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Abstract

Objective: Diabetes Mellitus (DM) has reached epidemic levels globally. A contributing factor to the development of DM is
high blood glucose (hyperglycemia). One complication associated with DM is a decreased angiogenesis. The Matrigel tube
formation assay (TFA) is the most widely utilized in vitro assay designed to assess angiogeneic factors and conditions. In
spite of the widespread use of Matrigel TFAs, quantification is labor-intensive and subjective, often limiting experiential
design and interpretation of results. This study describes the development and validation of an open source software tool
for high throughput, morphometric analysis of TFA images and the validation of an in vitro hyperglycemic model of DM.

Approach and Results: Endothelial cells mimic angiogenesis when placed onto a Matrigel coated surface by forming tube-
like structures. The goal of this study was to develop an open-source software algorithm requiring minimal user input
(Pipeline v1.3) to automatically quantify tubular metrics from TFA images. Using Pipeline, the ability of endothelial cells to
form tubes was assessed after culture in normal or high glucose for 1 or 2 weeks. A significant decrease in the total tube
length and number of branch points was found when comparing groups treated with high glucose for 2 weeks versus
normal glucose or 1 week of high glucose.

Conclusions: Using Pipeline, it was determined that hyperglycemia inhibits formation of endothelial tubes in vitro. Analysis
using Pipeline was more accurate and significantly faster than manual analysis. The Pipeline algorithm was shown to have
additional applications, such as detection of retinal vasculature.
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Introduction

The first demonstration of the ability of vascular endothelial

cells to rapidly form tube-like structures on a gel composed of

basement membrane proteins was published in 1988. [1] Since

that time this phenomenon has been shown to be specific to

endothelial cells as other types of cells form different structures

when placed on a basement membrane substrate. [2–4] The most

commonly used substrate for assessment of endothelial cell tube

formation is growth factor reduced Matrigel. Matrigel is a

gelatinous substance secreted from Engelbreth-Holm-Swarm

(mouse sarcoma) cells containing many proteins found in the

extracellular environment. [2] Due to similarities with in vivo

angiogenesis, TFAs have been used as a model for studying the

growth of new vessels in vitro.

Nearly 1000 publications using in vitro TFAs demonstrate the

importance of this technique in the evaluation of endothelial cell

function (Figure 1). Occasionally, differences observed between

control and experimental conditions within a study are obvious,

omitting the need for quantification. However, most studies have

investigated non-obvious differences between groups that required

a systematic quantification of features observed within the TFA.

Different features of TFAs have been quantified depending on the

study, the most common being the total tube length, tube area,

and number of branch points in the tube network. Quantifying

features in TFA images is labor intensive and subject to both inter-

and intra- user variability. TFA analysis falls into four categories

(citations refer to example studies, see Table S1 for a complete

list). 1) No quantification,[5–9] 2) Manual thresh holding for total

tube area or intensity,[10–12] 3) Manual analysis of total tube

length, area, or number of branch points,[13–18] 4) Automatic

quantification of total tube length using fluorescent labels. [19–22]

Current methods for automation quantification require significant

constraints to both the experimental method and the range of

analyses that can be performed, most notably, the addition of

cytotoxic dyes.

There are several commercially available software tools that

automatically analyze TFAs. These programs are powerful

because they reduce the time required to complete an analysis

and the results are easily reproducible. These algorithms all share

the general feature that they identify patterns within an image that
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represents tubes and generate a quantitative report describing the

quantified metrics of the tubes within an image. To be useful, an

algorithm must not only have a sensitivity that maximally

recognizes tubes, but it must also have a selectivity that excludes

debris and tubes that are poorly formed. The most difficult

obstacle to overcome in the development of a useful automated

method is achieving sufficient tube selectivity while also maintain-

ing sensitivity. Several methods attempt to achieve this goal by

labeling cells prior to the TFA and then imaging the specifically

labeled marker with the goal of excluding non-cellular material

within an image. This technique provides a high contrast image

that can be specific for a target cell of interest, however it requires

a cellular stain [23,24] which can be problematic as many stains

exhibit cellular toxicity that interfere with cell function. [25] In

addition, current software tools that automatically analyze TFAs

are typically sold as add-on packages to existing image analysis

software, which could be cost-prohibitive for many groups.

