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Rifampicin (RIF) is a critical first-line drug for tuberculosis. However, long-term or high-dose
treatment with RIF can induce severe liver injury; the underlying mechanism of this effect
has not yet been clarified. This study was performed to screen reliable and sensitive
biomarkers in serum bile acids (BAs) using targeted BA metabolomics and evaluate the
toxicity mechanisms underlying RIF-induced liver injury through the farnesoid x receptor
(Fxr)-multidrug resistance-associated proteins (Mrps) signaling pathway. Thirty-two
Institute of Cancer Research mice were randomly divided into four groups, and normal
saline, isoniazid 75mg/kg + RIF 177 mg/kg (RIF-L), RIF-L, or RIF 442.5 mg/kg (RIF-H) was
orally administered by gavage for 21 days. After treatment, changes in serum biochemical
parameters, hepatic pathological conditions, BA levels, Fxr expression, and BA transporter
levels were measured. RIF caused notable liver injury and increased serum cholic acid (CA)
levels. Decline in the serum secondary BAs (deoxycholic acid, lithocholic acid,
taurodeoxycholic acid, and tauroursodeoxycholic acid) levels led to liver injury in mice.
Serum BAs were subjected to metabolomic assessment using partial least squares
discriminant and receiver operating characteristic curve analyses. CA, DCA, LCA,
TDCA, and TUDCA are potential biomarkers for early detection of RIF-induced liver
injury. Furthermore, RIF-H reduced hepatic BA levels and elevated serum BA levels by
suppressing the expression of Fxr and Mrp2 messenger ribonucleic acid (mRNA) while
inducing that of Mrp3 and Mrp4 mRNAs. These findings provide evidence for screening
additional biomarkers based on targeted BA metabolomics and provide further insights
into the pathogenesis of RIF-induced liver injury.
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1 INTRODUCTION

Tuberculosis (TB) is an infectious disease caused byMycobacterium tuberculosis, the second leading
cause of death from a single infectious agent after severe acute respiratory syndrome coronavirus 2
(World Health Organization, 2021). Treatment for drug-susceptible TB requires a combination of
rifampicin (RIF), isoniazid (INH), ethambutol, and pyrazinamide for 2-months followed by RIF and
INH for 4 months, while 6–20 months for multidrug-resistant TB (Lange et al., 2019; World Health
Organization, 2021). Prolonged RIF administration or the combination of RIF and INH would
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significantly increase the risk of drug-induced liver injury with an
undefined mechanism (Devarbhavi et al., 2021). The current
standard RIF dose of 10 mg/kg daily is suboptimal and has
remained unchanged since the early 1970s (Grobbelaar et al.,
2019; Te Brake et al., 2021). In RIF clinical trials, doses of 20, 25,
30, 35, and 50 mg/kg have been administered. The safety of RIF
50 mg/kg should be verified in further investigation, given its
poor tolerance in humans (Boeree et al., 2015; Abulfathi et al.,
2019; Te Brake et al., 2021). Long-term RIF treatment can cause
hepatocyte dysfunction and cholestatic liver injury (Grobbelaar
et al., 2019; Yang et al., 2020c). The mechanism of RIF-induced
drug-induced liver injury (DILI) remains undefined and may
occur by cholestasis, oxidative stress, inflammatory response,
mitochondrial damage, and apoptosis (Moussavian et al., 2016;
Yang et al., 2020c; Luo et al., 2021).

Bile acids (BAs), a major component of bile, regulate glucose
and lipid metabolism, as well as energy homeostasis (Chiang and
Ferrell, 2020). A previous study indicated that the disorder of BAs
was associated with primary sclerosing cholangitis, primary
biliary cholangitis, previously known as primary biliary
cirrhosis, nonalcoholic fatty liver, and nonalcoholic
steatohepatitis (Choudhuri and Klaassen, 2022). It is essential
to evaluate therapeutic agents to treat liver injury and elucidate
the relationship between BA metabolism and the mechanisms of
liver injury. Farnesoid x receptor (Fxr), which is abundantly
expressed in the liver, gastrointestinal tract, kidney, and
adrenal glands, plays an essential role in regulating BA and
lipid metabolism and glucose homeostasis. Fxr is activated by
chenodeoxycholic acid (CDCA), cholic acid (CA), deoxycholic
acid (DCA), lithocholic acid (LCA), and their taurine and glycine
conjugates, and promotes BAs flow (Yang et al., 2017; Gottlieb
and Canbay, 2019; Keitel et al., 2019; Chiang and Ferrell, 2020).
Fxr represses the de novo synthesis and uptake of BAs in the liver
and protects hepatocytes from the accumulation of toxic BAs
under cholestatic conditions. Multidrug resistance-associated
proteins (Mrps) are BAs efflux transporters, the regulation of
BAs by Fxr is related to the regulation of subtypes of Mrps, such
as Mrp2, Mrp3, and Mrp4 (Xu et al., 2005; Yuan et al., 2018;
Fiorucci et al., 2021). Uridine diphosphate-
glucuronosyltransferases (UGTs), which can co-express Mrp2,
are associated with the phase II metabolic pathway. UGTs
substrates are metabolized by glucuronidation, increasing
hydrophilicity and facilitating the excretion of conjugated
metabolites into bile and urine, thus further reducing toxicity
(Xu et al., 2005). Furthermore, the prognosis of DILI can be
improved by considering and detecting changes in BA efflux
transporter levels (Ali et al., 2017).

