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Alcohol use disorder currently affects approximately 18 million Americans, with at least 
half of these individuals having significant cognitive impairments subsequent to their 
chronic alcohol use. This is most widely apparent as frontal cortex-dependent cognitive 
dysfunction, where executive function and decision-making are severely compromised, 
as well as hippocampus-dependent cognitive dysfunction, where contextual and 
temporal reasoning are negatively impacted. This review discusses the relevant clini-
cal literature to support the theory that cognitive recovery in tasks dependent on the 
prefrontal cortex and hippocampus is temporally different across extended periods of 
abstinence from alcohol. Additional studies from preclinical models are discussed to 
support clinical findings. Finally, the unique cellular composition of the hippocampus and 
cognitive impairment dependent on the hippocampus is highlighted in the context of 
alcohol dependence.
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OCCURReNCe AND iMPACT OF ALCOHOL USe DiSORDeRS 
iN THe UNiTeD STATeS

In the United States, 18  million individuals (7.4% of the 15 and older population, according to 
estimates from 2010) report having an alcohol use disorder (AUD), with nearly 12 million of these 
individuals reporting alcohol dependence (1). Recent changes to the diagnostic definition of AUDs 
in the updated DSM-V eliminate the clinical distinction between AUDs and alcohol dependence, 
opting to categorize them together under the umbrella category of AUDs and describe the broad 
disorder as a “… problematic pattern of alcohol use leading to clinically significant impairment or 
distress …” as well as requiring concurrent escalation of alcohol intake, craving for alcohol, and 
significant disruptions to personal and professional conduct (2). In 2011, AUDs cost the United 
States $223.5 billion, an estimation which includes the cost of medical treatment, judiciary involve-
ment, and loss of productivity (3).

However, these statistics, while useful in conveying the gravity of the alcohol abuse problem 
in the United States, do not provide insight into the recovery process nor the continuing health 

Abbreviations: AUD, alcohol use disorder; BALs, blood alcohol levels; BOLD, blood-oxygen-level dependent; CIE, chronic 
intermittent ethanol vapor exposure; DG, dentate gyrus; fMRI, functional magnetic resonance imaging; GABAa, gamma-
aminobutyric acid A subunit; GABAaR, GABAa Receptor; GluN, N-methyl-d-aspartate glutamatergic receptor; PFC, prefrontal 
cortex; TFC, trace fear conditioning.
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and cognitive disparities these individuals face into periods of 
abstinence from alcohol consumption. Additionally, long-term 
alcohol abuse results in significant, non-economic personal costs, 
including devastating bodily harm, with some of the most striking 
effects apparent in the brain. Evidence from human and animal 
studies suggest that select regions of the cortex, particularly the 
prefrontal cortex (PFC) and hippocampus, may be more sensitive 
to the deleterious and damaging effects of long-term alcohol use 
than others, and recovery of cognitive function sensitive to these 
regions may occur at different times into periods of prolonged 
abstinence (4–7).

iMPACT OF ALCOHOL ON COGNiTiON: 
CLiNiCAL FiNDiNGS

Alcohol is widely known to acutely alter cortical function by 
modulating inhibitory and excitatory receptor function on 
neuronal processes (8–10). By repressing excitatory transmission 
(8, 11–15) and concurrently enhancing inhibitory transmission 
(16–21), alcohol acutely acts as a systemic depressant. Over 
repeated, chronic exposures, neuronal transmission achieves a 
homeostatic state in the presence of alcohol (22), and cognition 
can resemble that of non-dependent function. However, during 
periods of abstinence when alcohol is absent from the system for 
extended phases, effectively disrupting the previously described 
modified homeostasis, cognitive function is significantly impaired 
(due to the absence of alcohol as critical modulating factor), and 
these cognitive impairments persist for some time. Interestingly, 
these cognitive perturbations, in some instances, do recover to 
or near pre-dependency levels. What follows is a description 
and synthesis of how alcohol modulates PFC and hippocampal 
function, what changes occur as occasional alcohol consumption 
becomes chronic consumption, and what cognitive impairments 
are present during acute withdrawal.