In this study, the development and validation of an open source

software tool that can automatically import and analyze non-

stained TFA images is described. The software, known as

‘‘Pipeline,’’ returns a report of total tube length, area, and nodal

branch points for each TFA image and can operate either in a

‘‘sandbox’’ or fully automated mode. In the single analysis

‘‘sandbox’’ mode, a user can tweak analysis parameters on a

single representative image. The parameter profile can then be

saved and imported into the fully automated mode for analyzing a

large group of images in a high throughput fashion. In the fully

automated mode, the parameter profile is the only requirement

needed to analyze an entire set of images generated in a single

study. No additional user input is required. Additionally, the

software is capable of generating output images showing how the

features of each image were interpreted and quantified. This

feature allows for retrospective evaluation of each image analyzed

in the automated high throughput mode and helps a user evaluate

the quality of analysis and further optimize the algorithm’s

parameters to meet the needs of the study.

Type II diabetes, otherwise known as Diabetes Mellitus (DM), is

a condition that occurs when a person becomes insensitive towards

insulin causing an increase in bloodstream glucose levels

(hyperglycemia). [26] DM has reached epidemic levels globally

with an incidence of 250 million that is expected to double by

2030. [27] Hyperglycemia in DM causes the buildup of advanced

glycosylated end products inducing disease related complications.

Complications include heart disease, stroke and kidney failure.

Blood vessel formation (angiogenesis) is also impaired in DM. In

DM patients who also have Peripheral Artery Disease (PAD),

impaired angiogenesis can limit the ability to recover from

ischemic events ultimately leading to loss of extremities. [28–31]

The exact mechanisms by which angiogenesis is impaired in DM

are unknown. While excessive fructose intake has been shown to

increase the risk of developing DM, it has not been shown if high

blood glucose levels or the mechanisms of insulin insensitivity are

responsible for decreased angiogenesis observed in DM patients.

[32] In order to develop better treatments, it is important to

elucidate the mechanisms by which angiogenesis is impaired in

DM. There are many in vitro and in vivo models of angiogenesis

utilized throughout the literature, including the chick chorioallan-

toic membrane assay, the retinal angiogenesis assay and the

Matrigel tube formation assay (TFA). The focus of this study is

primarily on a software method developed to automatically

quantify Matrigel TFAs. This software was used to develop and

validate an in vitro model of hyperglycemia. To show this, rat

cardiac microvascular endothelial cells (RCMVECs) were cultured

in normal or high glucose for 1 or 2 weeks and their ability to form

tubes was measured. Pipeline was used to analyze TFA images of

RCMVECs in a high throughput fashion. The images were also

analyzed manually by two independent operators and the results

compared to those returned by the Pipeline tool. All three analyses

Figure 1. Tube formation publication trends are indicated. Pubmed was searched between 1989 and 2013 for ‘‘Journal Articles’’ containing
the key words ‘matrigel’ and ‘tube formation’ returning a total of 949 matches. After further filtering, 894 articles were returned between 1989 and
2012; 319 (36%) since 2010. These results demonstrate the increasing use of the Matrigel TFA as a viable laboratory assessment of EC function within
the literature. A complete list of publications is shown in Table S1.
doi:10.1371/journal.pone.0094599.g001
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demonstrated significant differences in total tube length and nodal

branch points during the TFA. Using this approach, it was

demonstrated in vitro that hyperglycemia could be a causative

mechanism of impaired angiogenesis.

Materials and Methods

Analysis of Matrigel Tube Formation Publication Trends
Original tube formation analyses are most oft attributed to

Kubota et al. J of Cell Bio. 1988. In PubMed, journal articles were

searched for ‘matrigel’ and ‘tube formation’ in combination from

1989 to 2012 (search May 6, 2013) where total publications per

year were plotted (Figure 1). Supplemental data contains all

article information resulting from the search parameters (Table
S1).

Cell Culture
RCMVECs (R1111; Cell Biologics; Chicago, IL) were cultured

(P2–P4) on gelatin-coated 100 mm plates in EC specific media

(MCDB131, E3000–01B; US Biological; Swampscott, MA)

supplemented with 10% fetal bovine serum and the microvessel

EGM-MV supplement pack (CC-4147; Lonza; Basel, Switzer-

land). Media was supplemented with normal glucose (5.6 mM) or

switched to high glucose (25 mM) and cultured for one and two

week intervals to determine the effects of simulated-hyperglycemia

on tube formation.

Tube Formation Assay
RCMVECs were washed three times with Dulbecco’s phos-

phate-buffered saline (DPBS, Invitrogen), lifted using Enzymatic

Free Cell Dissociation Buffer (Millipore) for 15 minutes at 37uC,

manually disrupted if necessary, collected, centrifuged at 1006g

for 5 minutes, and washed twice with DPBS. RCMVECs were

resuspended in 1 mL of the appropriate media per treatment

group, counted on a Cell Countess, and diluted accordingly.

20,000 RMVECs were added accordingly to each chamber in

1 mL of media on a four-chamber slide (Nunc Lab-Tek).