Serum alanine aminotransferase (ALT) and aspartate
aminotransferase (AST) levels are less sensitive and liver-
specific for DILI relative to the new biomarkers, such as BAs
and glutamate dehydrogenase (McGill and Jaeschke, 2019; Tian
et al., 2022). The reason for the increase in ALT activity is also
correlated with skeletal muscle, cardiac injury or metabolic state,
except for histopathology change (Zhao et al., 2017). Moreover, a
previous study found that the levels of hepatic and serum BAs and
BA-related genes increase notably, with no elevation in serum
ALT, AST, and alkaline phosphatase levels after administering a

dose of RIF (Sanoh et al., 2019). Another study showed that the
levels of serum conjugated BAs [glycocholic acid (GCA) and
taurocholic acid (TCA)] increase in the rats with bile duct
hyperplasia without significant changes in ALT and AST levels
(Slopianka et al., 2017). It was shown that ALT and AST indicated
lower sensitivity and specificity for the detection of liver injury
than BAs. BA metabolism was closely related to the pathologic
changes in the hepatic and biliopancreatic diseases. Since the
1950s, enzymatic methods of quantifying the “total” bile acid pool
in blood have been established (Hurlock and Talalay, 1957). In
recent years, many metabolomics studies have demonstrated that
BAs are potential biomarkers for the diagnosis, follow-up and
prognosis of liver injury and dysfunction (Ambros-Rudolph et al.,
2007; Crosignani et al., 2007; Dong et al., 2015; Tian et al., 2022).
Tian and others found that serum glycoursodeoxycholic acid
(GUDCA), taurodeoxycholic acid (TDCA), and taurolithocholic
acid (TLCA) were helpful for evaluating Cd-induced liver injury
and Cd exposure in humans based on targeted BA metabolomics
(Tian et al., 2022). In another study, glycodeoxycholic acid
(GDCA) in the bile and hyodeoxycholic acid (HDCA) in the
serum could be potential biomarkers for Polygonummultiflorum-
induced liver injury (Dong et al., 2015). Therefore, analysis of
individual BAs has the potential to unravel valuable biomarkers
for the differentiation and diagnosis of various forms of liver
injury (Luo et al., 2018). It is necessary to adopt targeted BA
metabolomic approaches using liquid chromatography-tandem
mass spectrometry (LC-MS/MS) to identify potential biomarkers
from serum BAs.

In a study of liver injury in mice, RIF treatment suppressed
Na+/taurocholate cotransporter, one of the targets of Fxr
signaling (Yang et al., 2020b). Besides, it is clear that the
expression levels of organic solute transporter β were
increased following treatment with RIF (Zhang et al., 2017).
Mrps play an essential role in disorders of BAs metabolism
and DILI (Cuperus et al., 2014). The relationship between the
change of Fxr and Mrp2, Mrp3, Mrp4 mRNA, and RIF-induced
DILI is still insufficient. Therefore, Our study aims to establish an
experimental mouse model of RIF-induced liver injury to analyze
the changes in the metabolic profile of BAs in the liver and serum
using LC-MS/MS and unravel the potential serum biomarkers for
liver injury. Comprehensive analysis of the role of the Fxr-Mrps
signaling pathway in BA metabolism, we could better understand
the hepatotoxicity mechanism of RIF action and further provide a
theoretical basis for DILI prevention and rational clinical
application in anti-TB therapy.

2 MATERIALS AND METHODS

2.1 Chemicals and Reagents
RIF and INH were purchased from Meilun Biotechnology Co.
Ltd (Dalian, China). Ursodeoxycholic acid (UDCA), HDCA,
CA, CDCA, DCA, tauroursodeoxycholic acid (TUDCA), and
taurochenodeoxycholic acid (TCDCA) were purchased from
On-Road Biotechnology Co., Ltd (Changsha, China). TCA,
LCA, GCA, glycochenodeoxycholic acid (GCDCA), GDCA,
TLCA, and TDCA were purchased from Sigma Reagents, Inc
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(St. Louis, MO, United States). Taurohyodeoxycholic acid
(THDCA) and GUDCA were purchased from Aikeda
Chemical Reagent Co., Ltd (Chengdu, China). Cyproterone
acetate was purchased from China National Institutes for
Food and Drug Control (Beijing, China). Acetonitrile and
methanol (chromatographic grade purity) were purchased
from Merck (Darmstadt, Germany). Formic acid and
ammonium acetate (chromatographic grade purity) were
purchased from ROE Scientific Inc (United States). The
EVOM-MLV reverse transcription kit, SYBR Green Premix
Pro Taq HS premixed quantitative real-time polymerase chain
reaction (PCR) kit, nuclease-free water, and AG RNAex Pro
ribonucleic acid (RNA) extraction reagent were purchased
from Aicerui Biological Engineering Co., Ltd. (Hunan,
China).