It is worth noting, while outside the general scope of this 
review, that chronic alcohol use does result in structural and/or 
functional atrophy in regions outside of the PFC and hippocam-
pus and that these additional changes cannot be eliminated as 
potential modulators of the deleterious effects observed in the 
PFC and hippocampus (23). Further, research into the cognitive 
capacities of alcoholic individuals has identified cognitive disor-
ders, such as Wernicke–Korsakoff syndrome, alcohol dementia, 
and Marchiafava–Bignami disease, which are directly related to 
long-term alcohol abuse and cloud our understanding of alco-
hol’s solitary effects on cognitive functioning (24, 25). Similarly, 
age and concurrent drug use can additionally complicate our 
understanding of alcohol’s impact; therefore, for the purpose of 
this review, studies including subjects with chronic alcohol use 
without poly drug use were evaluated.

COGNiTive iMPAiRMeNT FOLLOwiNG 
NONDePeNDeNT ALCOHOL USe

Prefrontal Cortex
The PFC is a region of the cerebrum, which has been colloqui-
ally referenced as the switchboard of the cortex due to its role 

in planning and selecting appropriate responses and actions to 
events and stimuli (26–28). Behaviors such as impulsivity (29), 
decision-making (30), and attentional focus (31) are all under the 
control of the PFC and are often manipulated and impaired in 
individuals with an AUD (discussed subsequently). Whenassessed 
in a controlled setting, acute doses of alcohol (0.4–0.8g/kg) given 
to nondependent subjects impairs numerous PFC functions, 
including disruption in planning (32), increases in impulsive 
actions (33–36), decreases behavioral inhibition (37–39), reduces 
perseverance (40), and increases poor decision-making (41). In 
many studies, these dysfunctions were correlated with reductions 
in typical lateralization (asymmetric distribution of activity) 
(36) as well as reduced functional magnetic resonance imaging 
(fMRI) activity during false responses (42). Further, studies in 
humans have demonstrated subtle structural abnormalities (43), 
increased blood flow (as an indicator of cortical activity) (44–47), 
and reduced hemispheric dominance (36, 48–50). Taken together, 
it is clear that the function of the PFC is significantly impaired 
with acute exposures to alcohol.

Hippocampus
Similar to the inhibition observed in the PFC, the hippocampus 
is a sensitive target of alcohol’s actions in the brain. Defined, in 
part, by its characteristic trisynaptic circuit, human and animal 
studies have demonstrated that the hippocampus is critical for 
spatial memory [reviewed in Ref. (51)], context discrimination 
(52), pattern separation (53), and time-sensitive memories 
(54). A critically unique region of the hippocampus, the dentate 
gyrus (DG), contains neural stem cells that continue to divide 
and primarily generate functional neurons into adulthood in 
nearly all mammalian species (55) and have proved critical 
for pattern separation functionality (56). Beyond its role in 
the previously described functions, the hippocampus plays a 
critical role in emotional and stress regulation (57), critical 
components to the development and cyclical nature of addic-
tion (58). In human subjects, hippocampal function is typically 
assessed as contextual memory or episodic memory, both of 
which have been shown to be impacted during acute alcohol 
exposure (49, 59).

