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Abstract
A well-known result in statistics is that a linear combination of two-point forecasts has 
a smaller Mean Square Error (MSE) than the two competing forecasts themselves (Bates 
and Granger in J Oper Res Soc 20(4):451–468, 1969). The only case in which no improve-
ments are possible is when one of the single forecasts is already the optimal one in terms 
of MSE. The kinds of combination methods are various, ranging from the simple average 
(SA) to more robust methods such as the one based on median or Trimmed Average (TA) 
or Least Absolute Deviations  or optimization techniques (Stock and Watson in J Fore-
cast 23(6):405–430, 2004). Standard regression-based combination approaches may fail to 
get a realistic result if the forecasts show high collinearity in several situations or the data 
distribution is not Gaussian. Therefore, we propose a forecast combination method based 
on Lp-norm estimators. These estimators are based on the Generalized Error Distribution, 
which is a generalization of the Gaussian distribution, and they can be used to solve the 
cases of multicollinearity and non-Gaussianity. In order to demonstrate the potential of Lp-
norms, we conducted a simulated and an empirical study, comparing its performance with 
other standard-regression combination approaches. We carried out the simulation study 
with different values of the autoregressive parameter, by alternating heteroskedasticity and 
homoskedasticity. On the other hand, the real data application is based on the daily Bitfinex 
historical series of bitcoins (2014–2020) and the 25 historical series relating to companies 
included in the Dow Jonson, were subsequently considered. We showed that, by combin-
ing different GARCH and the ARIMA models, assuming both Gaussian and non-Gaussian 
distributions, the Lp-norm scheme improves the forecasting accuracy with respect to other 
regression-based combination procedures.
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1  Introduction

Model instabilities are deeply rooted in real-life forecasting challenges because models 
are uncertain and mutable. Moreover, in statistics, the Data Generating Process (DGP), 
refers to the true process which generates the data and it is different from a model of 
the data. Indeed, statistical models could be either mispecified or incomplete [53].

This is a fact that is widely accepted in theory, but less widely applied in practice in 
the field of statistics, in which researchers often still hang on to the conceptual error of 
assuming one true data-generating process and focussing too much on model selection 
in order to find the one true model.

In this respect, Hansen [26] takes note of this and related misconceptions of econo-
metric forecasting practice in his essay on the challenges for statistical model selection.

An obvious alternative to choosing a single ‘best’ forecasting method is to combine 
forecasts from different models. The combination could be achieved in different ways. One 
of the most common is by regression approaches based on Ordinary Least Squares (OLS) 
estimation technique. Below, we propose an alternative and more general approach for 
combining models and/or forecasts, based on Lp-norm estimators [40].

In this paper we propose to study the effectiveness of Lp-norm estimators in com-
bining volatility forecast. We consider the volatility of stock market data because they 
empirically show non-Gaussian distributions. Indeed the Lp-norm should work better 
than OLS (as it is) in presence of non-Gaussian forecasts. The GARCH distributions 
play an important role in the volatility measurement and in the value-at-risks topics 
[10].

The main motive of this paper is to measure the performance of GARCH tech-
niques for forecasting combination by using different distribution model. The different 
GARCH distribution models present in the paper are the t-student, the Gaussian, the 
GED jointly considered with some ARMA models. We try to show the advantages of 
GED GARCH over the classical methods, for example, the t-student GARCH and the 
Gaussian GARCH.

The paper is, then, structured as follows. In the next section, we will present an his-
torical survey about the literature of forecast combination and we will glance at some 
of the main methods of combination since its introduction. We will also briefly intro-
duce our method. In Sect. 3, we introduce the main recent methods for better achieve 
the forecast combination and we show the advantages and the disadvantages of the dif-
ferent combination approaches.

In Sect. 4, we bring up for discussion the Generalized Error Distributions (G.E.D.) 
explaining in detail our approach based on Lp-norm estimators by proposing a new 
algorithm to combine the forecasts. Paragraph 4 shows, instead some comparative 
Montecarlo experiments where the overperformance of the proposed methodology is 
presented in the situations of multicollinearity and non-Gaussianity by means of a sim-
ulation study considering heteroskedastic and homoskedastic innovations.

The real data application is proposed, now, in Sect. 6, in which we attempt to deter-
mine if the results obtained in the simulation study are possible also in reality. In the 
last paragraph, some final comments and observations are offered.

Finally, in the appendix A and B we show the commented R studio scripts that we 
built and used to estimate the forecast and the combination in the simulated and the 
empirical study, whilst in appendix C some graphical findings of the simulation study 
are reported.
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2 � The main approaches to combine forecast in models: a review

The common way of choosing a forecasting model is to consider the one which allows to 
obtain the most accurate forecasts, discarding the others. This method has been re-evalu-
ated since the introduction of forecast combinations, which integrate the information gen-
erated by multiple forecasts and using it to get a more accurate model. Combining forecasts 
is a useful practice as the excluded models may contain important information that is not 
present in the individual forecasts.

When the forecasts diverge, due to the assumptions made in the forecasting model (lin-
earity, type of distribution, the variability of the parameters, etc.), the decision-maker who 
wants a single forecast faces a thorny problem of choice. Forecast combination constitutes 
a solution to this problem and refines the forecast. This is still true almost 30 years later 
and it is called the “forecast combination puzzle”, a term coined by Stock and Watson [47]. 
Hibon and Evgeniou [29] verified that the linear combination, using the individually worst 
forecasts, still leads to better results than individual ones. Hence, choosing an individual 
method out of a set of available methods is riskier than choosing a combination.

First of all, let’ s review the main forecast combination methodologies introduced since 
the seminal paper by Bates and Granger [7]. In the last few decades, several methodolo-
gies have been put forward both in the theoretical and empirical literature. Andrawis et al. 
[1] even suggest using hierarchical forecast combinations, i.e. combining joining forecasts. 
Our purpose is not to investigate the best combination method by comparing all the ones 
proposed in the literature. A lot depends on the specifics of the data available and the dif-
ferences in modelling approaches. Rather, we provide a new way of combining within 
regression framework which works well in several real-life situations as non-Gaussian fore-
cast density or collinear forecasts.

The Bayesian approach was suggested by Min and Zellner [37] which consider vari-
ous time series models, that produce forecasts of production growth rates for 18 countries 
over a 13-year period to combine models and their forecasts. Optimal Bayesian combina-
tion procedures consider the use of rear dimensions for alternative models and are also 
used in predictive testing to decide whether or not to combine alternative model forecasts. 
Applying Bayesian pooling techniques it turns out that it is not always optimal to combine 
forecasts.

A well-known result is that a more accurate forecast can be obtained by making a lin-
ear combination of two-point predictions. The combination allows to improve the forecast, 
which will have a smaller mean square error (MSE) than the two competing forecasts. 
Therefore, by combining multiple forecasts, decision-making becomes simpler. The only 
case in which no improvements are possible is when one of the single forecasts is already 
the optimal one in terms of MSE [30].

A simple procedure to combine forecasts is to take an arithmetic average of the single 
forecasts that serves as a useful benchmark. Given a forecast ŷi provided by the i-th fore-
casting model (or from the i-th expert forecaster), the well-known results is that the Mean 
Square Error of the combination of all ŷi  (e.g. 

−
y ) is lower than the one of ŷi itself:

In a paper from 1963, Barnard showed an empirical example in which an arithmetic 
average of two forecasts had a smaller Mean Square Error (MSE) than either of the indi-
vidual forecasts. If the component forecasts are not biased, combining with mean is a good 
method. Clemen [15] summarized the literature on forecast combinations and concluded 

MSE�yi
> MSE−

y
∀i
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that combining forecasts of various economic and financial variables led to increased fore-
cast accuracy. He states that using a combination of forecasts is equivalent to admitting that 
the meteorologist is unable to construct a specified model and trying to combine increas-
ingly elaborate models is incorrect. Similar conclusions were reached by Aksu and Gunter 
[4] based on macroeconomic variables and firm‐specific series, by Makridakis and Hibon 
[36] based on the so‐called M3 competition, by Stock and Watson [46, 47] across various 
economic and financial variables, by Swanson and Zeng [48] using US macroeconomic 
variables [2, 14, 15] deemed that this equal weighting of component forecasts is often the 
best strategy.

