transgenic rice was 83-11.5 mg/100 g dw.

Conclusions: The current study is the first report on the transformation of P. japonicus BAS gene into rice. We have
successfully produced a new rice germplasm, “ginseng rice”, which produces oleanane-type sapogenin.
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Background

Rice is one of the world’s major food crops. It is the
staple food for nearly half of the world’s population [1].
Traditional breeding techniques, especially hybrid rice
technology, have contributed to the improvement of rice
yield and quality. However, there are compounds that
rice cannot synthesize or can only produce at very low
levels, and traditional breeding techniques are apparently
incapable of resolving these problems. Transgenic tech-
nology provides an efficient means of improving rice
quality at the genetic level [2—4] based on the principle
that creating a new rice germplasm that is capable of
producing exogenous active ingredients through genetic
engineering could improve the nutritional quality of rice.
For example, Ye et al. [5] and Paine et al. [6] produced
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the first and second generations of “golden rice”, re-
spectively, mainly by expressing exogenous key genes in
the B-carotene biosynthesis pathway in the endosperm.
The reported concentration of B-carotene was 1.6 pg/g
and 37 pg/g in these two transgenic rice strains, respect-
ively. Lee et al. [7] transformed the sesame 2S albumin
gene into rice and produced “sesame nutrition rice”, and
the methionine content of the seeds reached 0.40% in
the T, generation rice lines, which represented a 38% in-
crease relative to that of the control rice lines.

P. japonicus is a rare traditional Chinese herbal medi-
cine that uses ginseng saponin as its main active ingredi-
ent. Its health-protective effects include improving
immunity, preventing tumors, and facilitating adaptation
[8, 9]. The total saponin content in the roots of P. japo-
nicus can reach 15%, which is 2- to 7-fold higher than
that of P. ginseng and 3-fold higher than that of P. quin-
quefolius [8, 9]. Ginsenosides are triterpenoid saponins
of plant secondary metabolites, ie. the product of

© 2015 Huang et al, licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain

Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article,

unless otherwise stated.


mailto:zjg231@126.com
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/

Huang et al. BMC Biotechnology (2015) 15:45 Page 2 of 8

FPP
lSQS
Squalene
SQE
Sterols a—a 3-0x1dosqualene _HLanostane type
tr1terpen01d saponin
aAS BAS

Lupmane-type
triterpenoid saponin

Bearberry hexane-type
triterpenoid saponin

Oleanane-type Dammarane-type
triterpenoid saponin triterpenoid saponin

Fig. 1 Biosynthetic pathway of triterpenoid saponin and sterols in plants [10-12]. Intermediates: FPP, farnesyl pyrophosphate; SQS, squalene
synthase; SQE, squalene epoxidase; CS, cycloartenol synthase; LS, lanosterol synthase; aAS, a-amyrin synthase; LUS, lupeol synthase; DS, dammarenediol-l

synthase; BAS, B-amyrin synthase

triterpenoid saponins biosynthesis branch in the isopren-
oid pathway (Fig. 1) [10-12].

Triterpenoid saponins are formed by different
cyclization reactions of squalene. The synthesis of squa-
lene is the branch point of the central isoprenoid path-
way. It occurs at the triterpenoid saponin biosynthetic
branch [11, 13, 14]. 2, 3-oxidosqualene cyclases (OSCs),
the rate-limiting enzymes in triterpenoid saponins and
sterols biosynthesis branches, catalyze 2,3-oxidosqua-
lene, which results in the formation of the triterpenoid
skeleton, cycloartenol, and other compounds. With
further modifications, these compounds can form a var-
iety of triterpenoid saponins, phytosterols, and other
macromolecules.