Chambers were coated with 250 mL of Growth Factor Reduced

Matrigel (BD Biosciences) under chilled conditions followed by

solidification at room temperature prior to RCMVEC addition.

After 24 and 48 hours incubation at 37uC on the Matrigel, 46and

106 magnification images were taken of the RCMVEC tube

formation on a Nikon TS-100 Microscope with Flex camera

(Nikon).

Tube Formation Assay Analysis
TFA images collected on an inverted phase contrast microscope

(Nikon, Tokyo, Japan) were analyzed in Metamorph (Molecular

Devices, Sunnyvale, CA) by manually tracing connected tubes.

Four 46magnification images of tube formation per group were

quantified at 24 and 48 hour time points. Tracings were analyzed

for total tube length per field. A two way analysis of variance was

used to compare differences between groups. Significance was set

at p,0.05. Statistics were performed using SigmaPlot (Systat

software, Chicago, IL) statistical software, version 12.0.

Software Development
Software was developed in MATLAB R2012b using the

Imaging Toolbox v27. Code was compiled in ‘C’ and will run

on any computer with the MATLAB R2012b664 runtime

environment (http://www.mathworks.com/products/compiler/

mcr/index.html). A screencast introducing Pipeline and explaining

its capabilities is available online (http://www.youtube.com/

watch?v = IwxtbGT1vDI) as well as a screencast demonstrating

how to set up and run Pipeline on any computer (http://www.

youtube.com/watch?v = FGIZzOASFNw).

Algorithm Development

Imaging algorithm was developed in MATLAB R2012b using

the Imaging Toolbox v27. The algorithm summary flowchart can

be found in Figure 2. The source code and compiled version can

be found at sourceforge.net (http://sourceforge.net/projects/

pipelinetfaanalysis/).

Loading/Converting Original Image
The software imports a bright field TIFF image and converts it

into (3) 2D matrices (Red, Green, Blue). In the Pipeline single

analysis mode, only one image is loaded and processed, while the

batch analysis mode a list of file names/locations is loaded and

each file is processed one at a time. The (3) 2D matrices are

averaged and at each location to form (1) matrix representing a

black and white image. The luminosity of the grayscale image is

then scaled to that of the original image.

Tube Detection
The loaded black and white image is processed with an edge

detection method known as the ‘Canny Method.’ The output of

this step is a binary mask representing the locations of detected

tube-like structures. This output is further processed by connecting

pixels determined to be edges within a user-defined number of

pixels (the parameter referred to as ‘Canny’ in Table 1). This

mask is dilated and contracted to connect nearby objects. To

further refine the mask, small areas of pixels (user-defined

parameter ‘Fill’ in Table 1) determined not to be edges but

surrounded by edge pixels (false negatives) are filled in and small

areas of pixels determined to be edges (false positives), but

surrounded by non-edges are cleared (user-defined parameter

‘Clean’’ in Table 1). These steps create a binary mask

representing all areas of the image where a tube-like structure

has been detected.

From this binary mask, the detected tube-like structures are

eroded to a structure with the width of a single pixel to generate a

binary mask outlining the detected image backbone. The binary

mask representing tube structures is scanned for distinct objects

(groups of adjacent pixels). Each object is iteratively eroded by

removing object edge pixels provided the removal of a pixel does

not break a single object into multiple objects (the Euler

characteristic, an index describing the shape of an object, is

preserved). [33] The algorithm continues to erode the image

objects until the mask is not changed in successive iterations.

To clean up artifacts introduced when generating the tube

backbone, end points of the skeleton image are removed by either

a user set number of pixels (‘Clip’ parameter, Table 1) or until a

branch point is found (a single pixel connected to 3 or more

pixels). This stage of analysis is necessary to exclude quantification

of small, tube-like structures.

Calculation of Metrics/Output Files
The total length of tubes generated in the assay is determined

from the mask of the tube backbone. This metric is calculated by

detecting the connectivity relationship of each connected pixel.

Pixels connected horizontally/vertically are added as the length of

a single pixel. Pixels connected diagonally are added as the length

of a single pixel multiplied by 1.414. The tube backbone image is

dilated by 10 pixels, overlaid onto the original loaded bright field

image, and saved as a TIFF. This image represents how the total

tube length was quantified.

Hyperglycemia Attenuates Tube Growth In Vitro
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The mask of detected image objects and the mask of the

detected image backbone are overlaid and any object where there

is not a minimum user-defined overlap number of pixels (‘Area’

parameter, Table 1) is cleared in the detected areas mask. Simply

put, to be included in the area calculation, objects initially detected

as tube-like structures must contribute to the total tube length

calculation. This mask is inverted, overlaid onto the original

loaded bright field image, and saved as a TIFF. This image

represents how the total tube length was quantified.