According to Armstrong [2] it is necessary to combine predictions from essentially dif-
ferent methods that are derived from different sources. In particular, in order to improve the 
accuracy of forecasts, it has been suggested using formal procedures to combine forecasts.

Another simple and appealing combination method is using the median of the compo-
nent forecasts. The median is insensitive to outliers, which can be relevant for some appli-
cation. Palm and Zellner [41], Ruiz and Nieto [43] Hendry and Clements [28] suggested 
that simply averaging may not be a suitable combination method when some of the compo-
nent forecasts are biased.

Jose and Winkler [33] proposed the usage of the trimmed mean approach instead of a 
simple average or median combination. Sometimes, the simpler methods, such as median 
[42], can generate satisfactory results compared to more complex methods.

It might be better to combine the forecasts using more sophisticated rules: one of them 
is by Least Squares regression. The idea to use regression for combining forecasts was put 
forward by Crane and Crotty [16] and successfully driven to the forefront by Granger and 
Ramanathan [25]. Using this approach, the combined forecast is a linear function of the 
individual forecasts where the weights are determined using a regression of the individual 
forecasts on the target itself:

An advantage of the OLS forecast combinations is that the combined forecast is unbi-
ased, even if one of the individual forecasts is biased. A disadvantage is that the method 
does not restrict the combination weights (they do not add up to one and can be negative). 
In this respect, the Constrained Least Squares (CLS) regression, could be used to get the 
weights of the forecast, determined by minimizing the squared errors under the constraint 
of non-negativity, sum one and intercept equal to zero. This method, due to the absence of 
the intercept, might lead to a distorted forecast if one of the individual forecasts is biased. 
As a consequence, CLS does not always achieve the best level of accuracy in terms of 
MSE.

While the OLS regression estimates the coefficients by minimizing the sum of squared 
errors, we may want to estimate those coefficients differently [18, 27], minimizing a dif-
ferent loss function, for example, the absolute sum of squares (LAD). The Least Absolute 
Deviation method has two main advantages: first of all, this method has a lower sensitivity 
to outliers. Secondly, when predictors are highly correlated, it performs better. This sug-
gests that LAD combination should be preferred to OLS in these situations [52].

Dielman  [17] proposed a Monte Carlo simulation to evaluate predictions by compar-
ing the method of the minimum absolute value with the regression equations estimated 
by the least squares method. In the presence of outliers, the absolute minimum value fore-
casts were higher and performed better than forecasts obtained by the least squares method. 

(1)y = � +

p∑

i=1

wifi + �,
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These results underline the importance of using absolute regression of the minimum value 
(or some other robust regression method) in the presence of outliers.

However, we could potentially still do better by providing a more general framework 
for combining forecasts through the Lp-norm estimators. As we will see more in detail, 
Lp-norm is generic, whereas LAD and Least Squares are special cases. When forecasts 
are non- Gaussian (e.g. volatility forecasts in financial markets) or collinear, OLS is no 
longer the best way of estimating quantities since it becomes less efficient as its variance 
increases. Another noticeable limitation occurs when the density function of the forecasts 
is not Gaussian distributed since by using a different estimator we gain in efficiency.

In this paper we propose a forecast combination method based on Lp-norm estimator, 
where the minimization of residuals is done according to estimated data kurtosis and the 
selection of more relevant forecast is achieved through some procedures proposed in litera-
ture. Among them the Lp-med combined method is a recent proposal to estimate p [23].

If the errors follow a Gaussian distribution, the forecast obtained with a linear combina-
tion of forecasts using Lp-norm parameters (L2 norm in this case) gives satisfying results, 
the mean square error is slightly higher than the MSE using the OLS parameters but lower 
than the other methods (constrained least squares, least absolute deviation, generalized 
least squares, etc.).

Lp-norm estimators are useful generalizations of Ordinary Least Squares estimators, 
based on the Generalized Error Distribution (GED) [21].

Below, we introduce a table in which we provide a summary of the state of the art about 
the best-known methods of forecast combination and the main authors to whom they refer 
(Table 1).

3 � Combine or not combine: recent contributions

The search for new forecast combination methods is still very active. Even in recent years 
new methods are experienced and older methods are tested such as the approach of forecast 
combination method for the M4-competition given by Jaganathan and Prakash [31].

Atiya [3] has provided a brief analysis of the reasons why forecast combinations are 
successful. There are many other very insightful works in the literature on this important 
topic that considers several different aspects, such as the effects of serial correlation, heter-
oskedasticity, structural breaks, estimation error in the combination weights.

Xiao et al. [54] stated that the combination models demonstrate better performance than 
the individual forecast models do. The most common procedure for combining forecasts is 
to assign a weight to each model based on its past forecast performance and then aggregate 
the related weighted forecasts. At the same time, there are other forecasting models, for 
example, methodologies that are based on the use of intelligent optimization algorithms 
to select or optimize the parameters of statistical models in the training phase. Another 
class of combined models is that which involves processing the time series by breaking it 
down into more stationary and regular sub-series that are easier to identify and deal with, 
which aim is to apply an adequate forecast model for each decomposed series and finally, 
to aggregate the related forecasts. Finally, all those models, which we will call hybrid mod-
els, are also combined models, in which the forecast of the historical series is carried out, 
also taking into account the forecast of the residuals resulting from the main model applied 
to the original series.
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Wang et  al. [51] in their study, forecast the realized volatility of the S&P 500 index 
using the heterogeneous autoregressive model for realized volatility (HAR-RV) and its var-
ious extensions.

Models under consideration take into account the time-varying property of the mod-
els’ parameters and the volatility of realized volatility. A dynamic model averaging (DMA) 
approach is used to combine the forecasts of the individual models. Empirical results of 
their paper suggest that DMA can generate more accurate forecasts than individual model 
in both statistical and economic senses. Models that use time-varying parameters have 
greater forecasting accuracy than models that use the constant coefficients.

Zhang et  al. [56], to improve the forecasting accuracy, proposed a new hybrid model 
based on improved empirical mode decomposition (IEMD), autoregressive integrated 
moving average (ARIMA) and wavelet neural network (WNN) optimized by fruit fly opti-
mization algorithm (FOA) is proposed and compared with some other models. Zhang et al. 
[57] employed two prevailing shrinkage methods, the elastic net and lasso in the prediction 
of oil price. Their findings suggests that the elastic net and lasso exhibit significantly better 
out-of-sample forecasting performance than not only the individual HAR-RV-type models 
but also the combinations approaches. The elastic net and lasso also exhibit higher direc-
tional accuracy and yield sizeable economic gains for asset allocation. Liang et  al. [34] 
investigated which uncertainty indices have predictability for oil price by employing the 
standard predictive regression framework, various model combination and two prevailing 
model shrinkage methods (Elastic net and Lasso). The authors analyzing the two model 
shrinkage methods, namely Elastic net and Lasso, outperform other individual and combi-
nation models in forecasting the crude oil market volatilities.

Forecast combinations, while appealing in theory, are at a disadvantage over a single 
forecast model because they introduce parameter estimation error in cases where the com-
bination weights need to be estimated. Finite sample errors in the estimates of the com-
bination weights can lead to poor performance of combination schemes that dominate in 
large samples. Is better combine or not to combine the forecasts or rather simply attempt 
to identify the single best forecasting model? When the information sets are unobserved it 
is often justified to combine forecasts provided that the private (non-overlapping) parts of 
the information sets are sufficiently important. When forecast users do have access to the 
full information set used to construct the individual forecasts combinations may be less 
justified. Finding a ‘best’ model may of course be rather difficult if the space of models 
included in the search is high dimensional and the time-series short [50].