2.2 Animals and Experimental Design
All animal experiments were conducted in compliance with
the Guide for the Care and Use of Laboratory Animals.
Healthy Institute of Cancer Research mice, weighing
18–22 g, were provided by Hunan Slack Jingda
Experimental Animal Co., Ltd (Hunan, China). The mice
were provided ad libitum access to water and chow and
kept at 20 ± 2°C at 50 ± 10% relative humidity with a 12-
h/12-h light/dark cycle. Thirty-two mice were randomly
divided into four groups (eight mice in each group) and
treated as follows: normal saline (vehicle), INH 75 mg/kg +
RIF 177 mg/kg (RIF-L), RIF-L, and RIF 442.5 mg/kg (RIF-H).
RIF and INH were administered daily by gavage for 21 days
(Figure 1). After day 21, the mice fasted for 12 h before
anatomical examination. Blood samples and liver tissues
from the mice were collected for further experiments. The
animal experiment was approved by Animal Ethics Review
Regulations of Hunan Academy of Traditional Chinese
Medicine and was reviewed and approved by the Animal
Ethics Review Committee. (Number:2019-0024).

2.3 Biochemical and Histological Analyses
ALT, AST, total bilirubin (TBil), and indirect bilirubin (IBil)
levels and liver index (liver weight/body weight ×100) were
measured as described earlier (Luo et al., 2020). The fixed liver
tissue was embedded in paraffin blocks. Next, 4-μm-thick slices
were cut and stained with hematoxylin and eosin to investigate
histopathological changes.

2.4 LC-MS/MS for Liver and Serum BAs
2.4.1 Instruments and Conditions
LC-MS/MS for BAs (Supplementary Figure S1) was performed
using the LCMS-8050 triple quadrupole mass spectrometer
(Shimadzu, Japan). The separation was performed on an
Ultimate AQ-C18 (3.0 mm × 100mm, 3.0 μm; Welch,
United States) analytical column connected with a top C18
column (Guard cartridge System, United States). The column
temperature was maintained at 40°C. The gradient system
consisted of solvent A (0.005% formic acid containing 7 mmol/L
ammonium acetate) and solvent B (methanol) at a flow rate of
0.60ml/min, and the gradient program was as follows: 40%:60%
(v/v, 0–2min), 5%:95% (v/v, 13.0–17.3 min), and 40%:60% (v/v,
17.4–29.3 min). Cyproterone acetate was used as the internal
standard (IS). The multiple reaction monitoring functions used
MS in the electrospray ionization negative mode. Other MS
parameters were as follows: Interface: ESI(-); Drying gas flow:
10.0 L/min; Heat block temperature: 400°C. The multiple
reactions monitoring the ion pairs of the BAs were listed in Table 1.

2.4.2 Sample Preparation
To analyze 16 BAs in the mouse liver, liver tissue was weighed and
added to the saline solution according to the ratio of 1:10, and the
mixtures were homogenized using a tissue homogenizer (Servicebio,
China). After the homogenation, 50 µL hepatic homogenate was
added to 150 µL of IS solution. The mixture was vortexed for 2 min
before centrifugation at 4°C and 10,000 g for 10min. The
supernatant (150 µL) was volatilized to dryness in a centrifugal

FIGURE 1 | The scheme of animal experiment. The mice were divided into four groups: vehicle, INH (75 mg/kg)+RIF-L (144 mg/kg), RIF-L, and RIF-H
(442.5 mg/kg) group, with eight mice in each group.
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vacuum concentration system, carefully collected, and resuspended
in 50 μL 50%methanol. Finally, the supernatant was injected into the
LC-MS/MS system. The IS method was used for quantitation. For
each serum sample, the experiment was processed separately as
described above. That is, 50 µL serum was added to 150 µL of the IS
solution, and the other processes remained unchanged.

2.5 Quantitative Real-Time PCR
Quantitative real-time PCR was performed on the ABI 7500 Fast
Real-Time PCR system (Thermo Fisher Scientific, United States).
Total RNA was extracted using the reverse transcription kit with
the TRIzol reagent and reverse-transcribed into complementary

deoxyribonucleic acid (cDNA). cDNA was amplified and
analyzed using the SYBR Green Premix Pro Taq HS qPCR kit
(Ackeri Bioengineering Co., Ltd.). Glyceraldehyde-3-phosphate
dehydrogenase (Gapdh) was used as a control. The primer
sequences used in our study are listed in Table 2.