To determine the number of tube branch points, the tube

backbone mask is analyzed for connectivity. Any pixel connected

to 3 or more pixels is considered a branch point. Pixels considered

to be branch points are saved onto a separate binary mask. This

mask is analyzed for redundant branch points in close proximity.

A user defined search parameter (‘Radius,’ Table 1) sets a

maximum radius to search for redundant branch points. The

algorithm will search each detected branch point for additional

branch points. All points detected within that radius will be

spatially averaged and represented as a single branch point. The

identified branch points are dilated by 10 pixels and overlaid onto

the original bright field image. This image represents how the

branch points in the original image were quantified.

The tube area, length, number of nodes, and average thickness

is either displayed (single analysis mode) or saved to an excel

spreadsheet along with the file name (batch analysis mode). For

datasets processed using the batch analysis mode, the user has the

option to save images generated during the analysis for retrospec-

tive validation of results.

Validation. The Pipeline algorithm was initially developed

analyzing images generated in silico of known lengths, areas and

branch points (Figure 3). The algorithm was adjusted until each

feature within the image was identified within 99% of the actual

value. A test set of 20 images was used to evaluate the algorithm.

The algorithm was additionally adjusted and a new test set of 50

images was analyzed and compared to a manual analysis of total

tube length (two users). All images used in the 2nd test set in the

Pipeline analysis were images of tubes grown in both high glucose

conditions (1 week and 2 weeks). Analyses by both users and

Pipeline all indicated a statistically significant decrease in total tube

length from tubes grown in high glucose for two weeks versus one

week indicating an accurate result.

Figure 2. The overall analysis algorithm flowchart for Pipeline is displayed above. TIFF files are imported, converted to a grayscale image,
edges are detected using the ‘‘Canny’’ method, and a binary mask called ‘tube edges’ is created. The mask is then skeletonized forming an additional
binary mask called the ‘skeleton image’. The total tubular area, length, thickness, and number of branchpoints is then calculated from these two
images.
doi:10.1371/journal.pone.0094599.g002
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Results

Tube Formation Assay Publication Trends
Upon review of the literature in PubMed, trends were observed

for Matrigel tube formation assays in scientific journal articles.

PubMed was searched on May 6, 2013 and a total of 949

publications between 1989 and 2013 containing ‘matrigel’ and

‘tube formation’ in the text were found. Publication numbers, 894

manuscripts between 1989 and 2012, indicate a growing trend in

the use of tube formation as a viable model for analysis of EC

function (Figure 1). The four most common observable methods

of tube quantification in these assays were 1) qualitative

conclusions drawn, no quantification, 2) manually thresh holding

for total area occupied by tubes, 3) manual quantification for tube

length or branch points, and 4) automatic quantification for tube

length using fluorescence.

Pipeline GUI and Used Adjustable Parameters
Pipeline was written in MATLAB using the image processing

toolbox, complied in ‘C’ and will run on any computer with

the freely available MATLAB R2012b664 runtime environment

(http://www.mathworks.com/supportfiles/MCR_Runtime/R2012b/

MCR_R2012b_win64_installer.exe). Pipeline has two operational

modes, a single analysis ‘‘sandbox’’ mode and a batch analysis

mode (Figure 4). The software was designed for a user to first

import a representative image into the single analysis mode to

determine the optimal set of parameters to analyze an entire

dataset (Table 1). After the optimal set of analysis parameters is

determined the user can save the parameters, transfer those

settings into the batch analysis mode, and import a large number

of images for analysis under the same conditions. To determine if

the analysis was performed correctly, a user can choose to ‘‘save’’

the analyzed images in separate directories to retrospectively

ensure an accurate analysis was performed.

Pipeline Analysis Algorithm
To analyze a non-fluorescent bright-field image (Figure 5, A),

an image is first converted to grayscale (Figure 5, B). The initial

step in the analysis is to generate a binary mask indicating the

coordinates of specific locations within an image containing tubes.

To do this, the image is analyzed using the Canny Method that

specifically searches an image for object edges by finding pixels

with a high spatial derivative. [34] The Canny Method generates a

binary mask at an identical resolution to the input image

(Figure 5, C) where pixels with a value of ‘1’ indicate a detected

‘edge-point.’

Pipeline connects these points if they are within a user-defined

number of pixels. Because the Canny method detects object edges,

there is a user defined parameter that identifies small areas of

pixels assigned to a value of ‘0’ that are located between tube

edges. The algorithm fills these points in and deletes any small

areas of pixels that may have been falsely identified as ‘edges.’ To

filter out any remaining noise, additional pixels are connected by

spatially dilating the positive pixels within the binary mask

(Figure 5, D). From this binary mask, the Pipeline algorithm

calculates total tube length, area and number of branch-points

(Figure 2, 1, - Image Edges mask).