In situations where the data is not very informative and it is not possible to identify 
a single dominant model, it makes sense to combine forecasts. The Schwarz Information 
Criteria (SIC) can be used as a great alternative for choosing which subset of predictions 
to combine. Swanson and Zeng [48] observed that combination forecasts from a simple 
averaging approach MSE‐dominate SIC combination forecasts less than 25% of the time 
in most cases, while other ‘standard’ combination approaches fare even worse. Estimation 
errors in the combination weights tend to be particularly large due to difficulties in pre-
cisely estimating the covariance matrix. One answer to this problem is to simply ignore 
correlations across forecast errors. Stock and Watson [45] propose a broader set of combi-
nation weights that also ignore correlations between forecast errors but base the combina-
tion weights on the models’ relative MSE performance raised to various powers.

In conclusion, although the results got in the previous paragraphs show always that the 
forecasts combination has a MSE smaller than the values of the single forecasts, it is neces-
sary to properly evaluate in which situations it is convenient to combine the single predic-
tions and in which situations it is not convenient (Table 2).
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4 � The proposed methodology

The Generalized Error Distribution (GED), also known as Exponential Power Function (EPF), 
is a family of probability functions proposed by Subbotin [49] and Mineo [38]  that generalize 
the Gaussian distribution. An asymmetrical version of the Gaussian distribution has also been 
proposed in the literature,seen among others [10, 11].

The GED constitutes a valid generalization of the Gaussian distribution that is usually 
assumed, even though, depending on the available data, it is not always fully supportable.

It constitutes a parametric alternative to previous robust methods [39].
The density function of the GED is:

where �p ∈ (−∞,+∞) is the location parameter, �p is the scale parameter, that is posi-
tive with �p ∈ (0,+∞) and the shape parameter p is a measure of fatness of tails where 
p ∈ (0,+∞) and x ∈ ℝ [58].

Considering the Pearson kurtosis index �2 , we distinguish:

•	 0 < p  < 1: double exponential distribution, �2 > 6;
•	 1 < p  < 2: leptokurtic distribution, 3 < �2< 6;
•	 p > 2: platikurtic distribution, 1.8 <  �2 < 3.
	   For specific values of p, we have:
•	 the Laplace distribution ( p = 1, �2 = 6);
•	 the Gaussian distribution ( p = 2, �2 = 3);
•	 the Uniform distribution ( p —>  ∞, �2 = 1.8).

Considering a sample of n observed data ( xi , yi ), a general linear regression model is 
(Fig. 1):

With g(·) linear function.
Lp-norm estimators are useful generalizations of ordinary least squares estimators, 

obtained by replacing the exponent 2 with a general exponent p ; similarly, we obtain the LAD 
(Least Absolute Deviation) with p = 1. Therefore, they minimize the sum of the p-th power of 
the absolute deviations of the observed points from the regression function [23]:

where x = yi ; �p = g(xi, �)

Under the regular assumptions, the log-likelihood associated with the sample is given by:
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The result of the last equation shows that maximum likelihood estimators (we consid-
ered a model with m parameters) are equivalent to the Lp-norm estimators if the value of p 
is known. If p is unknown, we have the problem to estimate it.

The GED assumption has been applied with success also in forecasting literature. A 
clear example is represented by the GED-GARCH model for predicting volatility [32].

Indeed, since the introduction of Generalized Autoregressive Conditional Heteroskedas-
tic (GARCH) model of Bollerslev [9], thousands of articles have been published apply-
ing the model on financial series. Because of many observed phenomena do not exhibit 
Gaussian law, therefore we extend the classical econometric models to the case with non-
Gaussian distribution. As the extension we propose to use the Generalized Error Distribu-
tion that it has often revealed itself one of the most adequate to examined time series in the 
literature.

In this paper we illustrate the main properties of the considered models and present test-
ing and estimation procedures. We illustrate the theoretical results with real financial data 
analysis and simulation studies.

The Normal distribution is the usual assumption in any time series estimation, but due 
to the fact that the distribution of GARCH process is leptokurtic, Normal distribution was 
found to be inappropriate in capturing the tail behavior of the series [55].

Even in the classical definition, it is assumed that the standardised residuals  �t of ARCH 
and GARCH are Gaussian random variables; in practice, it turns out that this assumption 
weakly corresponds to reality. An example of GED distribution in forecasting is the GED-
GARCH model.

Since the Gaussian distribution is a special case of the GED the standard GARCH 
model is a particular case of the GED-GARCH. This means, in other words, that a GED-
GARCH model takes the following form for the mean equation:

where

ut is called conditional mean and is also expressed as:

The conditional variance, on the other hand, can be expressed as follows:

where � ∈ (−∞,+∞) , � is positive therefore � ∈ (0,+∞) and also � , which is a measure of 
fatness of tails is � ∈ (0,+∞) and x ∈ ℝ.

(6)
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However, the proposed parameterization is very used, especially in the GARCH models, 
and, precisely, we will develop the calculation of the parameters of the models for volatility 
on that one, assuming that �t it follows a Generalized Error Distribution.

In fact, the parameterization proposed by Forbes et al. [19] is given by:

Or, with reparameterization: � =
1

�
  we can assume:

where � is the shape parameter (the equivalent of p), the scale parameter � is the equivalent 
of  �p and the last parameter � that is �p . Equation (11) is the parameterization from which 
we will start to estimate the parameters of the GED-GARCH model.

The algorithm used for real data application runs as follows. Given yt a time series, we 
consider the following steps:

Step 0:	�  For each time series yt in the sample, we compute its descriptive statistics;
Step 1:	�  We assess the time series stationarity by means of the Dickey–Fuller and KPSS 

unit root tests and use the first difference if the hypothesis of unit root is not 
rejected;

Step 2:	�  We divide the sample into a training set and a testing set;
Step 3:	�  We fit the following statistical models in training set: the ARMA(p,q) model, the 

Gaussian GARCH(p,q), the t-student GARCH(p,q), the GED GARCH(p,q);
Step 4:	�  We estimate the forecasts with these single models and we calculated the Root 

Mean Square Error (MSFE);
Step 5:	�  We combined these models with different forecast combination methods: Ordi-

nary Least Squares (OLS), Constrained Least Squares (CLS), Least Absolute 
Deviation (LAD), Lp-norm;

Step 6:	�  We computed: MSFE, Mean Error (ME), Mean Absolute Error (MAE), Mean 
Percentage Error (MPE), Mean Absolute Percentage Error (MAPE);

Step 7:	�  We calculated the Q-Q plot for Gaussian GARCH and GED GARCH and we 
tested with the Jarque–Bera test both for evaluating the Gaussian normality of the 
data distribution.

5 � A comparative simulation study

Here is a short outline of what we are going to analyze in this paragraph. We have made 
twenty-four simulations: twelve with an AR(1) process and homoskedastic innova-
tions and twelve with the same process but heteroskedastic innovations. In both cases 
we suppose three different shape parameters of the GED distribution (p = 1.5, in the 
case of leptokurtic distributions, p = 2, in the case of Gaussian distributions, p = 2.5, 
in the case of platikurtic distributions) and for each of them we suppose four different 
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autoregressive parameters (φ = 0.2, low; φ = 0.4, medium–low; φ = 0.6, medium–high; 
φ = 0.8 high). We aim to show that in the presence of non-Gaussian data, combining 
forecasts with Lp-norm instead of OLS is a good choice since it is always better than 
LAD and CLS and sometimes better than OLS.