The type and catalytic function of OSCs differ be-
tween ginseng plants and rice. The OSCs of ginseng
plants are mainly S-amyrin synthase (SAS) and dam-
marenediol-II synthase (DS). These catalyze 2,3-oxidos-
qualene to produce oleanane-type and dammarane-type
substances, namely, S-amyrin and dammarenediol-II,
respectively. Rice OSC is a cycloartenol synthase (CS)
that catalyzes 2,3-oxidosqualene to produce cycloarte-
nol [6, 11, 14]. Zhao et al. [15] studied the expression
of ginseng SAS and the regulation of ginsenosides bio-
synthesis by using antisense RNA technology. When
antisense BAS was introduced into the hairy roots of

ginseng, the transcription levels of the BAS gene signifi-
cantly decreased compared to those of non-transgenic
controls. In addition, SAS activity also decreased, and
the concentration of oleanane-type ginsenosides Ro de-
creased by as much as 40%. DS activity increased in
these SAS antisense lines, and the concentration of
dammarane-type ginsenosides increased by up to 30%.
These results proved that regulation of ginsenosides
synthesis could be achieved by altering the gene expres-
sion pattern of BAS by using genetic engineering
techniques.

The BAS gene has been cloned from Panax ginseng
(GenBank Acc. Nos.: AB014057.1, AB009030.1) [10],
Aralia elata (GenBank Acc. No.. HM219225.1), Betula
platyphylla (GenBank Acc. No.. AB055512.1), Malus
domestica (GenBank Acc. No.: FJ032007.1), Pisum sati-
vum (GenBank Acc. No.: AB034802.1) [10], and Centella
asiatica (GenBank Acc. No.: AY520818.1). The SAS gene
has not been cloned from rice. However, rice OSC is a
CS, which catalyzes 2,3-oxidosqualene to produce the
sterol substrate, cycloartenol [10, 16—18]. This indicates
that although 2,3-oxidosqualene, the precursor of rice
sterols synthesis, is also the precursor for ginsenosides
synthesis [11, 13], rice cannot synthesize ginsenosides
because rice lacks SAS and DS, which are the rate-limit-
ing enzymes in the synthesis of ginsenosides.
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Fig. 2 T-DNA region of the plant expression vector pCD-AS-hpt. Intermediates: 35S polyA, terminator of CaMV 35S gene; HPT, hygromycin
phosphotransferase gene; 35S P, 35S promoter; NOS T, terminator of nopaline synthase gene; Ubi P, Ubiquitin promoter; LB, left border;
RB, right border
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Fig. 3 PCR analysis of HPT (845 bp) and BAS (584 bp) in transgenic
rice plants. M, DNA Marker DL 2000. (1-12) Transgenic rice plants.

(13), positive control (vector carrying the BAS gene). (14) Negative

control (rice cultivar Taijing 9

In summary, genetic engineering of the secondary
metabolic pathways allows rice to synthesize saponin.
However, no report on the use of genetic engineering
on rice to synthesize saponin currently exists. Previ-
ously, our research group isolated the full-length
cDNA of BAS (GenBank Acc. No.: KP658156) from
the roots of P. japonicus, cloned this into the pMD®
18-T Simple Vector (Takara, D103A), and named the
construct as pMD-AS.

To create a new “ginseng rice” germplasm and to pro-
vide germplasm resources for further improvement of
rice quality, the present study transformed the P. japoni-
cus PAS gene into rice to synthesize oleanane-type
sapogenin.

Methods

Experimental materials

Rice cultivar ‘“Taijing 9, Escherichia coli (E. coli) strain
DHb5a, Agrobacterium tumefaciens (A. tumefaciens)
strain LBA4404, plasmids pMD-AS, pMD-Gtl-AmAl,
pBlue-Ubi, and pCD-AMA1-hpt were maintained by the
Agricultural Product Quality Institute of Fujian Agricul-
ture and Forestry University.

Construction of a binary plant expression vector carrying
the BAS gene

The construction of a binary plant expression vector
harboring the BAS gene was as described elsewhere [19].
Briefly, double digestion of plasmids pMD-AS by Smal
and Sacl was conducted to isolate a DNA fragment that
included the BAS gene. The fragment was then recov-
ered and ligated to Smal and Sacl double-digested
pMD-Gtl-AmA1l vector to form pMD-Gtl-AS. The
pBlue-Ubi plasmid was double-digested with HindIIl
and BamHI to release the Ubi promoter fragment. This
fragment was then recovered and ligated to HindIII and
BamHI double-digested pMD-Gt1-AS vector to form

