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Abstract: Background: Dilated cardiomyopathy (DCM) is an independent nosographic entity
characterized by left ventricular dilatation and contractile dysfunction leading to heart failure (HF).
The idiopathic form of DCM (iDCM) occurs in the absence of coronaropathy or other known causes
of DCM. Despite being different from other forms of HF for demographic, clinical, and prognostic
features, its current pharmacological treatment does not significantly diverge. Methods: In this study
we performed a Pubmed library search for placebo-controlled clinical investigations and a post-hoc
analysis recruiting iDCM from 1985 to 2016. We searched for second-line pharmacologic treatments to
reconsider drugs for iDCM management and pinpoint pathological mechanisms. Results: We found
33 clinical studies recruiting a total of 3392 patients of various durations and sizes, as well as studies
that tested different drug classes (statins, pentoxifylline, inotropes). A metanalysis was unfeasible,
although a statistical significance for changes upon treatment for molecular results, morphofunctional
parameters, and clinical endpoints was reported. Statins appeared to be beneficial in light of their
pleiotropic effects; inotropes might be tolerated more for longer times in iDCM compared to ischemic
patients. General anti-inflammatory therapies do not significantly improve outcomes. Metabolic and
growth modulation remain appealing fields to be investigated. Conclusions: The evaluation of drug
effectiveness based on direct clinical benefit is an inductive method providing evidence-based insights.
This backward approach sheds light on putative and underestimated pathologic mechanisms and
thus therapeutic targets for iDCM management.
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1. Introduction

Cardiomyopathies are a heterogenous group of diseases directly affecting the myocardial tissue
composing a remarkable percentage of heart failure (HF) cases. Dilated cardiomyopathy (DCM) is
defined by the presence of ventricular chambers dilatation and contractile dysfunction leading to
heart failure (HF) [1]. Thus, rather than a single nosographic entity, DCM can be conceived as a
morpho-functional phenotype representing the end stage of common pathways possibly deriving
from a range of diverse underlying causes (infectious, metabolic, inflammatory, toxic, genetic) [2].
If an etiology is not deemed despite a careful clinical evaluation and instrumental diagnostic work-up,
DCM is considered as idiopathic DCM (iDCM).

Among HF cases, subjects presenting with iDCM are at least 10 years younger than other etiologic
cohorts (ischemic, hypertensive, and valvular) and more critically ill (75% in NYHA class III-IV).
They carry a mortality rate comparable to valvular disease (≈65% at 5 years) that is only inferior to
ischemic cardiomyopathy with reduced ejection fraction [3]. In this context, non-pharmacological
approaches such as electrical device implants [4], mechanical circulatory supports [5,6], surgical
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corrections [7], and stem cell based therapies [8] have found space showing different degrees of
feasibility and efficacy on long-term survival and life-quality improvement. Nevertheless, the current
pharmacological mainstay for iDCM does not significantly differ from the general HF population in
light of the frequent inclusion of such a subgroup in large clinical trials [9].

The recognition of this paradox may require consideration of iDCM as an independent
single entity, as well as the revaluation of the role of drugs that are not employed as first-line
therapy in iDCM. This backward approach allows us to resurrect interest in neglected drugs and,
through an inductive reasoning, to reach a deeper understanding of iDCM abnormalities and
pathophysiological mechanisms.

2. Methods

We searched the Pubmed Library (last access 1 June 2017) for articles published between 1985
and 2016 in English with full text available and reference lists of related papers. Terms employed
in the query were “idiopathic dilated cardiomyopathy” and “clinical trial”, either alone or together
in different combinations. Only post-hoc analysis and placebo-controlled studies were included,
as well as those where the term dilated was mentioned within the text as the phenotype of either a
percentage or the total population study. Exclusion criteria were: pediatric patients, device and/or
stem cell based therapies, pheresis and intracoronary infusions, and acute drug effect evaluation
without follow-up. In addition, in the case of the mentioned primary cause of myocardial dysfunction
and organ dilatation (viral myocarditis, alcohol or drug abuse, etc.) studies were not included, as these
cases can be successfully treated by exposure cessation or targeted therapies.