2.6 Statistical Analyses
Partial least squares-discriminant analysis (PLS-DA) is
accomplished by linking two data matrices X and Y to maximize
the covariance between the independent variables X and the
corresponding dependent variable Y of highly multidimensional
data by finding a linear subspace of the explanatory variables. VIP
(variable importance) is mainly used for screening the important
variables. The technology of VIP can be used in the case of small
sample size and a strong correlation between several independent
variables. It means an important variable in themodel with a value of
VIP ≥1 (Gromski et al., 2015; Lee et al., 2018). Differential markers
could be screened by VIP value and SPSS statistical analysis of PLS-
DA variables (p < 0.05). PLS-DA is widely used for the data analysis
of metabolomics. Simca-p 14.1 software was used for PLS-DA to
assess the data. VIP was calculated for the liver and serum BA levels
using this software. Statistical and receiver operating characteristic
(ROC) curve analyses were performed using GraphPad Prism eight
and SPSS 25.0, respectively, following recommendations in the
pharmacology field. All experimental data obtained in this study
are presented as the mean ± standard deviation. Data from multiple
groups were compared using a one-way analysis of variance,
followed by the least significant difference test. Correlation
analysis was performed using Pearson’s test. Differences were
considered statistically significant at p < 0.05.

3 RESULTS

3.1 Effects of RIF on Biochemical and
Histological Changes
To evaluate RIF-induced liver injury, some biochemical
indicators were analyzed. As exhibited in Figure 2,

TABLE 1 | The optimum LC-MS/MS working parameters for BAs.

BAs MRM m/z CE/V- Dwell time (msec) Retention time (min)

CA 407.30/407.30 10.0 50.0 11.83
CDCA 391.30/391.30 10.0 50.0 14.27
DCA 391.30/391.30 10.0 50.0 14.70
LCA 375.50/375.50 10.0 50.0 16.45
UDCA 391.30/391.30 10.0 50.0 9.80
HDCA 391.30/391.30 10.0 50.0 10.80
TCA 514.20/80.00 55.0 50.0 10.40
TCDCA 498.20/80.05 55.0 50.0 12.80
TDCA 498.20/80.05 55.0 50.0 13.39
TLCA 482.20/80.00 55.0 50.0 14.98
TUDCA 498.20/80.05 55.0 50.0 8.06
THDCA 498.20/80.05 55.0 50.0 9.04
GCA 464.20/74.00 38.0 50.0 10.62
GCDCA 448.20/73.90 37.0 50.0 13.03
GDCA 448.20/73.90 37.0 50.0 13.60
GUDCA 448.20/73.90 37.0 50.0 8.20

TABLE 2 | Primer sequences used for quantitative real-time PCR.

Gene Primer

glyceraldehyde-3-phosphate
dehydrogenase

Forward: 5′-AGGTCGGTGTGAACGGAT
TTG-3′
Reverse: 5′-GGGGTCGTTGATGGCAAC
A-3′

Fxr Forward: 5′-AGCTAATGAGGACGACAG
CG-3′
Reverse: 5′-TGCCGTGAGTTCCGTTTT
CT-3′

Mrp2 Forward: 5′-TGAGGAAGAGGATGGTGA
CTGTGG-3′
Reverse: 5′-GTTCGGCGAAGGCTGTTC
TCC-3′

Mrp3 Forward: 5′-ATCACCATACACAACGGC
ACCTTC-3′
Reverse: 5′-TCCGAGTAAGGCAGACAC
CAGAG-3′

Mrp4 Forward: 5′-TCTACCAGGACGCCGACA
TCTAC-3′
Reverse: 5′-ACAGTTGGAACAGGTGCT
TGCC-3′

UGT1a1 Forward: 5′-TTCCTGTGCCTCTCCTTT
AACT-3′
Reverse: 5′-TCATCCAGTCAAACCAGC
C-3′
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compared with the vehicle group, the serum levels of ALT,
AST, TBil, IBil, and liver index in the RIF-H group were
increased by 6.4-, 2.1-, 29.1-, 17.0-, and 2.6- fold, respectively;
but only TBil, IBil, and the liver index increased significantly
in the INH + RIF-L and RIF-L groups. Histopathological
analysis showed that a typical structure with well-arranged
hepatocyte cords and obvious hepatic sinusoids was observed
in the vehicle group. The liver sections of mice treated with
INH + RIF-L and RIF-L showed a typical arrangement of the
hepatic cords and central veins, except for some nuclear
disappearance and partial vacuoles. Meanwhile, biliary duct
dilatation features can be observed in the INH + RIF-L and
RIF-L groups, marked in Figures 2H,I, respectively. The RIF-

H group showed steatosis, hepatocyte swelling, dissolution,
the disappearance of the nucleus, and increased
intracellular damage (Luo et al., 2020). These results
indicated that RIF induced hepatoxicity in a dose-
dependent manner (Figure 2).