Hence, firstly we simulated 1000 historical series with 200 observations from an 
autoregressive process of order 1 or, in other words, an AR(1) with non-Gaussian inno-
vation �t and autoregressive parameter � . We assumed a Generalized Error Distribution 
G.E.D. with mean 0, scale parameter 1 and true shape parameter p . Then we split the 
overall sample in the training set (yTRAIN

t
 ) and testing set ( yTEST

t
) . With yTRAIN

t
 (80% the of 

observations) we ran the model to obtain 40 forecasts yFOR
t

 . We used the remaining last 
40 values yTEST

t
 (the 20% of observations) to assess the accuracy of the model compar-

ing yFOR
t

  with the true yTEST
t

 [22]. The mean squared forecast errors are computed as the 
average value of 1000 replications [12].

In the Tables 3, 4 and  5 we illustrate the case of homoskedastic innovation.

Table 3   Mean Squared Forecast Errors for different method of combination models: Homoskedastic cases 
(p = 1.5)

Bold font highlights the models with the lowest MSFE for either single models and alternative combination 
schemes

p = 1.5 Mean Squared Forecast Errors

Phi = 0.2 Phi = 0.4 Phi = 0.6 Phi = 0.8

ARMA (1,1) 1.153137 1.239956 1.423515 1.984615
GARCH (1,1) 1.153425 1.239805 1.422018 1.991198
t-GARCH (1,1) 1.152806 1.239714 1.422944 1.981163
GED-GARCH (1,1) 1.153383 1.239546 1.423393 1.981098
OLS 1.049017 1.093995 1.164632 1.223049
CLS 1.137343 1.214243 1.383432 1.813251
LAD 1.058551 1.109501 1.185866 1.254626
Lp-norm 1.045238 1.090459 1.159404 1.211461

Table 4   Mean Squared Forecast Errors for different method of combination models: Homoskedastic cases 
(p = 2)

Bold font highlights the models with the lowest MSFE for either single models and alternative combination 
schemes

p = 2 Mean Squared Forecast Errors

Phi = 0.2 Phi = 0.4 Phi = 0.6 Phi = 0.8

ARMA (1,1) 1.027575 1.100533 1.292379 1.717079
GARCH (1,1) 1.027191 1.101001 1.288842 1.719956
t-GARCH (1,1) 1.027294 1.101263 1.287817 1.719557
GED-GARCH (1,1) 1.027432 1.101095 1.290064 1.717697
OLS 0.943194 0.975322 1.031283 1.084871
CLS 1.018574 1.081655 1.231272 1.587086
LAD 0.952778 0.989847 1.048591 1.113149
Lp-norm 0.939177 0.971166 1.021963 1.073453
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As we can see from the Table 3 with the case p = 1.5 (platikurtic case) with homoske-
dastic innovations, we have estimated the models ARMA (1,1), GARCH (1,1), t-GARCH 
(1,1) and GED-GARCH (1,1).

From the analysis of Table  3, we can see that the best model (i.e. the model with 
the lowest MSFE) is the GED-GARCH (1,1) because it has the lowest MSFE either for 
phi = 0.4 or for phi = 0.8. Moreover we combine the forecasts with the OLS, the CLS, the 
LAD and the Lp-norm combination methods. We know that combining forecasts increases 
the accuracy and, as proof of this, the MSFE of the single forecasts are always greater than 
the MSFE of the forecast combinations [13]. The best combination method is the Lp-norm, 
indeed it has the smallest MSFE for all the considered phi parameters.

In Table  4, we show the case p = 2 (Gaussianity) with homoskedastic errors, where 
we estimated the same models as before. In that case the ARMA (1,1) is the best model, 
because it has the lowest loss function value (MSFE) for phi = 0.4 and for phi = 0.8. We 
know that when the shape parameter p, is equal to 2, the GED distribution is equivalent to 
the Gaussian distribution. The most accurate combination method to combine forecasts is 
the Lp-norm but, as we can see, the MSFE are very close to the forecast combination val-
ues obtained by OLS method.

From Table 5, we can observed that the best forecasting model is the GARCH in the 
cases p = 2.5 Phi = 0.2 and Phi = 0.4. For Phi = 0.6 the best model is the t-GARCH (1,1) 
whilst for Phi = 0.8 the best forecast model is the ARMA (1,1). Again in the case of p = 2.5 
(leptokurtic cases) the Lp-norm provides the most accurate forecast combination for any 
values of Phi and, once again, the best forecast combination method is the Lp-norm.

In the following Tables 6, 7 and  8, we illustrate the case of heteroschedastic innovations.
In th Table 6 with the case p = 1.5 (platikurtic case) with heteroskedastic innovations, 

we have estimated, again, the models ARMA (1,1), GARCH (1,1), t-GARCH (1,1) and 
GED-GARCH (1,1). From this table we can see that the best model (i.e. the model with the 
lowest MSFE) is the t-GARCH (1,1) because it has the lowest MSFE either for phi = 0.4 or 
for phi = 0.8.

Indeed we combine the forecasts with the OLS, the CLS, the LAD and the Lp-norm 
combination methods. We know that combining forecasts increases the accuracy. The 
most interesting thing is that the Lp-norm method is not the best forecast combination 
anymore, or better, it is the best for phi = 0.2 and for phi = 0.8 but for phi = 0.4 and for 

Table 5   Mean Squared Forecast Errors for different method of combination models: Homoskedastic cases 
(p = 2.5)

Bold font highlights the models with the lowest MSFE for either single models and alternative combination 
schemes

p = 2.5 Mean Squared Forecast Errors

Phi = 0.2 Phi = 0.4 Phi = 0.6 Phi = 0.8

ARMA (1,1) 0.956661 1.020648 1.185063 1.619036
GARCH (1,1) 0.956209 1.020535 1.184893 1.630448
t-GARCH (1,1) 0.956311 1.020558 1.184213 1.624769
GED-GARCH (1,1) 0.956220 1.020726 1.186083 1.635494
OLS 0.875576 0.898749 0.960902 1.009944
CLS 0.947621 1.001617 1.147665 1.481237
LAD 0.884855 0.915376 0.978349 1.027941
Lp-norm 0.872641 0.897653 0.955601 0.993774



200	 M. Giacalone 

1 3

phi = 0.6 the OLS forecast combination method is the best one. Infact for phi = 0.4 and 
for phi = 0.6 the OLS Mean Squared Forecast Errors present the lowest values respect to 
all the considered methods.

In Table 7, we show the case p = 2 (Gaussianity) with heteroskedastic errors, where 
we estimated the same models as before ARMA (1,1), GARCH (1,1), t-GARCH (1,1) 
and GED-GARCH (1,1).

In that case the best model is the GARCH (1,1) because it has the lowest MSFE for 
phi = 0.2; phi = 0.4 and for phi = 0.6. It is well known that when the shape parameter 
p, is equal to 2, the GED distribution is equivalent to the Gaussian distribution. The 
most accurate forecast combination method is the Lp-norm for the cases phi = 0.6 and 
phi = 0.8 (that means phi medium-large). On the contrary when we have phi = 0.2 and 
phi = 0.4 (medium–low values of phi) the best forecast combination is the OLS.