Tube length is calculated by iteratively eroding the edges of the

Binary Mask of Image Edges by a single pixel. The erosion is

applied at each pixel location within the binary mask where single

erosion iteration would not cause a single group of pixels to be

separated into distinct group (preservation of the Euler character-

istic). The erosion is carried out until there are no pixels in the

image that can be successfully eroded without separating pixel

groups (Figure 5, E). When eroded down to the width of a single

pixel, a new binary mask is saved that represents the total tube

length (Figure 2, - Binary Skeleton mask). From this mask, total

tube length is quantified from the number of pixels contained in

the Binary Skeleton and the connectivity relationship of each pixel.

Pixels that are connected horizontally/vertically are weighted in

the length calculation as the length of a single pixel. Pixels

Table 1. User Adjustable Parameters in Pipeline.

Parameter Function
Typical
Range

Image
Generated Units

Scale Pixel scaling (ex. 1 pixel = 1.8 mm) 0.5–5 None, scales outputs Microns

Canny After applying the Canny method, creates mask by connecting points
that are within the specified number of pixels

2–12 Detected Edges Pixels

Dilate After connected points from the Canny method, the entire mask is
expanded by this many pixels to reduce noise

2–7 Selected Objects Pixels

Fill After creating a binary mask using the Canny method, non-masked
areas smaller than this parameter completely surrounded by masked
area are filled in

200–5000+ Selected Objects Pixels

Clean After creating a binary mask using the Canny method, masked areas
smaller than this are cleared

1000–10000+ Selected Objects Pixels

Clip Trims non-connected tubes down by the specified number of pixels
or two a branch intersection, whichever is first

50– Inf* Tube Overlay Pixels

Overlap When calculating area, the each object within binary mask created
from the canny method must overlap the tube mask by this many
pixels to be counted

10 Area Overlay Pixels

Radius To clean up redundant branchpoints, all detected branchpoints
within this radius will be averaged into a single branch point

30–150 Node Overlay Pixels

The parameters listed within the table are user adjustible within the software to optimize an analysis depending upon the quality and magnification of the input image.
Note: The user adjustable parameters available in Pipeline, along with associated descriptions and typical ranges for utilization by the user are indicated.
*Inf refers to ‘‘Infinity’’ where the code performs iterations until there is no change between subsequent iterations.
doi:10.1371/journal.pone.0094599.t001
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connected diagonally are weighted in the length calculation

according to the equivalent of a single pixel multiplied by the

Pythagorean relationship of right isosceles triangle (
ffiffiffi

2
p

). Tube

branch points are determined from the Binary Skeleton by

identifying pixels that are connected to 3 or more pixels (Figure 2,

- Binary Nodes). This algorithm often identifies multiple nodes at a

single branch point site, so a user can specify to reduce multiple

nodes identified within close proximity to be reduced to a single

pixel (Figure 5, F).

To calculate total tube area, the Image Edges mask is

intersected with the Binary Skeleton mask. The steps between

Image Edges and Binary Skeleton involve several steps of noise

reduction and cleanup. More simply, for an object’s area to be

included in the calculation, the cleanup between Image Edges and

Binary Skeleton cannot completely reduce the object from the

Figure 3. The Pipeline algorithm was validated using images generated in silico. This figure shows representative images used to develop
and validate the portions of the code that quantify tube length and branch points. For example, (A) was the first test image used to develop the
length measurement algorithm. That image was then rotated 45u (B) to ensure the algorithm returned the same length measurement. Additional
complexity was added (C, D, E, F and G) to validate the length algorithm. The number of branch points was developed initially in (C) and was further
tested for robustness in (D and E). To develop an algorithm that searched for and consolidated duplicate branch points located in close proximity, salt
and pepper noise was analyzed (H). To validate the tool, two separate operators manually traced tubes in a single data set (I). The manual analysis
was compared with the automatic analysis returned by pipeline.
doi:10.1371/journal.pone.0094599.g003
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image (i.e. an object must contribute to the Binary Skeleton mask

for its area to be considered). Average thickness is calculated by

dividing the total tube area by total tube length. To complete the

analysis, the masks Binary Nodes, Binary Skeleton and Image

Edges are overlaid on the original input image and saved as a

record of analysis (Figure 5, G–I). The four outputs (total tube

length, total tube area, average tube thickness, and number of

branch points) are saved in an excel spreadsheet (Summary in

Figure 2).