COGNiTive iMPAiRMeNTS DURiNG AND 
FOLLOwiNG HeAvY ALCOHOL USe

Prefrontal Cortex
When compared with healthy subjects, individuals reporting 
chronic alcohol abuse demonstrate structural abnormalities, 
including reduced frontal cortical volume (60–64), compro-
mised white matter integrity (65–67), reduced quantities of 
frontal– cerebellar connections (68), and aberrant patterns of 
frontal cortical activity (69, 70). Further, Kril et al. (71) confirmed 
previously reported reductions in PFC white matter and found a 
significant reduction in the number of neurons in postmortem 
tissue of alcoholics when compared with healthy control subjects, 
confirming losses to cortical gray matter (60). Finally, it is possi-
ble that these pathological changes are underlying the diminished 
cognitive function often observed in human alcoholics.
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In order to test the deleterious effects of chronic alcohol 
abuse on the intellectual capacities of alcohol-dependent 
individuals, tests of memory, impulsivity, risk, and attention 
are often employed. While individuals struggling with alcohol 
dependence rarely exhibit impairments on assessments of gen-
eralized intelligence, specialized complex tasks are uniquely able 
to elucidate potentially subtle difference between dependent and 
non-dependent populations. Estimates suggest that at least half of 
individuals diagnosed as alcohol-dependent are also cognitively 
challenged (4). One early study assessing a group of recently 
abstinent alcoholics, individuals with frontal lobe damage, and 
healthy controls found, as expected, no difference on assessments 
of IQ, but did report that alcoholic individuals were significantly 
impaired compared with both controls and individuals suffering 
from frontal lobe trauma in tasks that were designed to explicitly 
test frontal lobe function (72, 73). More recent studies have 
demonstrated explicit impairments on tasks, involving executive 
functioning (74, 75), working memory (76, 77), and impulsivity 
(76, 78–81). Structural abnormalities have been directly linked 
to frontal cortical function in within-subject experimental 
designs. One study measuring frontal cortical electrical activity 
(electroencephalogram recordings) during a Go/No Go task, a 
test where subjects are asked to learn and perseverate changing 
rules pertaining to cues, demonstrated blunted activity during 
the task in alcoholics as compared with non-dependent controls 
(82). Most recently, Nakamura-Palacios et al. (83) reported that 
the damage to the PFC was predictive of the cognitive impair-
ments on tests of executive function. Additionally, studies have 
identified abnormal patterns of activity during cognitive tasks in 
alcohol-dependent subjects, whose intellectual performance is 
comparable to non-dependent subjects (84); this finding is par-
ticularly intriguing as it implies that individuals with significant 
disruptions in cognitive capacities may lack the capacity to form 
adaptive connections in the presence of chronic alcohol. Taken 
together, these findings present solid evidence that the PFC is 
subject to extensive damage as a result of chronic alcohol use, 
some of which could potentially be mediated by certain indi-
vidual characteristics.

Hippocampus
Studies involving human subjects with chronic alcohol use 
have demonstrated reduced hippocampal volume (85–87), 
postmortem evidence of prior neuronal loss (88), and severely 
reduced hippocampal activity, including reductions in blood 
flow (89). Recently, one study comparing mild and heavy 
drinkers demonstrated no significant impairment of general 
cognition but an increased fMRI blood-oxygen-level-dependent 
(BOLD) response, an indicator of regional activity, in the hip-
pocampus during correct responses to the visual encoding 
and memory task, implying a compensatory mechanism for 
cognitive function (90). However, tasks capable of identifying 
explicit hippocampal-sensitive cognitive impairments in adults, 
particularly those with substance dependency issues, are scarce 
beyond those investigating episodic memory. Episodic memory, 
or the function of remembering events in specific spatial and 
temporal context (in contrast to factual or semantic memory), 
is an important hippocampal function in humans (91, 92) and 

has been demonstrated to be significantly impaired in alcoholic 
patients (93–96). However, it should be noted that as described 
by Noel et al. (96), episodic memory is also sensitive to alcohol-
induced damage to the PFC, so the findings of reduced episodic 
memory function cannot be explicitly attributed to impaired 
hippocampal function.

ReCOveRY OF COGNiTive CAPACiTieS

A strong body of evidence in alcohol-dependent individuals 
has demonstrated that various cognitive capacities do return to 
(or nearly to) non-dependence levels of performance. However, 
the details of this recovery vary widely in terms of temporal 
resolution based primarily on the cortical structure of interest, 
and it is difficult to disseminate apparent recovery of damaged 
regions from compensation by other cortical regions with 
regards to behavioral function and performance alone. For 
example, studies appear to suggest that cognitive deficits due 
to PFC damage from alcohol abuse recover on a shorter time-
scale compared with those dependent on the hippocampus. 
However, as the functionality of the PFC and hippocampus is 
intricately related, there is a clear challenge to designing studies 
to directly address the explicit temporal recovery of specific 
structures in humans. Therefore, the findings presented here 
are from studies addressing broader questions of functionality 
in alcoholics.