Table 6   Mean Squared Forecast Errors for different method of combination models: heteroschedastic cases 
(p = 1.5)

Bold font highlights the models with the lowest MSFE for either single models and alternative combination 
schemes

p = 1.5 Mean Squared Forecast Errors

Phi = 0.2 Phi = 0.4 Phi = 0.6 Phi = 0.8

ARMA (1,1) 0.2923143 0.2671772 0.3309744 0.5162154
GARCH (1,1) 0.2868437 0.2663302 0.3247703 0.5453012
t-GARCH (1,1) 0.2869097 0.2659165 0.3248029 0.5052075
GED-GARCH (1,1) 0.2868528 0.2663975 0.3247310 0.5258339
OLS 0.2070518 0.2060281 0.2271676 0.2313181
CLS 0.2238759 0.2272992 0.2647644 0.3246229
LAD 0.2042246 0.2110616 0.2340576 0.2405602
Lp-norm 0.2015794 0.2068880 0.2273586 0.2308171

Table 7   Mean Squared Forecast Errors for different method of combination models: heteroschedastic cases 
(p = 2)

Bold font highlights the models with the lowest MSFE for either single models and alternative combination 
schemes

p = 2 Mean Squared Forecast Errors

Phi = 0.2 Phi = 0.4 Phi = 0.6 Phi = 0.8

ARMA (1,1) 0.2655602 0.3146837 0.3230243 0.4639478
GARCH (1,1) 0.2647194 0.3120864 0.3216893 0.4797646
t-GARCH (1,1) 0.2648118 0.3121706 0.3217895 0.4406607
GED-GARCH (1,1) 0.2647282 0.3121699 0.3217994 0.4512571
OLS 0.2019596 0.2185927 0.2211455 0.2290417
CLS 0.2181187 0.2428808 0.2596338 0.3332707
LAD 0.2046953 0.2233323 0.2248226 0.2387868
Lp-norm 0.2019741 0.2190896 0.2185642 0.2282186
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From Table 8 that illustrates the case p = 2.5 (leptokurtic case) we can observe that the 
best forecasting model is the GARCH (1,1) for three cases on four (phi = 0.2 and phi = 0.4 
and phi = 0.6).

For the case phi = 0.8 the best forecast model is the ARMA (1,1). In two cases of the 
four we considered the Lp-norm provides the most accurate forecast combination. In par-
ticular the good performance of the Lp method occurs for the central values of the phi 
parameter (phi = 0.4 and phi = 0.6). Indeed the OLS method furnish us the best forecasting 
combination for extreme values of phi parameter (Phi = 0.2; Phi = 0.8) Hence, we can con-
clude that in general in the case of homoskedastic innovations, the Lp-norm method always 
provides the most accurate forecasts considering the different of values p (1.5; 2; 2.5) and 
different values of Phi (0.2; 0.4; 0.6; 0.8). Completely different is the situation with het-
eroskedastic innovation. In this cases Lp-norm is better than CLS and LAD, but it is not 
always better than the OLS, indeed sometimes the last one performs better than Lp-norm 
method. Moreover the difference in accuracy between Lp-norm and OLS is really small so 
we might not care.

6 � Real data application

For real data application, we analyzed 26 time series. One of these was examined indi-
vidually, while we used the other 25 to reinforce and generalize what we observed from the 
study of a single time series.

6.1 � Historical series of Bitcoin

Cerqueti et al. [11] recently propose a new and comprehensive study about cryptocur-
rency market. At this aim, they have considered non-Gaussian GARCH volatility mod-
els, which formed a class of stochastic recursive systems commonly adopted for finan-
cial predictions. Results have shown that the best specification and forecasting accuracy 
are achieved under the Skewed Generalized Error Distribution when Bitcoin/USD and 

Table 8   Mean Squared Forecast Errors for different method of combination models: heteroschedastic cases 
(p = 2.5)

Bold font highlights the models with the lowest MSFE for either single models and alternative combination 
schemes

p = 2.5 Mean Squared Forecast Errors

Phi = 0.2 Phi = 0.4 Phi = 0.6 Phi = 0.8

ARMA (1,1) 0.2728182 0.3582986 0.3373179 0.5524382
GARCH (1,1) 0.2722719 0.3569198 0.3285978 0.5579127
t-GARCH (1,1) 0.2722835 0.3571036 0.3286418 0.5382607
GED-GARCH (1,1) 0.2723097 0.3571202 0.3286167 0.5386678
OLS 0.1972401 0.2196049 0.2213709 0.2319335
CLS 0.2140279 0.2426766 0.2613526 0.3370463
LAD 0.2042953 0.2240118 0.2266377 0.2464403
Lp-norm 0.2011514 0.2193382 0.2208288 0.2364978
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Litecoin/USD exchange rates are considered, while the best performances are obtained 
for Skewed Distribution in the case of Ethereum/USD exchange rate.

Taking this research as a reference point, we used an historical daily financial series 
of the BTC/USD exchange rate from Bitfinex ranging from March 1st, 2014 to February 
28th, 2020. Bitfinex is one of the best cryptocurrency trading websites.

Bitcoin is not classified as a currency, but rather as an highly variable way of trans-
acting because its value is not defined by a central bank but only by supply and demand 
(1 bitcoin was worth 300 EUR in 2012, it peaked at 14,000 EUR in 2018 and by the 
time of writing it was worth 10,000 EUR).

We took that historical series from investing.com, a financial portal that tracks down 
the financial performance of companies around the world. One of the most recent and 
interesting research about the potential to improve accuracy with forecast combinations 
and its real applications has been given by Liu et al. [35] and Shaub [44].

The volatility models for cryptocurrencies have not been fully developed yet, and, 
most of all, the previous literature on this subject [8] has been focused on finding the 
best GARCH model ignoring the assumption about the error distribution, even if the 
characteristics of non-normality and asymmetry of the distribution of Bitcoin’s return 
are well known to researchers  [8]. Our aim, with this application, is to verify that the 
combination of forecasts generates more accurate results (specifically, we intend to 
prove that the Lp-norm combination method is better than the others in  situations of 
multicollinearity and in presence of non-Gaussian distribution) to verify the good per-
formance of the GED distribution. To reach these targets we used the software R.

We start our application showing the descriptive statistics (Table 9) and the station-
ary logarithmic historical series (Fig. 2).

Firstly, we verified that the series have been stationary with the Dickey–Fuller test 
and the KPSS test and, of course, the historical series of returns are always stationary 
(Fig. 2).

Table 9   Descriptive statistics of Historical series of Bitcoin

Source: own elaboration

Variables Mean Min Max Median Std. Dev

Historical Series 3623.4 183 19,187 1110.6 3915.598
Log. Historical Series 7.365 5.210 9.862 7.013 1.408027
First Difference Log. 

Historical Series
0.001256 − 0.345316 0.237220 0.001096 0.03952906

Fig. 1   Generalized Error 
Distribution probability density 
functions with different shape 
parameters
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Then, after splitting the historical series in the training set (or 80% of distribution data) and 
testing set (20% of distribution data) and we estimated the best ARIMA model for the training 
set that is the ARIMA (2,0,0) with coefficients AR1 = − 0.0302 and AR2 = − 0.0139.

Successively, we fitted the training set with three GARCH (1,1): one with Gaussian dis-
tribution (with coefficients of the fitted model: AR1 = − 0.45 and MA1 = 0.526), one with t 
Student distribution (with coefficients: AR1 = 0.342 and MA1 = − 0.413) and one with GED 
distribution (with coefficients: AR1 = 0.131 and MA1 = − 0.23). So, we estimated the fore-
casts from four separate data generating processes. We estimated 543 forecasts (the testing set) 
of the model fitted on the training set of the distribution and then we compared them through 
the MSFE between the forecasts and the elements of the testing set.

The best forecast is given by the GED GARCH (1,1) because it has the smallest MSFE. 
So we have proved that, among the individual models, the best is the GED GARCH (1,1) 
(Table 10).

We did the Jarque Bera test on the residuals of GED-GARCH (1,1) and the result was that 
the distribution of the residuals of GED-GARCH (1,1) is not Gaussian because the p value is 
the very low (2.2e−16).

As we can see from the QQ plots and from the results of the Jarque Bera test (that consider 
the null hypothesis H0 = Gaussianity), our sample is not Gaussian. This is why, among the 
individual models, the GED GARCH (1,1) is the best in order to make forecasts.

The last thing we needed to prove was that the Lp norm is the best combination method 
in situations in situations like the ones of multicollinearity and non-Gaussian distribution. We 
combined the four models with OLS, CLS, LAD and an Lp-norm combination. By doing that, 
we confirmed that the MSFE was smaller than the MSFE for the individual models (Table 11).

As we can see, every MSFE is smaller than the MSFE of the individual models so we 
can assert that the combination method of forecasts generates more accurate results.