In light of the diverse classes of drugs, clinical heterogeneity and different methods of data
reporting, a meta-analysis was unfeasible. A meta-analysis was unfeasible for several reasons: different
drug classes, diverse therapeutic mainstays (pre-β blocker and β blocker eras), clinical heterogeneity
(from suboptimal to severely impaired left ventricle ejection fraction), different methods of data
reporting, and the unavailability of single patient data. Nevertheless, statistical significance for
changes upon treatment for molecular results, morphofunctional parameters, and clinical endpoints
were reported for every study. We reported descriptive statistics with charts and graphs with Microsoft
Office Excel for MacOS X.

3. Results

3.1. General Study Characteristics

The query identified 33 studies published within our selected timeframe.
Figure 1 illustrates the distribution of size, design and follow-up length of the analyzed clinical

studies [10–42].
Three studies were not included as we considered only the completed, the largest, and the most

comprehensive dataset of a study to our knowledge in spite of respective ongoing reports.
As shown in Figure 2, among 3392 patients and at least 2527 subjects (74.5%) were classified

as iDCM or non-ischemic DCM. Only 8 studies (24%) recruited more than 100 patients, and 5 (15%)
had a mean follow-up duration longer than 12 months. These characteristics could have negatively
affected the accomplishment of a robust statistical significance and a hard end-point. When reported,
the highest LVEF threshold was 47% for patient recruitment; nevertheless, the average LVEF was
variable among the studies (ranging from 18% to 40%). Possible ischemic etiology was assessed either
by scintigraphic, angiographic, or electrocardiographic methods, functional tests (6 min walking test),
a clinical presentation, or anamnestic evaluation. Table 1 shows the individual study characteristics.
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valvular, hypertensive, peripartum, post viral myocarditis cardiomyopathy, and an undisclosed 
number of iDCM subjects. 
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Table 1. Clinical studies targeted for dilated cardiomyopathy pharmacological management.

Author Year
No. of Patients
iDCM/Total (%)

Study Type
and Design

Active Drug Target Follow-up
(Months)

LVEF %

Threshold Baseline
Average

Statins

Node K [10] 2003 48/48 (100%) Double blind Simvastatin
(10 mg/day) 3 40 34

Laufs U [11] 2004 15/15 (100%) Double blind Cerivastatin
(0.4 mg/day) 5 n/a 40

Bleske BE [12] 2006 15/15 (100%) Crossed Atorvastatin
(80 mg/day) 3 45 25

Goldberger JJ [13] 2006 458/458 (100%) Post hoc
analysis

Any statin at
any dosage 24 35 20

Domanski M [14] 2007 1024/1024 (100%) Post hoc
analysis

Any statin at
any dosage 24 35 25

Liu M [15] 2009 64/64 (100%) Double blind Atorvastatin
(10 mg/day) 3 40 35

Bielecka-Dabrowa
A [16] 2013 68/68 (100%) Open Atorvastatin (10 or

20 mg/day) 60 n/a 32

Broch K [17] 2014 71 unspecified Double blind Rosuvastatin
(10 mg/day) 6 40 36

Pentoxifylline

Sliwa K [18] 1998 28/28 (100%) Double blind Pentoxifylline
(400 mg/tid) 6 40 22

Skudicky D [19] 2001 39/39 (100%) Double blind Pentoxifylline
(400 mg/tid) 6 40 24

Sliwa K [20] 2002 18/18 (100%) Double blind Pentoxifylline
(400 mg/tid) 1 40 16

Bahrmann P [21] 2004 17/47 (36.2%) Double blind Pentoxifylline
(600 mg/bid) 6 40 29

Inotropes

Uretsky BF [22] 1990 102 unspecified Double blind Enoximone (100 or
150 mg/tid) 4 n/a 22