With respect to the PFC damage, recovery of cognitive func-
tion in this region is critical to the persistence of abstinence from 
alcoholism and avoidance of relapse in dependent individuals 
(97). A recent met-analysis of human literature (62 sources in all) 
demonstrated that cognitive impairments sensitive to the PFC in 
individuals with AUDs identified in recent abstainers (98–101) 
are primarily alleviated or “normalized” (meaning performance 
is comparable to non-dependent individuals) by 1-year absti-
nence of alcohol use (102). Similarly, improvements in executive 
functioning occurring as soon as 6 months into abstinence has 
been reported (95, 103). However, as proposed and reviewed by 
Oscar-Berman et al. (104), it is plausible that the recovery of PFC 
function is more the result of compensatory activity in associated 
regions of the cortex rather than distinct recovery or repair of the 
PFC itself.

With regard to hippocampal functionality, human studies 
evaluating episodic memory in dependent, long-term abstinent 
individuals have reported similar findings to those relating to 
the PFC, but the outcomes of the studies have not been entirely 
equivocal. For example, multiple studies have reported impaired 
performance on tasks of episodic memory (105–107), and that 
“normalization” of episodic memory performance in alcohol-
dependent subjects has taken place by 1 year of abstinence (95). 
However, there is evidence that hippocampal dysfunction remains 
impaired years after abstinence (5, 108). The potential distinction 
of these two seemingly disparate findings may be the result of 
(A) many of the studies not evaluating function beyond 1-year 
abstinence and (B), as described previously, episodic memory 
is not entirely exclusive of hippocampal function. Therefore, it 
is possible that, while episodic memory function returns, other 
facets of hippocampal function remain perturbed long into 
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abstinence from alcohol. Taken together, the current evidence 
suggests that the recovery of cognitive functionality in abstinent 
alcohol-dependent individuals is sensitive to the duration of the 
abstinence period, with the PFC returning to “normative” levels 
prior to the hippocampal formation.

LiMiTATiONS OF CLiNiCAL FiNDiNGS

A wealth of evidence from clinical findings demonstrates that acute 
alcohol exposures can inhibit cognitive capacities. Interestingly, it 
is primarily following withdrawal from chronic alcohol exposure 
that individuals experience persisting, severe cognitive impair-
ments. As eloquently described in Oscar-Berman et  al. (104), 
studies involving human subjects and drugs of abuse are often rife 
with complicating and confounding factors, including family his-
tory, genetic predisposition, and past life events and experience, 
much of which cannot be controlled for. While clinical studies are 
limited to observational investigations into the deleterious corti-
cal adaptations subsequent to chronic alcohol exposure, preclini-
cal models have been successful at informing and elaborating our 
understanding of the cellular and molecular changes, which may 
explain the mechanisms underlying cognitive disparities in absti-
nent alcohol-dependent subjects. Further, preclinical models of 
alcohol dependence have generated evidence suggesting that the 
distinct cellular compositions of the PFC and the hippocampus 
may be the basis for the differential cognitive recovery in these 
regions in abstinent individuals. Therefore, the following sections 
will discuss preclinical models of alcohol addiction and depend-
ence with specific focus on cognitive impairments dependent 
on the PFC and hippocampus and will elucidate the associated 
cellular and molecular changes in these regions.

iMPACT OF ALCOHOL ON COGNiTiON: 
PReCLiNiCAL FiNDiNGS

Rodent models of alcohol dependence have been instrumental 
in furthering our understanding of both the cognitive and neu-
robiological impact of withdrawal from alcohol dependence, as 
well as providing critical insight into the potential mechanisms 
of the pathological state associated with and resulting from 
alcohol withdrawal in dependent animals. While studies target-
ing examination of one explicit region or feature are impossible 
in human populations, particularly with regards to the effects of 
drugs of abuse, animal models have been instrumental tools in 
allowing for the fine manipulation of explicit cortical regions and 
functions.