Pipeline Analysis Comparison to Manual Quantification
To compare quantification using Pipeline to manual quantifi-

cation by tracing, raw images were obtained from a study

conducted by Chu et al [35] utilizing TFAs as a key study metric.

To repeat the analysis conducted in Figure 5 by Chu et al, it took

approximately 1 minute of user input to set up a complete analysis

in Pipeline and 5 minutes to verify an accurate result whereas it

took 180 minutes to manually quantify images by tracing

(Table 2). Pipeline was able to reproduce the analysis trends for

both branchpoints (Figure 6, A) and tube length (Figure 6, B)

while preserving statistical significance between groups. Concor-

dance of quantification obtained using Pipeline and by manual

tracing and was found to be high with an R2 = 0.902 for

branchpoint analysis (Figure 6, C) and R2 = 0.961 for length

analysis (Figure 6, D).

Figure 4. Pipeline graphical user interface components are as follows: (A) Opening Panel, allows user to select imaging processing
mode. (B) Single Processing mode, allows user to manipulate and optimize (7) analysis parameters for a single image. Analysis parameters can then
be used in Batch Analysis mode to process an entire group of images. (C) Batch Analysis processing mode, allows a user to select multiple images for
analysis with a set of parameters optimized within the single processing mode. In Batch Analysis mode, the 6 images generated in the single
processing mode can be exported as TIFFs to separate folders.
doi:10.1371/journal.pone.0094599.g004
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In vitro Model of RCMVEC Tube Formation during
Simulated-hyperglycemia

RCMVECs were cultured in normal glucose (5.6 mM) or

switched to high glucose (25 mM) media for 1 or 2 weeks. Cells

were seeded onto cell culture chambers coated with growth factor

reduced Matrigel and allowed to grow tubular networks for 24 or

48 hours at 37uC. During image analysis of TFAs with Pipeline,

significantly less tube formation was detected (p,0.05) under

conditions of high glucose for two weeks versus one week of high

glucose or under normal glucose conditions (Figure 7). The

differences observed using Pipeline to analyze for these conditions

were a reduced total tube length, (Figure 7A) number of nodal

branch points (Figure 7B) and overall area (Figure 7C).

Inter-Operator Variability
Features observed in images of TFAs need to be quantified,

especially when images from the assay are demonstrating subtle,

but significant differences between treatments. In the hyperglyce-

mia model analyzed in this study, there was an observed total tube

length reduction of 25% when comparing cells grown in high

glucose for 2 weeks versus cells grown in normal glucose

(Figure 7). While this finding was statistically significant, this

difference was suspected, [36] but not obvious prior to conducting

a total length analysis. Two independent operators analyzed the 1

week high glucose vs 2 week high glucose data sets obtaining

similar results (Figure 3, I). Interestingly in this validation set,

mean inter-operator discrepancy when analyzing images with

well-formed tubes was 38% (Table 3, Images with a total tube

length greater than 15,000 mm). The inter-operator discrepancy

was determined by calculating the relative percent difference

(Equation 1.1):

Relative Percent Difference(L1,L2)~
DL1{L2D

min (L1,L2)
:100% ð1:1Þ

Where ‘L1’ represents the total quantified length by operator 1 and

‘L2’ represents the total quantified length by operator 2. When

comparing all images within this validation set, the maximum

difference between operators was more than 17-fold. The majority

of the discrepancy was attributed to whether each operator

quantified poorly formed tube networks as debris or tubes.

Table 3 is suggestive of this because the variability within the

validation set increases when images with poorly formed tubes are

included in the analysis as poorly formed features were quantified

on some images but not quantified on others.

Figure 5. Indicated is a visual demonstration of the step-by-step analysis of the Pipeline algorithm. (A) The image is imported and (B)
converted to grayscale. (C) Tube edges are detected using the Canny Method, (D) connected creating a binary mask, and (E) the binary mask is
iteratively eroded without breaking connectivity to find total tube length. (F) Intersections within the skeleton are then detected for nodal branch
points. (G–I) Original images are then displayed with the calculated area, length, and a branch point mask overlay to display the algorithm quantified
image features.
doi:10.1371/journal.pone.0094599.g005
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An automated tool containing capabilities to save analysis

parameters to a profile eliminates intra- and inter-user variability

increasing reproducibility while decreasing user effort. When

comparing the amount of operator time required to complete the

analysis in Figure 3, I it took each operator approximately 240

minutes to manually analyze all 50 images (Table 2). When

completing the analysis with Pipeline, it took the operator only 7

minutes to set up the analysis. The computer completed the

analysis in 150 minutes and then an additional 10 minutes of

operator time was required to review the output images ensuring

an accurate analysis was conducted (Table 2).