Feldman AM [23] 1991 38/76 (50%) Double blind Vesnarinone
(60 mg/day) 3 n/a 24

Katz SD [24] 1992 14/49 (28.6%) Double blind Pimobendan (5 or
10 mg/day) 3 n/a 19

Cowley AJ [25] 1994 26/151 (16.6%) Double blind Enoximone (50 or
100 mg/tid) 12 n/a n/a

Growth Hormone (GH)

Osterziel KJ [26] 1998 50/50 (100%) Double blind rhGH subq (2 IU/qd) 3 45 26

Isgaard J [27] 1998 13/22 (59.1%) Double blind rhGH subq (to 4 IU/qd) 3 45 30

Fazio S [28] 2007 13/22 (59.1%) Double blind rhGH subq (to
4 IU/qod) 3 40 32

Trimetazidine

Tuunanen H [29] 2008 19/19 (100%) Single blind Trimetazidine
(35 mg/bid) 3 47 31

Zhao P [30] 2013 80/80 (100%) Double blind Trimetazidine
(20 mg/tid) 6 40 34

Polyunsaturated Fatty Acids (PUFAs)

Nodari S [31] 2011 133/133 (100%) Double blind EPA/DHA850 mg/bid 12 45 36

Chrysohoou C [32] 2016 205 unspecified Open PUFA 1000 mg/day 6 40 28

CoQ10

Watson PS [33] 1999 23/30 (76.7%) Cross CoQ10 (33 mg/tid) 3 35 26

Keogh A [34] 2003 39 unspecified Double blind CoQ10 (150 mg/day) 3 40 n/a

Herbal Medications

Bharani A [35] 1995 10/12 (83.3%) Cross Terminalia Arjuna
(500 mg/tid) 0.5 n/a 30

Zeng XH [36] 2003 62/156 (39.8%) Double blind Berberine (up to
0.5 g/qid) 2 n/a 22
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Table 1. Cont.

Author Year
No. of Patients
iDCM/Total (%)

Study Type
and Design

Active Drug Target Follow-up
(Months)

LVEF %

Threshold Baseline
Average

L-carnitine

Rizos I [37] 2000 80/80 (100%) Open L-carnitine (2 g/day) 34 n/a 27

Levotyroxine (T4)

Moruzzi P [38] 1996 20/20 (100%) n/a Levotyroxine
(100 ug/day) 3 40 30

Ivabradine

Abdel-Salam Z [39] 2015 43/43 (100%) Double blind Ivabradine (2.5 mg/tid) 3 40 34

Thalidomide

Gullestad L [40] 2005 17/56 (30.4%) Double blind Thalidomide
(200 mg/qd) 3 40 24

Steroids

Parrillo JE [41] 1989 42/102 (41.2%) Open
Prednisone
(60 mg/day) for
3 months

15 35 18

Perhexelline

Beadle RM [42] 2015 50/50 (100%) Double blind Perhexelline
(200 mg/day) 2 40 27

3.2. Overall Findings

Heatmap in Figure 3 offers a general overview of the overall findings among selected studies.
The drug effect on biomarkers revealed a general positive trend of inflammation resolution for

several classes (statins, pentoxifylline, PUFAs): TNFα plasma concentration showed up to a threefold
decrease with treatment [18]. In contrast, thalidomide increased its concentration. NT-proBNP levels
decreased in the aforementioned drug classes too [10,12,16,17,30,32].

Echocardiographic assessment revealed a substantial or even significant benefit for LVEF in
the verum cohorts with the exception of perhexelline and corticosteroids. However, data were
uncomparable among groups in light of the various available pharmacologic treatments at different
timepoints (pre-β-blocker and β-blocker era). Notably, LVEF improvement was more frequently
associated with LV end-systolic dimension reductions rather than the end-diastolic, suggesting a more
distinct role on contractility instead of sole remodeling. Functional improvement (either assessed by
a 6 min-walking test or an NYHA class) was detected in the majority of the studies, particularly in
medications related to energetics improvement (CoQ10).