ALCOHOL iMPAiRS PFC FUNCTiON

Multiple studies employing rodent models have investigated the 
impact of alcohol dependence on prefrontal cognitive capacity. 
Growing evidence suggests that the rodent medial prefrontal cor-
tex (mPFC) likely represents a functional homolog of the human 
medial and dorsolateral PFC (109). Reports using various rodent 
models of alcohol dependence [including chronic intermittent 
ethanol vapor exposure (CIE), liquid diet, two bottle choice; 
for paradigm overviews, see Ref. (110)] have found behavioral 

inflexibility (111), impaired extinction (112), impaired set-
shifting (113), and impaired working memory (114, 115), all tasks 
which require a fully functioning PFC. Further, two of these stud-
ies (112, 113) linked the disruption in frontal cortical function 
to alcohol-induced dysregulation of the N-methyl-d-aspartate 
glutamatergic receptor (GluN) system. Two studies have investi-
gated PFC functions into periods of abstinence following chronic 
ethanol exposure via CIE (10 days abstinence; (116)), or liquid 
diet (6 weeks abstinence; (114)). Interestingly, at 10 days into 
abstinence there is a lack of impairment in cognitive flexibility 
while at 6 weeks into abstinence there were severe impairments 
in working memory. Furthermore, investigation of anxiety-
like behavior, 6  weeks into abstinence, demonstrated a lack of 
emotional behavioral deficit in abstinent animals (114). Taken 
together, it is evident that the paradigm of ethanol experience and 
the type of behavioral investigation are critical when determin-
ing alterations in PFC-dependent functions during abstinence, 
and that some PFC-dependent behaviors are less sensitive to 
the neurobiological alterations in the PFC in abstinent animals 
compared with others.

ALCOHOL iMPAiRS HiPPOCAMPAL 
FUNCTiON

Animal models have also been critical in resolving the explicit 
impact of chronic alcohol on the functionality of the hip-
pocampus. Similar to the studies in animal models of alcohol 
dependence, which replicated the PFC impairments observed 
in humans, studies in animals exposed to translationally rel-
evant models of chronic alcohol exposure have reproduced and 
expanded on the findings from human subjects. These studies 
have resulted in numerous structural and functional abnormali-
ties of the rodent hippocampus similar to those seen in human 
studies. For example, studies in rodents employing forced chronic 
consumption demonstrate long-term exposures to alcohol 
resulted in extensive impairment in spatial memory (117–122). 
Unfortunately, behavioral disparities in these preclinical models 
have been limited to the spatial and contextual processing func-
tions of the hippocampus with no reference to the temporal 
discrimination role of this structure. Nevertheless, it is clear that 
chronic alcohol exposure critically impairs hippocampal func-
tion in preclinical models similar to those previously discussed 
in clinical settings, although there remain unanswered questions 
in this field with regard to the complete profile of hippocampal 
cognitive impairments. The remainder of the review will focus on 
the hippocampus and provide a brief overview of the cellular and 
molecular mechanisms in the hippocampus that could contribute 
to the long-term impairments in the behaviors dependent on the 
hippocampus in preclinical models of AUDs.

MOLeCULAR ACTiONS OF ALCOHOL  
iN THe HiPPOCAMPUS

Acute effects on GluNs
Animal models of acute alcohol exposure have been instrumen-
tal in elucidating our understanding of the molecular actions of 
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alcohol with regard to excitatory and inhibitory transmission 
in the mammalian cortex (see Figure  1A for a summary). 
GluNs are one of the main components of excitatory transmis-
sion in the hippocampus (as well as the cortex at large) and 
are critical for learning and memory (123). The receptors are 
comprised of four subunits, two obligatory GluN1 subunits, 
and two additional subunits, which can be any of GluN2A-D 
or GluN3A-B. Evidence suggests that the 2A and 2B subunits, 
expressed in high density in the hippocampus, are particularly 
sensitive to alcohol’s inhibitory effects (124–127). Further, 
early evidence suggests that alcohol dose-dependently inhibits 
GluN-dependent current in cells (8) by decreasing the time the 
channel spends open (128).