Figure 6. Comparison of Manual Quantification in Liu et al, to Automatic Quantification Using Pipeline. Liu analyzed the number of
branchpoints and relative tube length by manually tracing structures in ImageJ. After analyzing the same raw data in Pipeline, the same trends were
observed when analyzing (A) branchpoints and (B) tube length. In both panels, statistical significance was maintained. When comparing manual
tracing to Pipeline quantification, both metrics were found to be highly correlated. (C) Branchpoint analysis correlation: R2 = 0.902 and (D) length
analysis correlation: R2 = 0.961.
doi:10.1371/journal.pone.0094599.g006

Table 2. Comparison of Operator Required to Complete Total Length Analysis.

Manual Analysis by Tracing (minutes) Pipeline Analysis (minutes)

Operator 1, Glucose Study Operator 2, Glucose Study Analysis from Chu et al Glucose Study Analysis from Chu et al

Set Up 0 0 0 7 1

Analysis 240 240 180 Automated Automated

Verification 0 0 0 10 5

Total 240 240 180 17 6

Time required to complete the analysis by manually tracing or by Pipeline (all times in minutes). In the present study (data displayed in Figure 7) it took each operator
approximately 240 minutes to complete the analysis by manually tracing tube-like structures. Completing the same analysis in Pipeline took approximately 7 minutes to
set up the analysis and 10 minutes to examine the output images to verify an accurate result. When re-analyzing the data from Chu et al, it took only 1 minute to set up
the analysis in Pipeline and 5 minutes to verify an accurate result as opposed to 180 minutes to complete the analysis through manual tracing.
doi:10.1371/journal.pone.0094599.t002
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Analysis of the Retinal Vasculature
To analyze the retinal vasculature, images were obtained from

Odstrcilik et al [31] and the Pipeline code was adapted to only

search/detect vasculature in the non-black areas of the image. No

other modifications were made to the detection algorithm. Two

representative analyses are shown in Figure 8.

Discussion

This study describes the development and validation of an

open-source software tool for analyzing TFAs. This tool was used

to validate a novel in vitro model of hyperglycemia. There is a

strong need for this type of software as the use of TFA analysis is

widespread but no method exists for standardization (Figure 1).

Additionally, analyzing TFA images is time consuming; a typical

analysis requires a user to manually trace the tube network in each

image. Most TFAs are quantified by measuring an image feature

representing tube length, area, thickness, or branch points. The

purpose of Pipeline is twofold; (1) to act as a tool that can

reproducibly analyze images of in vitro tube formation assays and

(2) to greatly reduce the time required to analyze TFAs by

automating the process. Pipeline was designed to provide an

Figure 7. Pipeline analysis was demonstrated through evaluating the effects of simulated-hyperglycemia on RMVEC tube
formation in vitro. RMVECs were cultured in normal glucose (5.6 mM) or high glucose (25 mM) for 1–2 weeks. Cells were then isolated and 20,000
RMVECs were incubated at 37uC for 24 and 48 hours on Matrigel in a four-well chamber. Two week exposure to high glucose significantly decreased
both (A) total tube length and (B) the number of nodal branch points detected and (C) total tube area (p,0.05). (D) Representative input/output
images from each condition.
doi:10.1371/journal.pone.0094599.g007

Table 3. Inter-Operator Analysis Variability Expressed as Absolute Percent Difference.

Comparison of Manual Analysis Between Independent Operators

Difference Between
Operators All Images

Images Greater than 10,000 mm
in total length

Images Greater than 15,000 mm
in total length

Minimum 2.47% 2.47% 2.47%

Maximum 1754.03% 234.12% 139.23%

Average 170.70% 66.57% 38.30%

Median 71.70% 59.84% 26.61%

When comparing total tube length results as analyzed between operators 1 and 2, a large amount of variability was observed between the two analyses. The relative
percent difference between operators was calculated by dividing the absolute difference in quantitation of a single image with the value obtained by the operator that
quantified the image a lower total tube length (Equation 1.1). The largest relative percent differences in quantification between operators occurred in images with
poorly formed tubes which explains the increased concordance between operators as images with a lower total quantified length were removed (images where either
operator quantified the total tube length within an image less than 10,000 mm or 15,000 mm).
doi:10.1371/journal.pone.0094599.t003
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analysis method that can be exactly replicated between images by

implementation of a profile system that will store a set of optimized

analysis parameters for a specific data set that can be saved for

later retrieval (Figure 4).

When determining how a treatment affects the ability of

endothelial cells to form tubes in vitro, is it essential that an author

reports (1) how the measurements were quantified (2) the results of

the quantification and (3) if the groups were significantly different.