Thirteen studies (39%) reported results on hard clinical end-points, such as hospitalization rates
and cardiovascular or overall mortalities. This low response rate reflects a series of factors: a short mean
follow-up, low prescription prevalence, drug costs, and the heterogenous clinical status of patients
recruited in different trials. Patients treated with statins had significantly higher survival rates (≈75%
vs. 40% at 5-year follow-up p < 0.01) and the largest study analyzed proved a significant protection
despite a lack of ischemic etiology (Adjusted CV Mortality HR = 0.42, 95% 0.18–0.95 p < 0.04). Steroids
and thalidomide showed a reduced, yet non-significant, survival rate. Not surprisingly, long PDEi
treatments were associated with higher mortality rates. Of note, the benefit (survival rate) occurring
at the earliest timepoint (2 months) was found for treatment with the natural plant extract Berberine
(91% vs. 86% p < 0.01).
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(6MWT) 6-min walking test, (LVEF) left ventricle ejection fraction, (LVEDDV) left ventricle end-diastolic
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4. Discussion

Positive and negative results collected from different clinical trials allowed us to reevaluate
current treatments and highlight specific molecular pathways in the management of HF. This specular
approach, in opposition to the traditional drug development pipeline, provides evidence-based insights
and immediate interpretation.

As postulated by Chien nearly 20 years ago, dilated cardiomyopathy relies on four biological
components which are intimately linked to each other (biomechanical stimuli, cytoskeletal signaling,
myocyte survival, and calcium cycling) [43]. Since a remarkable body of literature on iDCM has grown
in recent years, we can revisit such a biological equation.

4.1. Not All Statins Were Created Equal

Being commonly prescribed, studies on statins provide the most robust dataset. Statins differ
among each other for several pharmacokinetics criteria, and lipophilicity is a critical determinant.
Lipophilic statins (Atorvastin, Simvastatin, i.e.,) can passively diffuse the membrane of extrahepatic
cells. This ability supports the findings by Tsutamoto who demonstrated a superior clinical
improvement in DCM patients with Atorvastatin compared to a hydrophilic one (Rosuvastatin) [44].
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Statins, along with their well-known lipid-lowering effect, have pleiotropic effects due to the
inhibition of 3-hydroxy-3methyl-glutaryl-coenzyme A (HMG-CoA) reductase. Such blockade decreases
mevalonate synthesis and, ultimately, farnesylpyrophosphate biosynthesis, a critical biochemical
crossroad shared by G-protein Rho and its numerous related subfamily members (Rac, ROCK, Ras),
as described by Oesterle [45]. Rho downstream effectors lead to cell proliferation, differentiation,
and cytoskeletal changes directly affecting cell geometry, integrity, adhesion, and stability [46–48].
In addition, statins can relieve inflammatory signaling by modulating Rac1 and peroxisome proliferator
activated receptors (PPARs), which in turn decrease ROS and NADPH oxidase activity and TNF-α
concentrations respectively [49,50].

4.2. Inflammation Resolution: Is It Worth?

As anticipated, systemic, and local inflammation have been viewed as pivotal components of
myocardial dysfunction. In the past a plethora of putative inflammatory mediators has been evaluated.
Among them, TNFα is recognized as a major effector of myocardial damage and considered as a
reliable HF biomarker for a number of reasons [51–56]. In addition to the reported increase in tissue
and plasma TNFα concentration in patients with HF and iDCM, cardiac-specific transgenic mice
overexpressing TNFα recapitulated the human pathophysiology of DCM with four-chamber dilatation,
myocyte hypertrophy, increased fibrosis, diminished β-adrenergic responsiveness, and premature
death [57]. These findings composed a solid biological rationale to target TNFα and were sufficient
and appropriate to justify the clinical sperimentation of a monoclonal antibody or a decoy receptor
(infliximab and etanercept). Nevertheless, the complete biological abrogation of this cytokine did not
lead to any significant clinical benefit, suggesting additional underestimated compensatory effects by
TNFα and a more complex biological role in HF pathophysiology [58–60].