Acute effects on Gamma-Aminobutyric 
Acid A Receptors
Inhibitory transmission plays a similarly critical role in cogni-
tion, learning, and memory in the hippocampus (and the cortex 
at large) (129). In addition to alcohol’s reduction of glutamatergic 
transmission via impairment of GluN function, alcohol also acts 
as a non-competitive agonist, directly enhancing the chloride 

transmission of the gamma-aminobutyric acid A (GABAa) 
channel (130) effectively hyperpolarizing the neural cells 
(see Figure  1A for a summary). Similar to GluN, the GABAa 
receptor (GABAaR) is comprised of five subunits, typically two 
alpha (A1-6), two beta (B1-3), and one subunit, which could be 
comprised of a gamma (G1-3) or delta. However, unlike GluN, 
the precise site of action on a given subunit is of debate [reviewed 
in Ref. (21)], with many subunits demonstrating sensitivity to 
alcohol (131), and much evidence is contradictory; for example, 
Wallner et al. (20) suggested that the B3 subunit was mediating 
the receptor’s sensitivity to alcohol, but this was later contra-
dicted in a mutant mouse model void of the B3 subunit, but 
still demonstrated GABA-ergic enhancement following alcohol 
administration (132). It is highly possible that alcohol’s capacity 
to enhance inhibitory function of the GABAaR is dependent on 
the specific conformation of subunits instead of acting at a single 
subunit.

Chronic effects on GluNs
N-methyl-d-aspartate glutamatergic receptors and associated 
intracellular signaling molecules adapt to the reoccurring 

http://www.frontiersin.org/Psychiatry/
http://www.frontiersin.org
http://www.frontiersin.org/Psychiatry/archive


6

Staples and Mandyam Alcoholism and Cognitive Impairment

Frontiers in Psychiatry | www.frontiersin.org September 2016 | Volume 7 | Article 162

presence of alcohol, facilitating the development of the dependent 
phenotype. Post-translationally, the GluN2B subunit is phospho-
rylated subsequent to alcohol exposure (133), particularly in the 
hippocampus (13), resulting in an increase in receptor function. 
Over repeated alcohol exposures, an increase in expression of 
GluN subunits 2A and 2B (134, 135), synaptic-specific clustering 
of GluNs (136), as well as an increase in GluN-mediated currents 
(136) are observed (Figure 1B). It is probable that this increase in 
expression and function of the GluN receptor is a compensatory 
mechanism against chronic alcohol’s impairment on the receptor; 
however, when alcohol is absent from the cortical system dur-
ing withdrawal, the pathologic over-expression of GluNs (137), 
along with the normalized GABA-ergic function in the absence 
of alcohol’s facilitating effects, results in cortical hyperactivity and 
excitotoxicity.

Chronic effects on GABAaRs
In addition to the molecular changes observed in the GluN system 
following long-term alcohol exposures, the GABAaRs are subject 
to dynamic regulation by the drug (see Figure 1B for a summary). 
The subunits of the GABAaR are differentially expressed subse-
quent to chronic alcohol in a region- and subunit-specific manner 
[for detailed review see Ref. (138)]. Evidence suggests an exchange 
of subunits expressed on the cell surface with a reported reduc-
tion in A1 subunits in the hippocampus (139) and an increase 
of A4 (140–142) and A5 (139) following CIE. However, subunit 
expression is not the only element of GABAaR modulation that 
is altered by chronic alcohol exposure. Following withdrawal 
from CIE, neurons displayed heightened excitability, which was 
pharmacologically attributable to increases in the number of A4 
containing GABAaRs (142) as well as reductions in tonic current 
modulators (143), increase in A4 synaptic localization (144), and 
subunit-specific changes in trafficking (145), leading to a prefer-
ential increase in A4 expression over other subunits. Therefore, 
following chronic alcohol exposure, there is a generalized reduc-
tion of GABAaR functionality, leading to heightened neuronal 
activity in the absence of alcohol’s modulating effects.