Fig. 2   Stationary logarithmic historical series

Table 10   Root Mean Square Error for different models obtained from an historical daily financial series of 
the BTC/USD exchange rate

Source: own elaboration
Smaller value of Root Mean Square Error between different models in bold

AR(2) Gaussian GARCH (1,1) t-student GARCH (1,1) GED GARCH (1,1)

0.03541969 0.03540635 0.03540162 0.03539828
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The best combination method for the forecastings, in that case, are either the OLS or the 
Lp-norm. They only differ for 1 × 10−8 , so we can maintain that these two forecast combi-
nation models are equal. As proof of this we can see the complete similarity of Figs. 3 and 
4 which represent the two analyzed Q–Q plots. For this reason we assume that Lp-norm 
method can be considered more general than OLS (giving approximately the some results) 
and we decided to compare the last one with CLS and LAD considering 25 further hystori-
cal series.

6.2 � Application to Dow Jones index

To verify the predictive quality of the proposed method, we considered 25 historical series 
(taken from Yahoo Finance) listed in the Dow Jonson index, which measures the perfor-
mance of 30 companies representing about a quarter of the value of the securities traded 
on the New York Stock Exchange (NYSE). We excluded from our study the series with 
missing values, so we used 25 historical series of 2516 observations (from 2010/01/01 to 
2020/01/01).

Moreover we could considered more observations, but we have chosen to stop the 
historical series in the first day of 2020 because of the Covid-19 global pandemic that 
caused a lot of problems in the market stability, otherwise the forecasts would have been 
meaningless.

Table 11   Root Mean Square Error for different methods of combination model obtained from an historical 
daily financial series of the BTC/USD exchange rate

Source: own elaboration
Smaller value of Root Mean Square Error between different models in bold

OLS combination CLS combination LAD combination Lp-norm combination

0.03513259 0.03539686 0.03513391 0.03513258

Fig. 3   QQ-plot of GARCH (1,1) with a GED distribution. Source: own elaboration 
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Below in Fig. 5 we show the historical time series with logarithmic standardization and 
the Q-Q plots of time series returns:

Looking at the Q-Q plots we can see that the behavior of the series should be very 
close to Gaussian distribution. In fact the curve are very close to the Gaussianity lines 
and consequently our distributions (at least in the 25 cases considered) seems similar to 
the normal distributions.

Fig. 4   Stationary logarithmic historical series. Source: own elaboration

Fig. 5   Q–Q plots of time series returns. Source: own elaboration
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In the following table (Table 12) are reported the descriptive statistics.
In what follows we provide the result related to the forecast accuracy of the different 

regression-based combination approaches.
How we can see in Table 13, the ARMA (1,1) is the best model for most of the his-

torical because it has the smaller MSFE in 15 cases. In the other historical series seven 
times the GARCH (1,1) is the best model and only three times the GED-GARCH (1,1) 
is the best one.

It is known that, combining forecasts increases the accuracy, indeed if we compare 
Table  13 with Table  14, we notice that the MSFE of the single forecasts are always 
greater than the MSFE for the combined forecasts.

The combination of the forecasts led to very satisfactory results, we investigated the 
potential of the proposed methodology on a large segment of the NYSA, obtaining fore-
casts with an MSFE (Table 14) smaller than both of the compared methodologies. In 
fact, the Lp-norm estimators make always better predictions than CLS and LAD. The 
Lp-norm provides the most accurate results for all of the considered stock-returns-data.

Table 12   Descriptive statistics of the 25 historical series, taken from Yahoo Finance listed in the Dow Jon-
son index

Source: own elaboration

Min 1Q Median Mean 3Q Max

AA − 0.14519 − 0.01273 0 − 0.00022 0.012858 0.124116
AXP − 0.12898 − 0.00598 0.000758 0.000502 0.008035 0.086445
BA − 0.09353 − 0.00738 0.001076 0.000795 0.009513 0.094214
C − 0.17934 − 0.0087 0.000387 0.000371 0.009744 0.129678
CAT​ − 0.09674 − 0.00785 0.000402 0.000477 0.009637 0.077955
DD − 0.11008 − 0.0089 0.000449 0.00029 0.009852 0.163949
DIS − 0.09619 − 0.0058 0.000779 0.000654 0.007544 0.109247
GE − 0.11986 − 0.00769 0 366E+08 0.007796 0.110184
HD − 0.06069 − 0.0052 0.000919 0.000901 0.007454 0.062148
HON − 0.08002 − 0.00548 0.000682 0.000696 0.007097 0.064608
IBM − 0.08642 − 0.00581 0.000381 0.000122 0.006479 0.084934
INTC − 0.09543 − 0.00775 0.000678 0.000541 0.008868 0.100315
IP − 0.11224 − 0.00866 0.000568 0.000349 0.010256 0.097621
JNJ − 0.10578 − 0.00393 0.000366 0.000443 0.005642 0.052422
JPM − 0.09888 − 0.00716 0.000521 0.000564 0.008682 0.081012
KO − 0.08813 − 0.00441 0.000484 0.000386 0.005524 0.058947
MCD − 0.05173 − 0.00452 0.00083 0.000574 0.005722 0.078105
MMM − 0.13863 − 0.00486 0.000707 0.000402 0.006727 0.057447
MO − 0.09973 − 0.00499 0.001102 0.000568 0.006973 0.064465
MRK − 0.06851 − 0.00585 0.000476 0.000496 0.007294 0.099013
MSFT − 0.12103 − 0.00663 0.000589 0.000742 0.008179 0.099413
PG − 0.0606 − 0.00428 0.000373 0.000409 0.005351 0.084328
T − 0.08399 − 0.00514 0.000847 0.000342 0.006361 0.048764
WMT − 0.1074 − 0.00491 0.000669 0.00041 0.005991 0.103444
XOM − 0.06388 − 0.00599 0.000113 0.000132 0.006733 0.053692
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7 � Concluding remarks

This paper started with the aim of evaluating whether the method of combining fore-
casts with the Lp-norm constituted a valid alternative to the most common existing 
methods.

Through the analysis of the simulations, we found that the combination of forecasts with 
Lp-norm generates an MSFE lower than the OLS, LAD and CLS methods in  situations 
of strong multicollinearity and non-Gaussianity especially in presence of homo-skedastics 
innovations.

In this case the Lp-norm provides the most accurate forecast with respect to the alterna-
tive regression-based combination methods.

In the case of eteroskedastic innovations instead, the Lp-norm performs better for highly 
persistent process (phi = 0.8) or for poorly persistent process (phi = 0.2) regarding the in 
leptokurtic data (p = 1.5) (see Table 12).

In the case of Gaussian data (p = 2) the Lp-norm seems to perform better for a highly 
level of persistency (phi = 0.6 and phi = 0.8) (Table 13). Finally concerning the platikurtic 

Table 13   Root Mean Square Error for single forecasts of different models taken from the 25 tickers of NISE 
securities listed in the Dow Jonson index

Bold font highlights the models with the lowest MSFE for each single

ARMA (1,1) GARCH (1,1) t-GARCH (1,1) GED-GARCH (1,1)

AA 0.026843271 0.026842777 0.026842071 0.0268381
AXP 0.013176035 0.013185607 0.013180915 0.013179585
BA 0.019016242 0.019025106 0.019027594 0.019028431
C 0.015316327 0.015323952 0.015321853 0.015318666
CAT​ 0.018906329 0.018916453 0.018916454 0.018909249
DD 0.019449013 0.019481562 0.019479437 0.019473862
DIS 0.013608562 0.013608688 0.013610309 0.013609062
GE 0.025351524 0.02535264 0.025352249 0.025352486
HD 0.012963545 0.01297067 0.012967218 0.012962132
HON 0.011583486 0.011593648 0.011587492 0.011586781
IBM 0.01434896 0.014349976 0.014352857 0.014351017
INTC 0.019309015 0.019308887 0.019309435 0.01930921
IP 0.016904549 0.016910866 0.016915275 0.016907335
JNJ 0.012331075 0.012336865 0.012333638 0.012330256
JPM 0.012913236 0.012922966 0.012918259 0.012916045
KO 0.010132191 0.010131339 0.010131361 0.010131353
MCD 0.01137472 0.011374755 0.01137923 0.011382468
MMM 0.01562664 0.015633654 0.015651649 0.015637037
MO 0.015406586 0.015416791 0.01543804 0.015435169
MRK 0.012079222 0.012065029 0.012072872 0.01207854
MSFT 0.015354279 0.015350535 0.015354094 0.015361863
PG 0.011292441 0.011288397 0.01128993 0.011291204
T 0.013301173 0.013300923 0.013304403 0.013305561
WMT 0.012464111 0.012465047 0.012464727 0.012464904
XOM 0.012734256 0.01274105 0.012738435 0.012735775
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data (p = 2.5) the Lp-norm provides the best forecast combination for a medium level of 
persistency (phi = 0.4 and phi = 0.6) (Table 14).