Antinflammatory therapies such as thalidomide have had minimal clinical application in iDCM
management and steroideal drugs are advisable only to resolve viral driven damage in the setting
of positive myocardial lymphocytic infilitration or HLA hyperexpression [61]. In contrast, a xantine
derivative (namely pentoxifylline) was employed in four different trials for a total of 151 randomized
iDCM subjects for antagonizing TNFα. Results were promising for reducing apoptotic stimuli and
inflammatory biomarkers [20], translating into a clinical improvement, but were still insufficient to
grant its use in the general DCM population, although worthy for starting a larger clinical trial. These
outcomes cannot be simply linked to the inflammatory resolution; in fact, pentoxifyilline has a positive
inotropic and vasodilatatory activity above the other effects. This aspect is not marginal, especially in
the DCM setting.

4.3. Inotropism Manipulation: A Double-Edged Knife

Inotropic agents are engulfed together in light of their positive effect on myocardial contractility.
Their various mechanisms of action are extensively described elsewhere [62,63]. In the race
for HF management, such agents have gained momentum in the past, despite not meeting the
expectations they generated during their introduction. Among them, the “calcium mobilizers” class
is a heterogenous group of drugs that modulate calcium dynamics through different mechanisms
with degrees of specificity for molecular targets ultimately leading to contractile improvements [64].
Over the last three decades, several of these drugs have been developed, but only few have found a
clinical application, especially in the setting of acute HF. In fact, an intracellular calcium overload is
detrimental for functional and survival reasons exceeding the advantages on the contractile apparatus.
This double-edged knife effect applies to the decompensated heart too where calcium overload
cannot be handled properly by the calcium handling proteins [65–67]. In the setting of ischemic
cardiomyopathy, an insufficient blood supply does not allow a proper ATP availability to sustain
ATP-dependent calcium handling pumps, justifying the use of this inotropic mean in the unlikely
case of first-line therapies’ unresponsiveness (diuretics). Interestingly, Dec reported the significant
difference between the idiopathic dilated phenotype and ischemic etiology in patients receiving oral
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enoximone: only 5% of ischemic patients were alive at 18 months follow-up versus 66% of DCM [68].
This is a dramatic divergence between the DCM subgroup and the general HF population in terms
of clinical long-term endpoint. It thus appears as a valid reason to reconsider cardiac inotropes for
medium-termed treatments and for this specific subgroup, in spite of their general contemporary
minimal employment.

4.4. Mitochondrion: A Hijacked Powerhouse

In this scenario, cardiac energetics must be also considered, as both contraction and relaxation
heavily rely on ATP availability. It is now broadly accepted that mitochondria are involved in
a wide range of diseases, including HF [69]. Of note, among nearly 40 target genes associated
with DCM [70], TAZ (tafazzin) is enlisted too and it encodes for a component of the mitochondrial
inner membrane [71]. The myocardial metabolism of iDCM is severely impaired, with energetic
starvation, and is characterized both at transcriptional and functional levels by free fatty acid
(FFA) metabolism reduction and glucose metabolism induction, whose use is energetically more
efficient [72,73]. Interestingly, insulin resistance is a relatively common comorbidity in iDCM patients
and it might suggest an interference in glucose uptake too [74]. Whether HF precedes metabolic
alterations or vice versa remains a “chicken or egg” dilemma. Starting from this paradox, a series
of clinical trials was started and here reported. Coenzyme Q10 and L-carnitine represent two valid
dietary supplementations that could have a therapeutic role by enhancing mitochondrial activity either
by favoring the electron transport chain between complex II and III or increasing FFA as a substrate,
respectively. The former has been extensively described in a recent review [75], and in our review
only the NYHA functional class appeared to significantly improve. Instead, L-carnitine was found
to significantly decrease the overall mortality in iDCM patients (3% vs. 18% at 3 year follow-up).
Ironically, trimetazidine, whose mechanism of action is FFA oxidation blockade, was found to be
beneficial on cardiac function and clinical symptoms in shorter observation times too. Perhexelline,
which is conceptually opposite to L-carnitine, improved the NYHA class too. All in all, such findings
should be confirmed and implemented with future, larger, and longer studies. Nevertheless, reported
trivial findings from conceptually different rationales still question whether these metabolic alterations
are putative pathologic mechanisms to be tackled or compensatory ones to be enhanced.