POTeNTiAL BiOLOGiCAL MeCHANiSM 
OF HiPPOCAMPAL SeNSiTiviTY TO AUDs: 
iMPACT OF ALTeReD GluN AND GABAR 
SiGNALiNG iN THe HiPPOCAMPUS ON 
ADULT NeUROGeNeSiS

The regionally differential rates of cognitive recovery following 
abstinence from alcohol use are potentially consequent to the 
neurogenic properties (or lack thereof) of each region. To be 
more specific, cognitive function relying on the frontal cortical 
region in humans has been described as being recovered at an 
earlier time in abstinence than cognitive functions specific to 
the hippocampal formation of the limbic system as previously 
discussed. It is possible that this disparity is due to, at least in 
part, the ongoing adult neurogenesis in the hippocampus which 
occurs at a much lesser rate in the PFC of mammals (146); 
neurons which would be generated during critical periods of 
withdrawal would be developing into mature neurons during 

a time of negative affect (147, 148), potentially resulting in a 
pathologic phenotype and dysfunctional characteristics (149). 
This problematic phenomenon would be far more impactful in 
a region with high neurogenesis (such as the hippocampus) as 
compared with a region of low or absent neurogenesis, where 
the typical functioning of the existing circuitry may return upon 
complete washout of the drug.

Adult mammalian neurogenesis is a widely accepted phenom-
enon, as evidence demonstrates the existence of mitotically active 
cells in distinct regions of the brain, one which is the granule cell 
layer of the DG of the hippocampus. Neurogenesis, or the process of 
proliferation, differentiation, and maturation of neural progenitor 
cells to fully functional and integrated neuronal components of the 
surrounding network (150, 151), has been confirmed in numerous 
mammalian species, including humans (152). Assessment of cell 
number and structure at various time points following cell birth 
can provide insight into the impact of exogenous factors on the 
neurogenic process in the hippocampus [for comprehensive 
review of granule cell development see Ref. (153)].

The explicit functionality of these adult-born cells is still a topic 
of contention. Hippocampal-sensitive learning has been shown 
to positively influence proliferation and survival of new neurons 
[reviewed in Ref. (154)]; inversely, increases in proliferation or 
survival of newly born neurons can increase performance on 
hippocampal-sensitive tasks, while reductions or ablations of neu-
ronal proliferation results in problematic cognitive performance 
[reviewed in Ref. (155)]. Acquisition, retention, and extinction 
of trace fear conditioning (TFC; a hippocampus sensitive task) 
has been shown to be sensitive to changes in neurogenesis (156) 
due to or as a result of its hippocampal-dependence (157), but as 
yet, investigations into the impact of clinically relevant models 
of chronic alcohol on TFC performance have not been reported.

Regulation of Neurogenesis by GluNs
Glutamatergic signaling via GluNs is of critical importance in 
regulating neural stem cells in the hippocampus, particularly in 
the withdrawal/abstinence period in alcohol-dependent subjects. 
Under basal conditions, some stages of immature neural progeni-
tors (proliferating and differentiating cells) in the hippocampus 
express GluNs (158). When coupled with the evidence that GluN-
dependent long-term potentiation in the DG can increase pro-
genitor proliferation (159, 160) and survival (159), these findings 
imply that regulation of hippocampal neurogenesis is sensitive 
to GluN stimulation on newly born granule cells. Alcohol’s long-
term actions via GluNs would, therefore, affect proliferation, 
survival, and function of the newly born neurons in a dynamic 
manner which would change over the course of abstinence from 
alcohol. Alcohol, as described previously, has the consequence of 
maintaining GluNs at the synapse, effectively impairing cycling of 
receptors back into the cell for degradation or reuse. Therefore, 
the role of alcohol on hippocampal neurogenesis would be medi-
ated by either GluN dysregulation, GABA-ergic dysregulation, or 
a balance of both.