3.2 Changes in Liver and Serum BA Profiles
LC-MS/MS was performed to detect the liver and serum BA
profiles (Figure 3). The results showed that the levels of
serum-free and total BAs were significantly elevated in the
RIF-H group. Serum CA was upregulated in the RIF-H group,
whereas secondary BAs (DCA, LCA, TDCA, and TUDCA)
were downregulated in all the RIF-administered mice.

FIGURE 2 | Effects of RIF on serum biomarkers, liver indexes, and histological parameters (HE staining) (A) ALT (B) AST (C) TBil (D) IBil (E) Liver index (F) Body
weight (G) The vehicle group in HE, ×100 (H) The INH +RIF-L group in HE, ×100 (I) The RIF-L group in HE, ×100 (J) The RIF-H group in HE, ×100 (K) The vehicle group in
HE, ×400 (L) The INH + RIF-L group in HE, ×400 (M) The RIF-L group in HE, ×100 (N) The RIF-H group in HE, ×400. Data are expressed asmean ± SD (n = 6). *p < 0.05,
**p < 0.01 versus the vehicle group; #p < 0.05, ##p < 0.01 versus the RFP-L group.
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The levels of hepatic taurine-conjugated, free, and total BAs
significantly increased in the RIF-L and INH + RIF-L groups. In
addition, RIF significantly increased the levels of hepatic primary

BAs such as CA, CDCA, TCA, and TCDCA in the RIF-L and INH
+ RIF-L groups. However, the levels of all hepatic BAs reduced
considerably in the RIF-H group.

FIGURE 3 | Effects of RIF on the serum and liver BA levels in mice (A) Taurine, free, total BAs in the serum and liver (B) Primary and secondary BAs in the serum (C)
Primary and secondary BAs in the liver (D) The ratio of secondary BAs to primary BAs. Data are expressed as mean ± SD (n = 5–8). *p < 0.05, **p < 0.01 versus the
vehicle group; #p < 0.05, ##p < 0.01 versus the RFP-L group. Green arrows indicate dilatation of central veins, blue arrows indicate hepatocellular hydropic
degeneration, red arrow indicate necrosis, black arrows indicate cholangiectasis.
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RIF, administered alone or in combination with INH,
significantly reduced the ratio of secondary to primary BAs in
the liver and serum (p < 0.01 or 0.05), including DCA/CA, LCA/
CDCA, and LCA + DCA/CDCA + CA (Figure 3).

3.3 Screening Targeted BAs for RIF-Induced
Liver Injury in Mice
Targeted metabolomic analysis was performed to examine the
changes in BA homeostasis using PLS-DA (Figure 4). The

FIGURE 4 | Targeted metabolomics of BA profiles (A) Score plots of PLS-DA for the liver in the vehicle, INH + RIF-L, RIF-L, and RIF-H groups (B) VIP value in the
liver between the vehicle and RIF-H groups (C) Score plots of PLS-DA of the liver between the vehicle and INH + RIF-L groups (D) Score plots of PLS-DA of the liver
between the vehicle and RIF-L groups (E) Score plots of PLS-DA of the liver between the vehicle and RIF-H groups (F) Score plots of PLS-DA of the serum among the
vehicle, INH + RIF-L, RIF-L, and RIF-H groups (G) VIP value for the serum between the vehicle and RIF-H groups (H) Score plots of PLS-DA of the serum between
the vehicle and INH + RIF-L groups (I) Score plots of PLS-DA of the serum between the vehicle and RIF-L groups (J) Score plots of PLS-DA of the serum between the
vehicle and RIF-H groups (K) Heatmap of BAs (VIP ≥1) in the liver (L) Heatmap of serum potential BAs biomarkers. Data are expressed as mean ± SD (n = 5–8).
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analysis revealed a distribution pattern in the four groups of mice.
Scatter plots were clearly separated for the four groups in the liver
(cumulative R2X = 80.2%, cumulative R2Y = 63.7%, cumulative
Q2Y = 55.7%) and the serum BAs (cumulative R2X = 57.1%,
cumulative R2Y = 45.2%, cumulative Q2Y = 37.3%). Targeted
metabolomic analysis of BAs was performed between the vehicle
and other groups. The explanatory ability (R2X) of liver modeling
consisting of the vehicle and INH + RIF-L groups, the vehicle and
RIF-L groups, and the vehicle and RIF-H groups were 74.3, 66.5,
and 89.1%, respectively; the stability of modeling (R2Y) was 94.2,
94.5, and 99.4%, respectively; the predictability of modeling
(Q2Y) was 80.8, 90.8, and 97.5%, respectively. In parallel, in
the serum, R2X of modeling was 59.3, 62.2, and 61.1%; R2Y was
82.3, 80.2, and 86.9%; and Q2Y was 40, 54.1, and 73.2%,
respectively.