4.5. Growth Hormone: New Bricks for a Crumbling Heart?

Finally, a component of DCM progression included in the above mentioned equation is myocyte
apoptosis. It is widely accepted that cell loss is a critical determinant of HF [76,77]. Over time,
a net depletion of the myocyte count contributes to the cardiac dysfunction generally observed
with aging or in certain cardiomyopathies. As reported by Pluess, iDCM hearts show high
variability in cell size, as well as prominent fibrous deposition affecting the 3D structure leading
to abnormal cell-to-cell contact. Such architectural changes constitute a proarrhythmogenic anatomical
substrate and bring the cell unit to a sub-optimal mechanical coordination with neighbouring
cells [78]. Independently from the magnitude of these events, growth hormone (GH) represents
a valid and applealing option to counteract such defects by suppressing apoptosis and favoring
cell proliferation [79]. In 1996, a non-placebo-controlled clinical study demonstrated remarkable
improvements in systolic and diastolic function (LVEF increase, LV end diastolic and systolic dimension
reduction, E/A ratio improvement) over a 3 month treatment [80]. These results were not met by
subsequent clinical placebo-controlled studies, leaving many unanswered questions concerning its use
as drug cost-effectiveness, the administration method (continuous vs. pulsitile), treatment duration
(>6 months), and possible colonic neoplastic evolution [81]. If GH is recommendable in case of
deficiency [82], its use in iDCM remains a matter or investigation and evaluation in light, also, of a small
clinical study with positive results testing the cardiovascular effect of octreotide [83], a somatostatin
analog [84].
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4.6. A Challenging Equation

Cell stability, inflammatory status, metabolic depletion, mechanical modulation, calcium
dynamics, and cell survival compose a tangled interplay of factors intimately linked with each other
in the determinism of iDCM development and progression. Moreover, as anticipated, several drugs
reported in this study have pleiotropic and overlapping effects over a series of molecular and cell
targets. In order to update this equation, Figure 4 was conceived to better summarize the results that
emerged from the present work and to help future researchers and physicians to solve this jigsaw.
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5. Conclusions

In conclusion, the present study highlights putative therapeutic targets that can be employed
for the treatment of iDCM based on previous clinical trials. This goal can be reached through several
efforts. As adviced by Bierer, data authorship policies can be a future incentive for data sharing by
promoting the generation of a larger database merging past clinical studies’ results [85]. In addition,
future studies are encouraged to be multricentric and multimodal in light of the specific phenotype of
iDCM and the urge to assess drug effectiveness at cell, tissue, and whole organ levels. Furthermore,
in the era of precision medicine, the use of new algorithms based on novel prognostic biomarkers
will help clinicians to tailor the most suitable therapy for such a heterogenous population. Lastly,
the identification of molecular targets can lead to drug repurposing and the development of new
ones in the near future. By adopting these solutions, medicine will replenish its pharmacological
armamentarium in the war against heart failure [86].

6. Limitations

Limitations of the present study are as follows. The search criteria are stringent in order to be
specific for the idiopathic DCM phenotype, and therefore a number of studies were not included
because of heterogenous nomenclature. The use of non-ischemic cardiomyopathy wording allows
for the exclusion of coronaropathies, but does not distinguish between other etiologies (hypertensive,
valvular, inflammatory, toxic, and idiopathic). The pediatric population was not included in the current
study as this peculiar subgroup is generally separated from the adult population of clinical trials.
The report of statistical significance does not provide any information regarding the magnitude of
benefit or the damage derived from treatment.
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