A30 A37 _ A43
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Fig. 4 PCR analysis of T-DNA flanking sequences from transgenic
rice plants. M, DNA Marker DL 2000. (1-4), PCR products of the

T-DNA flanking sequences

plasmid pMD-Ubi-AS. The pMD-Ubi-AS plasmid was
double-digested with HindIll and Sacl to release the
Ubi-BAS fragment. This fragment was then recovered
and ligated to HindIll and Sacl double-digested plasmid
pCD-AMA1-hpt to form binary plant expression vector,
pCD-AS-hpt. The structure of pCD-AS-hpt is shown in
Fig. 2. The recombinant vector pCD-AS-hpt was con-
firmed using HindlIll/Sacl and HindlIl digestion, and the
plasmid was sequenced to determine that no mutations
in the target gene were present.

Transformation of binary BAS plant expression vector

into rice

Inflorescences of rice ‘Taijing 9" at 10—15 days after pol-
lination were collected based on the method of Chen
et al. [20] to induce embryogenic callus and subculture
callus once every 15 days with fresh medium.

Using the freeze-thaw method [21], the binary expression
vector pCD-AS-hpt was transformed into A. tumefaciens
LBA4404, which was used to transform embryogenic calli.
Co-culture of callus with Agrobacterium, screening of re-
sistant calli and induction of differentiation of cultured
calli, rooting of resistant seedlings, and other tests were
conducted as described by Burkhardt et al [22]. The
medium used for Agrobacterium infection was AAM
medium (pH 5.2). NB medium (pH 5.8) was used for gen-
etic transformation of rice. To screen for resistant calli, a
culture medium supplemented with 50 mg/L hygromycin
B (Hyg) was used [22].

Identification of transgenic rice by PCR

Genomic DNA was extracted from leaves of resistant
seedlings of transgenic rice. Premix Taq® Version 2.0
(Takara, D334A) was used to detect the SAS and
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Fig. 5 Real-time fluorescence quantitative PCR analysis of BAS expression in transgenic rice plants

hygromycin resistance (HPT) genes in the transgenic
rice plants. The primers used in the present study were
as follows: ASF5 (5'-ATGCTTGCTTGTTGGGTT-
GAGG-3'), ASR2 (5'-GCCTGAATTGCTGATGAAG
TGC-3"), Hpt-1 (5'-TACACAGCCATCGGTCCAGA-
3’), and Hpt-2 (5'-TAGGAGGGCGTGGATATGT C-
3’). The PCR reaction system included a 25-pL solution
containing 12.5 pL Premix Taq® Version 2.0 (+dye),
0.5 pL of each of the forward and reverse primers
(20 uM), 2.0 uL of DNA template, and 9.5 pL of ddH,O.
The PCR reaction conditions were as follows: 94 °C for
5 min; 94 °C for 30 s, 58 °C for 30 s, and 72 °C for 60 s/
kb for 35 cycles; and 72°C for 10 min.

Analysis of T-DNA insertion sites by hiTAIL-PCR

High-efficiency thermal asymmetric interlaced PCR
(hiTAIL-PCR) is a convenient way of locating T-DNA
insertion sites [23]. Leaf genomic DNA was extracted
from rice homozygous lines of the T, generation. Based
on the methods described by Liu et al. [22], hiTAIL-
PCR was conducted by using Premix Ex Taq® Version
2.0 (Takara, D335A) to amplify genomic sequences
flanking the T-DNA insertion sites in transgenic rice.
The clear bands that had good specificity and were >
200 bp in size for the third PCR product were recovered
for sequencing. PCR verification of the T-DNA flanking
sequences was conducted by using 2x Eco Taq PCR
SuperMix (TransGen Biotech, AS151). The forward pri-
mer was RB-3b (5'-GATCGCCCTTCCC AACAGT
TGC-3’), and the reverse primers were A30R (5'-CAA-
CACCCACATCGCCATCTG C-3'), A37R (5'-GCCGA-
GACCATCGATTCCAATG-3'), A43R1 (5'-GGCGT
ATGTCTCATT GGAGGACTGC-3"), and A43R2 (5'-
CCAAGTACAGCCAACACTGCTGGTC-3"). The PCR
reaction system included a 50-pL solution containing
25.0 uL of 2x Eco Taq PCR SuperMix (+dye), 1.0 uL of
each of the forward and reverse primers (20 pM), 2.0 pL