BAs with VIP ≥1 were UDCA, TUDCA, CDCA, TCDCA,
TDCA, and DCA in the liver in the PLS-DA modeling consisting
of the vehicle and RIF-H groups, and LCA, TUDCA, DCA,
TDCA, and CA in the parallel serum modeling. The variable
BAs with VIP ≥1 were modeled for re-analysis, and the R2X of the
liver BA model between the vehicle and RIF-H groups improved
to 92.4%. The serum R2X level of the corresponding model was
82.3%. After re-analysis, the screening variables in models with
VIP ≥1 showed notable improvement in the explanatory ability,
maintenance of high stability, and predictability.

Furthermore, the secondary BAs (DCA, LCA, TDCA, and
TUDCA) were positively correlated with hepatic BAs (VIP ≥1),
such as CDCA, TCDCA, DCA, UDCA, TDCA, and TUDCA. The
primary BA (CA) was inversely associated with hepatic BAs (VIP
≥1). Pearson correlation analyses of BAs (CA, DCA, LCA, TDCA,

FIGURE 5 | Screening targeted serum BAs (A) Correlations between serum and liver BAs (VIP ≥1) and between serum BAs and serum biochemical parameters,
were analyzed using Spearman’s correlation analysis (n = 5–8) (B) ROC curve for serum CA, DCA, LCA, TDCA, and TUDCA (C)Comparative analysis of alterations in the
serum BA levels in mice. Data are expressed as mean ± SD (n = 5–8). *p < 0.05, **p < 0.01 versus the vehicle group; #p < 0.05, ##p < 0.01 versus the RFP-L group.
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and TUDCA) and the levels of ALT, AST, TBil, and IBil were
conducted. CA showed a significant positive correlation with the
levels of ALT, AST, TBil, and IBil (the correlation coefficients
were 0.51, 0.44, 0.67, and 0.74, respectively). Levels of DCA, LCA,
TDCA, and TUDCAwere inversely associated with those of ALT,
AST, TBil, and IBil, especially DCA and LCA.Moreover, the ROC
curve analysis was performed for serum DCA, LCA, TDCA,
TUDCA, and CA levels to distinguish abnormal liver injury from
normal healthy cases without any injury (Figure 5). The cut-off
value for sensitivity and specificity were determined among the
different BAs in the ROC curve analysis. Our findings suggest that
all of the above BAs are good indicators of RIF-induced liver
injury with high sensitivity and specificity.

3.4 Effects of RIF on Fxr, Mrps, and UGT1a1
Expression
Relative to the vehicle group, Fxr and Mrp4 messenger
ribonucleic acid (mRNA) expressions increased in the INH +
RIF-L and RIF-L groups, whereas that ofMrp3 was elevated in the
RIF-L group. Fxr, Mrp2, and UGT1a1 mRNA expression levels
notably decreased, whereas those of Mrp3 and Mrp4 increased in
the RIF-H group in a dose-dependent manner (Figure 6).

4 DISCUSSION

DILI is the primary reason for poor drug approval rates and drug
withdrawal; it is also the most common severe adverse reaction to

anti-TB therapy (Yang et al., 2020a). In a 14-days study on RIF
dosing in mice, accumulation of lipids due to upregulation of
peroxisome proliferator-activated receptor-γ was found to be the
primary cause of RIF-induced toxicity at 177 mg/kg (LD10,
equivalent to approximately 20 mg/kg in humans), while
442.5 mg/kg RIF caused another type of unspecified liver
damage (LD25, equivalent to approximately 50 mg/kg in
humans) (Kim et al., 2017). Thus, it is necessary to further
investigate the pathogenesis at the early stages of liver injury
caused by RIF at 442.5 mg/kg. On the other hand, previous
studies indicated that the long-term administration of low-
dose RIF in combination with INH was more likely to
aggravate the occurrence of drug-induced liver injury than
RIF alone (Devarbhavi et al., 2021). The underlying
mechanisms of DILI caused by RIF or INH + RIF via LC-
MS/MS-based targeted metabolomics approach had not been
previously reported. As shown in Figure 2, our findings
suggested that RIF aggravated BA metabolism disorders,
thereby causing liver injury. The leading cause was
intrahepatic cholestasis for RIF-L and INH + RIF-L, but
extrahepatic cholestasis for RIF-H. Moreover, targeted
metabolomic analysis of BAs and screening of biomarkers
for liver injury showed that transportation of BAs, mediated
by Fxr-Mrps, was closely related to RIF-induced liver injury.