On the other hand, by analysing the empirical data, the MSFE using the combination 
with Lp-norm confirmed the result of the simulation: it was lower than the one obtained 
with the LAD and CLS methods, while, comparing it to the MSFE of the combination 
with the OLS (historical series of Bitcoin), we obtained an almost infinitesimal difference 
(Table 15).

The reason of this small difference is due to the sample size since due to the central 
limit theorem there is a tendency to Gaussianity, which is compliant with the results from 
simulation, that is to say in the presence of a normal distribution. Looking at the 25 histori-
cal series relating to companies included in the Dow Jonson we can observe a strong ten-
dency to Gaussianity (confirmed by the QQ-Plot analysis) that means the same behaviour 
of OLS and Lp-norm forecast combinations.

In conclusion, the method assuming Lp-norm estimators is a valid method of combining 
forecasts since, compared to other ones (LAD and CLS), it generates a lower MSFE.

However, in the Gaussian situation, it can constitute an alternative to the OLS while 
providing excellent results in terms of MSFE as the difference is minimal.

Table 14   Root Mean Square 
Error for different methods of 
forecast combination for the 25 
tickers of NISE securities listed 
in the Dow Jonson index

Bold font highlights the models with the lowest MSFE for each fore-
cast combination scheme

CLS LAD Lp-norm

AA 0.026838 0.026758 0.026742
AXP 0.013176 0.013157 0.013156
BA 0.019016 0.018919 0.018917
C 0.015316 0.015312 0.015307
CAT​ 0.018906 0.018864 0.018861
DD 0.019449 0.019374 0.019363
DIS 0.013609 0.01351 0.013502
GE 0.025352 0.025279 0.025277
HD 0.012962 0.01295 0.012943
HON 0.011583 0.011569 0.011562
IBM 0.014349 0.014276 0.014268
INTC 0.019309 0.01923 0.019219
IP 0.016905 0.016816 0.016806
JNJ 0.01233 0.012329 0.012322
JPM 0.012913 0.012892 0.012891
KO 0.010131 0.010108 0.010107
MCD 0.011375 0.011383 0.011366
MMM 0.015627 0.015618 0.01559
MO 0.015407 0.015357 0.015348
MRK 0.012065 0.012053 0.01204
MSFT 0.015351 0.015346 0.01533
PG 0.011288 0.011272 0.011266
T 0.013301 0.013257 0.013249
WMT 0.012464 0.012467 0.012457
XOM 0.012734 0.012682 0.012679
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Appendix 1

R procedure used for simulations:

Load necessary packages, fit AR(1) like DGP with a GED distribution of the innova-
tion, split the AR(1) fitted in training and testing set, fit an ARMA(1,1) on the training 
set, heteroscedasticity test. 

library(tseries)
library(timeSeries)
library(forecast)
library(normalp)
library(TSA)
library(rugarch)
library(ForecastComb)
library(rio)
library(BatchGetSymbols)
library(xtable)
library(foreach)
library(doParallel)

We use parallel computation for the simulations.
cl<-makeCluster(detectCores()-2)
registerDoParallel(cl)

Setting the seed for results’ replication.
set.seed(1000)
t<-200  length of the simulated time series (default T=200)
p<-1.5  shape parameter of the GED distribution (default p=1.5)
phi<-0.2  autoregressive (persistence) parameter (default phi=0.2)
f<-0.8 training set length (default=80%)

For an AR(1) process with homoskedastic errors:
sim_data<-matrix(NA, nrow=t, ncol=1000)
for (i in 1:1000){
s i m _ d a t a [ , i ] < - a r i m a . s i m ( n = t , m o d e l = l i s t ( o r d e r = c ( 1 , 0 , 0 ) , a r = p h i ) , 

innov=rnormp(1000,0,1,p))
}
colnames(sim_data)<-as.character(seq(1:1000))

Instead, for an AR(1) process with heteroskedastic errors:
sim_data<-matrix(NA, nrow=t, ncol=1000)
for (i in 1:1000){
sim_data[,i]<-arima.sim(n=200,model=list(order=c(1,0,0),ar=phi), innov=garch.

sim(alpha=c(0.01,0.9), n = 1000, rnd = rnorm))
}
colnames(sim_data)<-as.character(seq(1:1000))
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Splitting training and testing:
data_train<-sim_data[1:(t*f),]
data_test<-sim_data[(t*f+1):t,]

Fit the training set with three GARCH(1,1) with normal, T-student and GED distri-
bution of innovation.

spec1<-ugarchspec(variance.model = list(model = "sGARCH",garchOrder = c(1, 1)), 
mean.model = list(armaOrder = c(1, 0)), distribution.model = "norm")

spec2<-ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1, 1)), 
mean.model = list(armaOrder = c(1, 0)),distribution.model = "std")

spec3<-ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1, 1)), 
mean.model = list(armaOrder = c(1, 0)),distribution.model = "ged")

Forecast with ARMA(1,1), GARCH(1,1) with normal, T-student and GED distribu-
tion of innovation.

ARMA<-matrix(NA, nrow=(1-f)*t+1, ncol=1000)
garchN<-matrix(NA, nrow=(1-f)*t+1, ncol=1000)
garchT<-matrix(NA, nrow=(1-f)*t+1, ncol=1000)
garchG<-matrix(NA, nrow=(1-f)*t+1, ncol=1000)
ARMA<-foreach(i = 1:1000, .combine = cbind, .packages= "forecast") %dopar% {
preds<-forecast(Arima(data_train[,i], order=c(1,0,1)), h=(1-f)*t+1)$mean
preds
}
garchN<-foreach(i = 1:1000, .combine = cbind, .packages= "rugarch") %dopar% {
preds<-ugarchforecast(ugarchfit(spec1, data_train[,i], solver = ’hybrid’), n.ahead = 

40)@forecast$seriesFor
preds
}
garchT<-foreach(i = 1:1000, .combine = cbind, .packages= "rugarch") %dopar% 
{
preds<-ugarchforecast(ugarchfit(spec2, data_train[,i], solver = ’hybrid’), n.ahead = 

40)@forecast$seriesFor
preds
}
garchG<-foreach(i = 1:1000, .combine = cbind, .packages= "rugarch") %dopar% {
preds<-ugarchforecast(ugarchfit(spec3, data_train[,i], solver = ’hybrid’), n.ahead = 

40)@forecast$seriesFor
preds
}

MSFE of the individual forecasts.
MSFE1<-vector(mode="numeric", length=1000)
MSFE2<-vector(mode="numeric", length=1000)
MSFE3<-vector(mode="numeric", length=1000)
MSFE4<-vector(mode="numeric", length=1000)
for (i in 1:1000) {
MSFE1[i]<-sqrt(mean((ARMA[i]-data_test)^2))
MSFE2[i]<-sqrt(mean((garchN[i]-data_test)^2))
MSFE3[i]<-sqrt(mean((garchT[i]-data_test)^2))
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MSFE4[i]<-sqrt(mean((garchG[i]-data_test)^2))
}
plot(density(MSFE1), main="Root Mean Square Error: densities", type="l")
lines(density(MSFE2), col="blue")
lines(density(MSFE3), col="red")
lines(density(MSFE4), col="orange")
legend("topright", legend=c("ARMA(1,1)", "GARCH(1,1)", "t-GARCH(1,1)", "GED-