of the DNA template, and 21.0 pL of ddH,O. PCR reac-
tion conditions were 94 °C for 5 min; 94 °C for 30 s, 58 °C
for 30 s, and 72 °C for 60 s/kb for 35 cycles; and 72 °C for
10 min. The PCR products were recovered for sequencing.
The resulting DNA sequences were then aligned to the
rice ‘Nipponbare’ genome sequence (http://rice.plantbiolo-
gy.msu.edu) by using the BLASTN program to determine
the insertion sites and copy number of T-DNA in trans-
genic rice.

Determination of BAS expression levels using real-time
PCR

Total RNA was isolated from the leaves of homozygous
rice lines of the T, generation by using TRIzol™ (Invitro-
gen, 15596026). Residual DNA was removed from the
RNA samples by DNase I treatment (Takara, D2215).
The reaction of DNase I treatment was as follows: 20—
50 pg of total RNA, 5 pL of 10 x DNase I Buffer, 2 pL
(10 units) of DNase I (RNase-free), 20 units of an RNase
inhibitor, and DEPC-treated water to make up a total
volume of 50 pL. DNase I treatment was conducted at
37 °C for 30 min, and the subsequent steps were con-
ducted as recommended by the manufacturer. A Prime-
Script® RT Reagent Kit (Takara, DRR037A) was used to
reverse-transcribe total RNA to synthesize the first-
strand cDNA. The conditions for reverse transcription
reaction were as follows: 37 °C for 15 min and 85 °C for
5 s. SYBR® Premix Ex Taq™ 11 (Takara, RRO41A) and the
ABI 7500 real-time PCR System were used for SAS real-
time PCR. Primers were qASF (5'-TGCCAGAGCAA-
GAAAATGGA-3"), qASR (5'-CATAGGAAGGAAAG-
GAGGAAGGA-3"). ACTIN served as the reference
gene, and the primers were qACTF (5'-CATCTTGG-
CATCTCTCAGCAC-3") and qACTR (5'-AACTTTGT
CCACGCTAATGAA-3"). The PCR reaction system was
a 25-uL solution containing 12.5 pL of 2x SYBR® Premix
Ex Taq™ 1I, 0.5 pL of each of the forward and reverse
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Fig. 6 Detection of the BAS protein (about 88 kDa) in transgenic
rice by western blotting. PC, positive control (the products of
prokaryotic expression of BAS). A34, negative rice control

primers (20 pM), 0.5 pL of 50x ROX Reference Dye II,
5.0 pL of first strand cDNA (diluted 5 times), and 6.0 pL
of ddH,O. The PCR reaction conditions were as follows:
95 °C for 30 s; and 95 °C for 5 s and 60 °C for 34 s for
40 cycles. The relative expression of the SAS gene was
RQ = 2744, Each sample was amplified in triplicate.