Hepatic cholesterol is converted into CA and CDCA in
classical and alternative metabolic pathways and then
amidated with taurine or glycine. The conjugation with
taurine and glycine lowers pKa and increases solubility to
facilitate easier efflux into bile (Fiorucci et al., 2021).

FIGURE 6 | Changes in liver metabolic enzyme (UGT1a1) and Fxr-Mrps levels. Data are expressed as mean ± SD (n = 3). *p < 0.05, **p < 0.01 versus the vehicle
group; #p < 0.05, ##p < 0.01 versus the RIF-L group.
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Monoanionic bile salts are secreted into the bile duct by the bile
salt export pump, and dianionic bile salts; phase II-conjugated
BAs are secreted into bile by Mrp2 (Meier and Stieger, 2002;
Morgan et al., 2013). Under normal conditions, Mrp3 and Mrp4
are expressed in the basolateral membranes (Köck et al., 2014;
Song et al., 2016). Mrp3 mediates the efflux of BAs, except for
glutathione-conjugated BAs, from the basolateral membrane into
the blood, while Mrp4 transports different types of BAs into the
blood and plays a more critical role thanMrp3 (Jetter and Kullak-
Ublick, 2020). Additionally, when primary BAs enter the terminal
ileum through the bile duct, 95% of intestinal BAs are reabsorbed
and transported back to the liver via the hepatic portal vein.
Conjugated BAs are deamidated into free BAs in the intestine by
bile salt hydrolase, expressed by Bacteroides, Lactobacillus,
Bifidobacterium, and Clostridium. This is followed by
transformation into secondary BAs (DCA, LCA, or UDCA)
with 7α dehydrogenase, from Clostridium and Eubacteria,
acting as the catalyst (Fiorucci et al., 2021).

Intrahepatic cholestasis might be observed in the RIF-L and INH
+ RIF-L groups, with significant elevation in the levels of primary
BAs, including CA, CDCA, TCA, and TCDCA (Figure 3).
Consistent with these results, Kim et al. (Kim et al., 2017)
reported that RIF-induced hepatotoxicity did not significantly
increase ALP level, indicating a type of mixed liver injury via
cholestasis and hepatocellular injury. In our study, RIF-induced
liver injury was evaluated bymeasuring ALT, AST, bilirubin changes
and H&E staining according to relevant studies (Lin et al., 2019; Fan
et al., 2019; Yang et al., 2020c; Yan et al., 2021). We did not measure
or quantify CK19 + bile duct mass or ALP levels to analyze
hepatotoxicity caused by biliary duct dilatation, which is a
limitation in the present study. As shown in Figure 2, the
hepatic cord and central vein arrangements were similar in the
vehicle, RIF-L, and INH + RIF-L groups, except for slight nuclear
disappearance and partial vacuoles. The degree of liver tissue injury
in the INH + RIF-L group was slightly higher than that in the RIF-L
group; however, the ALT and AST levels showed no significant
changes. We speculated that these changes in BAs could reflect the
early responses to liver injury better than the changes in liver
enzymes, consistent with the results of a previous study
(Slopianka et al., 2017). In addition, mild liver injury in the INH
+RIF-L and RIF-L groups could be attributed to activation of the Fxr
signaling pathway, which causes elevation of CA, CDCA, TCA, and
TCDCA levels. The upregulation of Mrp4 expression in the INH +
RIF-L group facilitated the BA efflux into the blood, whereas
increased expression of Mrp3 and Mrp4 in the RIF-L group
synergistically promoted the transport of BAs, resulting in lesser
damage to the liver relative to the INH + RIF-L group.

Previous studies report that RIF inhibits the expression of
UGT1a1 and the UGT1a1-related phase II metabolic pathway,
which reduces the excretion of toxic components of RIF through
Mrp2, and increases the risk of DILI (Cao et al., 2017).
Additionally, our results showed that Fxr and Mrps mRNA
expressions were significantly changed, a possible reason why
the reduction in BA levels inhibited Fxr mRNA expression, in
turn reducing those of Mrp2 and UGT1a1 and inducing a
significant compensatory increase in Mrp3 and Mrp4 mRNA
expression (Xu et al., 2005; Vanwijngaerden et al., 2011; Carino