Documentation of these items affects interpretation of data, so it is

crucial a description of these parameters is provided to the extent

that the results can be repeated. These descriptions are even more

important when images are quantified manually as inter- and

intra-user variability can vary greatly within a study and negatively

impact the results (Table 3). The Pipeline algorithm was written

so the analysis can be perfectly reproduced by reporting values for

the 7 algorithm analysis parameters (Figure 4).

Pipeline is the first open-source software package that can

perform an automated analysis of in vitro TFAs. To our knowledge,

it is the only software package (commercial or open-source) that

can perform an automated analysis without using a fluorescent

dye. This is beneficial as it decreases the cost of an experiment

(additional reagents and software licenses). It also removes any

interference that may be introduced when staining cells. A

common method of TFA analysis is to simply threshold images

for total tube area in an image. Error can be introduced when

manually thresholding TFA images because differences in

background brightness of TFAs occurs across an image when a

Matrigel surface is not perfectly flat. The tube detection method

within Pipeline is more robust than manually thresholding images

for total tube area because the detection algorithm analyzes

differences in pixels that are directly connected rather than

assigning a global threshold to analyze the image against. Finally,

Pipeline greatly decreases the time required when compared to

manually analyzing images.

There are two limitations of the Pipeline software. The first is

that the Pipeline algorithm is built using the edge detection

algorithm referred to as the ‘‘Canny Method.’’ [34] The Canny

Method detects object edges by finding areas with a high spatial

derivative. Typically, this is not a problem as the majority of edges

found in each image are tubes. The Canny Method does not

exclude for debris or bubbles within the Matrigel. The cleanup

steps following edge detection can exclude for debris/bubbles

(Figure 2), however, the algorithm does not correct well for

manufacturing defects occasionally observed in cell culture dishes

(cracks, scratches, etc.). Additionally, for the Canny method to

work optimally, an analyzed image must be in the TIFF format as

compressed images save space by blunting high frequency intensity

changes in adjacent pixels. The second limitation is that saturated

pixels limit edge detection. When a pixel within an image is either

purely white or black, this indicates that the detection limits of the

Figure 8. The Pipeline algorithm was used to identify vessels and vessel branch points contained within retinal fundus images. The
algorithm used for identification was identical to that used when quantifying Matrigel tube formation images (Figure 4).
doi:10.1371/journal.pone.0094599.g008
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camera were saturated. The true value of a saturated pixel is

outside the dynamic range of the recorded value, so the spatial

derivative calculated will be artificially low causing a possible edge

pixel to be ignored. This problem is not unique to the Canny

method, as saturated pixels can introduce problems when

quantifying any image. [37] The best results will be obtained

when using Pipeline to analyze TFA images with small amounts of

debris and no saturated pixels.

Pipeline was validated by analyzing images of tubes formed

in vitro on a Matrigel surface following exposure to simulated

hyperglycemia on RCMVECs. Using Pipeline to analyze

RCMVEC TFA images demonstrated a significant decrease in

tube formation following 2 weeks of hyperglycemia (Figure 7).

Hyperglycemia is a major factor associated with diabetes mellitus.

[36,38–41] Recently, in vitro hyperglycemic models have demon-

strated the ability of hyperglycemia to induce endothelial cell

dysfunction consistent with pathologies observed in T2D patients

including, NFkB activation, inflammation, and reduced NO

production. [39,42–44] The results of this study are the first

demonstration of hyperglycemia as a causative role in inhibiting

angiogenesis in T2D. These results are important in conducting

subsequent follow up studies to determine the mechanisms by

which hyperglycemia inhibits angiogenesis.

Pipeline was specifically developed to analyze Matrigel TFAs;

however, the detection algorithm has many more applications

than this assay. The detection assay is well suited to detect and

analyze structures that branch and are relatively thin. To

demonstrate additional applications, the Pipeline algorithm was

used to detect retinal vessels within a fundus photograph

(Figure 8). [31] This application would be useful when

quantifying retinal vasculature within DM patients as proliferative

diabetic retinopathy (PDR), is responsible for vision loss. In PDR,

retinal ischemia induces angiogenesis leading to retinal hemor-

rhage and detachment. [45] Automated quantification of retinal

vasculature in DM patients could be used as a metric of relative

risk of developing vision associated complications. In Figure 8,

detection was performed with a high sensitivity/specificity on all

areas of the image, with the exception of vessels within the optic

disc. As the optic disc represents a very small portion of the image,

the algorithm could easily be adapted to exclude vessels within this

area when performing a high throughput analysis.

Supporting Information

Table S1 PubMed was queried for primary research
articles that utilized Matrigel based tube formation
assays and the following articles were returned. The

articles in this table were binned by year and counted to create

Figure 1.

(PDF)
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