Western blot analysis of the BAS protein

Total protein was extracted from seeds of the T, gen-
eration homozygous rice lines using RIPA lysis buffer
(Beijing DingGuo Changsheng Biotechnology Company,
Ltd,, China), and total protein concentration was deter-
mined by using a total protein assay kit (Biuret Method,
Shanghai Rongsheng Biotechnology Company, China). A
20-40 pg aliquot of the total protein solution was subjected
to SDS-PAGE analysis by using a Mini-PRO TEAN® 3 Cell
(BioRad). The Proteins were then transferred to a PVDF
membrane by using a Trans-Blot SD semi-dry electrophor-
etic transfer cell (BioRad) and transmembrane buffer
(48 mmol/L Tris base, 39 mmol/L glycine, 0.037% sodium
dodecyl sulfate (SDS), and 20% methanol). The PVDF
membrane was transferred to the TBST buffer (10 mmol/L
Tris—HCI, 100 mmol/L NaCl, and 0.2% Tween-20, pH7.4)
containing 5% non-fat milk and incubated at 4 °C over-
night. After incubation, the PVDF membrane was reacted
with the primary antibody (antiserum of the rabbit immu-
nized with the SAS gene product expressed in E. coli) di-
luted in TBST buffer containing 5% non-fat milk (v/v
1:500) and incubated at 4 °C overnight. The PVDF mem-
brane was then washed with TBST buffer. The secondary
antibody (HRP-labeled goat anti-rabbit IgG, Beijing Ding-
Guo Changsheng Biotechnology Company, Ltd., China)
was diluted with TBST buffer (v/v 1:5,000), and the PVDF
membrane was transferred to the above solution and incu-
bated at room temperature for 1 h. The PVDF membrane
was then washed with TBST buffer. The hybridization
signal was developed by using the SuperSensitive ECL-
solution (Pierce) and exposed for 1 min by using an X-ray
film (Kodak) in a dark room [19]. Rabbit polyclonal anti-
body against SAS (primary antibody) was prepared by GL
Biochem Co., Ltd. (Shanghai, China).
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Analysis of sapogenin content in transgenic rice by HPLC
The rice grains from the T, generation homozygous rice
lines were ground to powder and passed through an 80-
mesh screen. Approximately 0.2 g of each sample was
then transferred into a round flask to which 4 mL of
methanol was added. The round flask was connected to
a Dimroth’s condensing tube and reflux extraction was
conducted in an 80 °C water bath for 12 h. Methanol
was added to the extraction solution to a final volume of
5 mL. The solution was filtered through a 0.45-um or-
ganic filter membrane and then subjected to HPLC ana-
lysis [24, 25].

The LC-20A high-performance liquid chromatog-
raphy, SPD-M20A UV-vis detector and the software LC
solution 1.24 SP1 (Shimadzu, Japan) were used to deter-
mine the concentration of sapogenin using oleanolic
acid (Ole) as the standard. The column was a Hypersil
ODS2 C18 column (250 nm x 4.6 nm, 5 pm; Dalian Elite
Company, China), the chromatographic conditions were
as follows: mobile phase was methanol - 0.05 mol/L
NaH,PO, (85:15), flow rate was 1.0 ml/min, column
temperature was 30 °C, and the detection wavelength
was 210 nm [24-26]. Standard oleanolic acid (Batch
No.: 110709-200505) was purchased from the Chinese
Academy of Food and Drug Testing.

Results and discussion

Generation of transgenic rice

The digestion products of the binary plant expression
vector pCD-AS-hpt were of the expected sizes. Sequen-
cing of pCD-AS-hpt showed no mutations in the SAS
gene. These findings were indicative of the successful
construction of the binary plant expression vector pCD-
AS-hpt.

The binary vector was transferred to rice ‘Taijing 9,
and 302 anti-Hyg rice plants of the T, generation were
generated. The PCR results of HPT and BAS (Fig. 3) in-
dicated that all resistant seedlings contained the HPT
gene, whereas 68 plants contained BAS (positive rate:
22.5%). No significant differences in agronomic traits or
appearance between the offspring of transgenic rice and
the receiver “Taijing 9 were observed.

Confirmation of T-DNA insertion sites by hiTAIL-PCR

hiTAIL-PCR analysis showed clear bands with good spe-
cificity in the third round of PCR products from three
lines of the T, generation homozygous rice lines,
whereas that of the other lines were vague or smaller
than 200 bp. Sequencing (GenBank Acc. Nos.: KP687751,
KP687752, KP687753, and KP687754), PCR verification
(Fig. 4), and alignment with the rice ‘Nipponbare’ genome
sequence showed that the transgenic rice lines A30 and
A37 both had one copy of the BAS gene-harboring
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T-DNA, whereas line A43 had two copies of the trans-
gene. The insertion sites in these three lines were located
at 9,533,306 bp in chromosome 5, 5,429,409 bp in
chromosome 12, and 32,736,409 bp and 32,740,184 bp in
chromosome 2, respectively.

Previous studies have shown that transgenic plants
harbor a few copies of T-DNA insertions, with an aver-
age of 1.2-2.0 copies, and most have only a single copy
[27, 28]. In the present study, various homozygous lines
of the T, generation harbored 1-2 copies of T-DNA,
and the insertion sites of T-DNAs varied. This also con-
firms that T-DNA insertion is a relatively random event
[29, 30].