et al., 2020; Jetter and Kullak-Ublick, 2020). CA is a hydrophobic
BA that induces hepatocyte death and cholestatic liver injury in
mice (Wei et al., 2020). Previous studies demonstrate that the CA
levels in patients with end-stage chronic cholestatic liver injury
are substantially elevated (Fischer et al., 1996; Fu et al., 2022).
Slopianka M et al. suggest that serum CA, CDCA, DCA, beta
muricholic acid, and UDCA levels may serve as new DILI
biomarkers (Slopianka et al., 2017). It is also believed that
serum CA, TCA, and GCA can be DILI biomarkers with
higher specificity relative to standard biomarkers, such as ALT
(Luo et al., 2014). On establishing the PLS-DA model of BAs, in
the vehicle and RIF-H groups, we found significant decreases in
the levels of serum biomarkers (DCA, LCA, TDCA, TUDCA)
which were positively correlated with liver BAs (CDCA, TCDCA,
DCA, UDCA, TDCA, and TUDCA). We speculated that the
significant decreases in the levels of secondary BAs and the ratio
of secondary to primary BA levels could be attributed to the
considerable induction of Bacteroides and reduction in
Clostridium and Eubacter abundance (Namasivayam et al.,
2017; Khan et al., 2019). RIF administration suppressed the
biotransformation of 7α dehydrogenase-mediated
dehydroxylation and intestinal bile salt hydrolase production,
thereby reducing the biotransformation of CA and CDCA into
DCA and LCA, respectively (Fiorucci et al., 2021). Interestingly,
significantly elevated serum primary BA (CA) levels negatively
correlated with those of liver BAs. Consistent with previous
research, the elevation of serum CA levels may be related to
increased intrahepatic CA efflux into the blood via Mrp3 and
Mrp4 (Matye et al., 2021). In addition, the reduced secondary BA
generation led to lower levels of CA and other BAs in the RIF-H
group relative to those in the vehicle group. Disruption of liver BA
and blood BA homeostasis results in liver injury. ROC curves for
serum CA, DCA, LCA, TDCA, and TUDCA were highly
sensitive, specific, and strongly correlated with ALT and AST,
suggesting a particular value indicating RIF-induced DILI. Our
study provided further insights into the pathogenesis of RIF-
induced liver injury and a theoretical basis for DILI prevention
and rational clinical application in anti-TB therapy.

In addition, it has been reported that the activation of Fxr can
inhibit the nuclear receptor nuclear factor-κB (NF-κB) signaling
pathway, inhibiting the expression of inflammatory factors tumor
necrosis factor-α, interleukin-1β, and interleukin-6, which play an
anti-inflammatory role (Wang et al., 2008; Ming et al., 2021). Wang
and others (Wang et al., 2008) also described negative crosstalk
between the FXR and NF-κB signaling pathways in the hepatic
inflammatory response. However, Yu et al. found that GW4064 can
activate the Fxr signaling pathway and the NF-κB signaling pathway
in normal human gastric epithelial cells (Yu et al., 2019). Consistent
with these results, Lee et al. (Lee et al., 2011) reported that
downregulation of FXR in pancreatic carcinoma cells decreases
NF-κB activity and consequently inhibits its target genes,
indicating that NF-κB may participate in the regulation of FXR
activity (Gadaleta et al., 2011), involving a positive crosstalk
mechanism. In summary, the mechanisms between Fxr
regulation of BA metabolism, anti-inflammatory and NF-κB
causing inflammatory damage are complex and remain unclear.
Further researches are required to explore and verify in the future.
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5 CONCLUSION

Exposure to different doses of RIF induces various types of liver
injury. RIF-H treatment might lead to extrahepatic cholestasis, with
significantly elevated serum CA levels. In this study, CA, DCA, LCA,
TDCA, and TUDCA were identified as potential biomarkers for the
early detection of RIF-induced liver injury, reflecting initial responses
to and the severity of the liver injury. The hepatic toxicity
mechanisms of RIF may be related to the liver metabolic enzymes
(UGT1a1) and BA transporters, including Mrp2, Mrp3, and Mrp4.
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GLOSSARY

ALT alanine aminotransferase

AST aspartate aminotransferase

ALP alkaline phosphatase

ALT alanine aminotransferase

mRNA messenger ribonucleic acid

RNA ribonucleic acid

RIF rifampicin

BA bile acid

Fxr farnesoid x receptor

Mrp multidrug resistance-associated protein

UGT uridine diphosphate-glucuronosyltransferase

TB Tuberculosis

DILI drug-induced liver injury

CA cholic acid

CDCA chenodeoxycholic acid

DCA deoxycholic acid

LCA lithocholic acid

UDCA ursodeoxycholic acid

HDCA hyodeoxycholic acid

TCA taurocholic acid

TCDCA taurochenodeoxycholic acid

TDCA taurodeoxycholic acid

TLCA taurolithocholic acid

TUDCA tauroursodeoxycholic acid

THDCA taurohyodeoxycholic acid

GCA glycocholic acid

GCDCA glycochenodeoxycholic acid

GDCA glycodeoxycholic acid

GUDCA Glycoursodeoxycholic acid

TBil total bilirubin

IBil indirect bilirubin

LC-MS/MS liquid chromatography-tandem mass spectrometry

IS internal standard; PCR, polymerase chain reaction

PLS-DA partial least squares discriminant analysis

VIP variable importance value

ROC receiver operating characteristic

NF-κB nuclear factor-κB
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