Regulation of Neurogenesis by GABAaRs
The granule cells of the hippocampus are maintained in a 
quiescent state by the mossy fibers of the hilus via GABA-ergic 
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regulation [reviewed in Ref. (161)]. Evidence has demonstrated 
that these cells do express GABAaRs (162), as do the surround-
ing cells of the DG (163, 164); therefore, not only are the granule 
cells sensitive to enhanced GABA-ergic transmission during 
exposure to chronic alcohol but are also subject to secondary 
regulation due to the modulation of activity of surrounding 
cells by alcohol’s actions on the GABAaR. As specific subunit 
compositions of the GABAaR can modulate important stages 
of neurogenesis (particularly the maintenance of quiescent 
cells and proliferation), this could provide a potential mecha-
nism by which alcohol could be modulating neurogenesis 
in dependent individuals. During periods of alcohol intake, 
GABAaR function would be supported and facilitated such that 
quiescent cells would be maintained (165, 166) as such and 
proliferation would be reduced (167–169). In the acute absence 
of alcohol, the facilitation of GABAaR activity would be lost 
and quiescent cells would be allowed to proliferate, and these 
effects could result in increase or decrease in cell survival in 
the days following withdrawal (169–171). However, impaired 
GABA-ergic receptor function has been shown to restrict 
morphology of newly born cells (172), which could reduce 
the number of synaptic connections and network integration 
required for survival and function of the granule cells and, 
therefore, result in net reduction of the number of surviving 
cells during protracted abstinence (171). This finding serves 
as a potential argument for the reduced survival subsequent to 
the increased proliferation following withdrawal in dependent 
animals (171).

Regulation of Neurogenesis by Alcohol
In addition to a general understanding of neurogenesis, we are 
beginning to understand how alcohol exposure impacts hip-
pocampal neurogenesis and what this may imply for cognitive 
performance and capacity (see Figures 1A–C for a summary). 
For example, while cellular proliferation and neurogenesis 
are reduced during excessive alcohol-induced dependence 
(167–169), early withdrawal from excessive alcohol is docu-
mented to result in an increase in cellular proliferation in the 
DG (169–171). The survival capacity of progenitors born dur-
ing this period of increased proliferation and their functional 
importance is still unclear; however, reports using alcohol 
gavage [blood alcohol levels (BALs) reaching >400 mg%] dem-
onstrate increased survival of newly born neurons subsequent 
to the proliferative burst (170, 173, 174). In contrast, animals 
made dependent to alcohol via ethanol vapor exposure (BALs 
maintained between 150–250 mg%) demonstrate a marked 
reduction in the number of surviving young neurons in the 
DG (169, 171). This difference could be attributed to differ-
ences in BALs and negative affect symptoms resulting from the 
exposure paradigm (gavage vs. CIE). Unfortunately, there is no 
conclusive evidence linking aberrant neurogenesis subsequent 
to alcohol dependence and impaired hippocampal cognitive 
function. Future studies will be required to demonstrate the 

plausibility of this mechanism as an underlying explanation for 
the deleterious effect of alcohol dependence on hippocampal 
function.

SUMMARY AND CONCLUSiON

The goal of this review was to provide initial evidence in support 
of the proposal that the cognitive recovery of the hippocampus 
and the PFC following abstinence from long-term alcohol abuse 
occur at different rates, potentially due to their difference in 
cellular composition and neurogenic functionality. For example, 
clinical evidence supports recovery of certain PFC-dependent 
tasks in times of abstinence from alcohol at different rates 
compared with hippocampal-dependent tasks. Preclinical find-
ings in animal models of alcohol exposure support the clinical 
observation; mechanistic studies support that this temporally 
differential rescue of PFC-dependent tasks is potentially due to 
the neurogenic deficits in the hippocampus during abstinence, 
such that the birth of new neurons during periods of negative 
affect result in the persistence of the hippocampal-specific cogni-
tive disparities.

FUTURe PeRSPeCTive

Many questions remain unanswered with regard to human 
hippocampal function during periods of alcohol abstinence. 
For example, it is clear that employing cognitive therapy can 
support individuals in successful attempts at abstinence. Given 
that extinction training is being adopted in clinical behavioral 
therapy to promote recovery from relapse (175), it is critical to 
investigate similar potential therapeutic strategies (be it behavio-
ral or pharmacological), which will serve this purpose not only 
to ameliorate the cognitive disparities in these individuals but to 
facilitate dependent individuals in avoiding relapse to alcohol 
abuse.
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