Overexpression of exogenous BAS in transgenic rice
Real-time PCR analysis showed that the BAS gene was
overexpressed in the T, generation homozygous lines
A10, A30, A37, and A43. The relative expression level
was within the range of 5782.1-10957.8 (Fig. 5, A34 was
a negative line).

Western blot analysis of BAS protein

The rice positive samples of the T, generation homozy-
gous lines A10, A30, A37, and A43 and the positive con-
trol (prokaryotic expression product of SAS) showed the
expected hybridization band of about 88 kDa in size.
This specific band was not detected in the negative sam-
ple A34 line (Fig. 6). These results indicated that the
seeds of the transgenic rice expressed SAS.

Analysis of sapogenin content in transgenic rice by HPLC
HPLC analysis indicated that the seeds of the T, gener-
ation homozygous lines A10, A30, A37, and A43 had an
Ole content ranging from 8.3 to 11.5 mg/100 g dw
(Figs. 7 and 8).

Transgenic yeast and rice as new sources of ginsenosides
Because supplies of wild ginseng have been depleted,
ginsenosides are mainly extracted from cultivated gin-
seng. However, artificial cultivation is relatively time-
consuming and does not allow continuous cropping,
preventing ginsenoside production from meeting the in-
creased demand of the community. Therefore, it is ne-
cessary to explore new sources of ginsenosides for
medicinal use [8, 9]. Scientists utilize synthetic biology
to synthesize ginsenosides. Cloning and characterization
of a key enzyme in the synthesis of 20 (S)-protopanaxa-
diol (PPD) has resulted in the construction of a yeast cell
capable of producing PPD [31]. Cytochrome P450 was
found to catalyze PPD to produce 20 (S)—protopanaxatriol
(PPT) [32]. A “ginseng yeast” capable of simultaneously
producing three kinds of ginsenosides, Ole, PPD, and PPT
has also been constructed, with yields of 21.4 mg/L,
17.2 mg/L, and 15.9 mg/L, respectively [33, 34]. The rare
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ginsenoside, compound K (CK), which has not been de-
tected in ginsenosides, is the active metabolite that has
been detected in the blood after oral administration of
ginseng and other ginsenosides [35]. Yan et al. previously
reported that ginseng UDP-glycosyltransferase (PgUGT1)
could specifically catalyze glycosylation of the C-20S hy-
droxyl group in dammarane-type tetracyclic triterpenoids,
and yeast cells synthesized CK from monosaccharides
when PgUGT1 was co-expressed in the PPD synthesis
pathway [36].

Adding the biosynthetic branch of new metabolites to
rice by using genetic engineering facilitates the synthesis
of new active ingredients. Modifying existing metabolic
pathways in rice to increase the concentration of specific
components to improve its nutritional value has become
an important means of creating new germplasm. A num-
ber of important advances such as “golden rice” [5, 6],
“high-iron rice” [37, 38], and “sesame nutrition rice” [7]
can be attributed to this technique. In the present study,
a new rice germplasm that produces oleanane-type sapo-
genin was produced by expressing the P. japonicus SAS
gene. This germplasm can serve as a new resource for
breeding “ginseng rice” varieties, as well as create new
ginseng saponin donors. Because rice is a food crop that
is simpler to cultivate than the ginseng genus plants, it is
generally easier to produce saponins in modified strains,
thus allowing more people to benefit from this novel
production approach. Improvement in the standard of
living has resulted higher production requirements for
medicine and food. The saponins synthesized by plants
might be safer and more efficient than those produced
via cellular engineering. Therefore, the results of the
present study will have a major impact on the genetic
breeding of functional rice, as well as on research and
development of sources of medical ginsenosides.

Conclusions

This is the first report on the transformation of the P.
japonicus PAS gene into rice and the generation of a
new “ginseng rice” germplasm that produces oleanane-
type sapogenin. The concentration of Ole in transgenic
rice was within the range of 8.3-11.5 mg/100 g dw. The
current results indicate that it is feasible to breed new
varieties of “ginseng rice” and create new ginsenoside
donors by transforming key genes in the ginsenoside
biosynthesis pathway.
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