GARCH(1,1)"),col=c("black", "blue", "red", "orange"), lty=1:1, inset=0.01, cex=0.8)
mean(MSFE1) # MSFE of the ARMA(1,1)
mean(MSFE2) # MSFE of the Gaussian-GARCH(1,1)
mean(MSFE3) # MSFE of the t-GARCH(1,1)
mean(MSFE4) # MSFE of the GED-GARCH(1,1)

Forecast combination.
results<-matrix(NA, nrow = 1000, ncol=4)
for (i in 1:1000) try({
results[i,1]<-comb_OLS(foreccomb(data_test[,i], cbind(ARMA[,i], garchN[,i], 

garchT[,i], garchG[,i])))$Accuracy_Train[2]
results[i,2]<-comb_CLS(foreccomb(data_test[,i], cbind(ARMA[,i], garchN[,i], 

garchT[,i], garchG[,i])))$Accuracy_Train[2]
results[i,3]<-comb_LAD(foreccomb(data_test[,i], cbind(ARMA[,i], garchN[,i], 

garchT[,i], garchG[,i])))$Accuracy_Train[2]
lpnorm<-lmp(data_test[,i]~cbind(ARMA[,i], garchN[,i], garchT[,i], garchG[,i]), p=1.5)
results[i,4]<-accuracy(fitted(lpnorm), data_test[,i])[2]
}, silent=T)
mean(na.omit(results[,1]))     average MSFE of the OLS combination scheme
mean(na.omit(results[,2]))     average MSFE of the CLS combination scheme
mean(na.omit(results[,3]))     average MSFE of the LAD combination scheme
mean(na.omit(results[,4]))     average MSFE of the Lp-norm combination scheme

Appendix 2

R procedure used for real data application on the single historical series:

Load the necessary packages and take from the dataset the historical series 
“ULTIMO”

library(tseries)
library(car)
library(timeSeries)
library(forecast)
library(normalp)
library(aTSA)
library(rugarch)
library(ForecastComb)
library(rio)
attach(BTC_USD_Bitfinex_Dati_Storici_2014_2020_1)
ULTIMO<-BTC_USD_Bitfinex_Dati_Storici_2014_2020_1$Ultimo
plot(ULTIMO,type="l")
length(ULTIMO)
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Stationarization of the historical series and descriptive statistics
adf.test(ULTIMO)
kpss.test(ULTIMO)
l_ULTIMO<-log(ULTIMO)
plot(l_ULTIMO,type="l")
diff_l_ULTIMO<-diff(l_ULTIMO)
plot(diff_l_ULTIMO,type="l")
adf.test(diff_l_ULTIMO)
summary(ULTIMO)
summary(diff_l_ULTIMO)
summary(l_ULTIMO)
var(ULTIMO)
sqrt(var(ULTIMO))
sqrt(var(l_ULTIMO))
sqrt(var(diff_l_ULTIMO))
sd(diff_l_ULTIMO)
qqnorm(diff_l_ULTIMO)

Splitting training set (80%) and testing set (20%), fit the training set with some models
x1_train<-diff_l_ULTIMO[1:1632]
x1_test<-diff_l_ULTIMO[1633:2175]
length(x1_test)
x1_test
auto.arima(x1_train,trace=TRUE)
AR2<-arima(x1_train,order = c(2,0,0))
spec1<-ugarchspec(variance.model = list(model = "sGARCH",garchOrder = c(1, 1)), 

distribution.model = "norm")
spec2<-ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1, 1)), 

distribution.model = "std")
spec3<-ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1, 

1)),distribution.model = "ged")
fit1<-ugarchfit(spec1, x1_train, out.sample = 543)
fit2<-ugarchfit(spec2, x1_train, out.sample = 543)
fit3<-ugarchfit(spec3, x1_train, out.sample = 543)

Forecast and MSFE with individual models
pred1<-forecast(AR2,lead = 543)[,2]
model2<-ugarchforecast(fit1, n.ahead = 543)
model3<-ugarchforecast(fit2, n.ahead = 543)
model4<-ugarchforecast(fit3, n.ahead = 543)
pred2<-model2@forecast$seriesFor
pred3<-model3@forecast$seriesFor
pred4<-model4@forecast$seriesFor
MSFE1<-sqrt(mean((pred1-x1_test)^2))
MSFE2<-sqrt(mean((pred2-x1_test)^2))
MSFE3<-sqrt(mean((pred3-x1_test)^2))
MSFE4<-sqrt(mean((pred4-x1_test)^2))

Forecast and MSFE with combination methods
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PRED<-cbind(pred1, pred2, pred3, pred4)
COMB<-foreccomb(x1_test, PRED)
OLS<-comb_OLS(COMB)$Accuracy_Train
CLS<-comb_CLS(COMB)$Accuracy_Train
LAD<-comb_LAD(COMB)$Accuracy_Train
lpnorm<-lmp(x1_test~PRED, p=estimatep(x1_train, mean(x1_train)))
LP<-accuracy(fitted(lpnorm), x1_test)

Q-Q plot, Jarque-Bera test
qqnorm(fit1@fit$residuals,main="Q-Q plot OLS")
qqnorm(fit3@fit$residuals,main="Q-Q plot GED-GARCH(1,1)")
qqline(fit1@fit$residuals)
qqline(fit3@fit$residuals)
jarque.bera.test(fit1@fit$residuals)
jarque.bera.test(fit3@fit$residuals)

Appendix B.2

Data download
first.date <- as.Date("2010-01-01")
last.date <- as.Date("2020-01-01")
dwjind<-read.csv(’http://r-​forge.r-​proje​ct.​org/​scm/​viewvc.​php/​*check​out*/​pkg/​fBasi​cs/​

data/​DowJo​nes30.​csv?​revis​ion=​1&​root=​rmetr​ics&​pathr​ev=​1’,sep=’;’)
tickers<-colnames(dwjind[,-1])
l.out <- BatchGetSymbols(tickers = tickers,
                         first.date = first.date,
                         last.date = last.date,
                         thresh.bad.data = 1,
                         type.return = "log",
                         freq.data = "daily")
Data<-unstack(l.out$df.tickers, l.out$df.tickers$ret.adjusted.prices~l.out$df.

tickers$ticker)
Data[1,]<-0

Time series plots
for (i in 1:ncol(Data)) {
  Data[,i]<-as.ts(Data[,i])
}
par(mar = rep(2, 4), mfrow=c(5,5))
for (i in 1:ncol(Data)) {
  plot(Data[,i], main=tickers[i], ylab="Returns", xlab="Obs.", col="blue", type="l")
}
par(mar = rep(2, 4), mfrow=c(5,5))
for (i in 1:ncol(Data)) {
  qqPlot(Data[,i], main=tickers[i], id=F)
}

http://r-forge.r-project.org/scm/viewvc.php/*checkout*/pkg/fBasics/data/DowJones30.csv?revision=1&root=rmetrics&pathrev=1’,sep
http://r-forge.r-project.org/scm/viewvc.php/*checkout*/pkg/fBasics/data/DowJones30.csv?revision=1&root=rmetrics&pathrev=1’,sep
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Descriptive statistics and preliminary tests
unitroot<-vector(mode="numeric", length = ncol(Data))
for (i in 1:ncol(Data)) {
  unitroot[i]<-adf.test(Data[,i])$p.value
}
sumstats<-matrix(NA, nrow=ncol(Data), ncol=6)
for (i in 1:ncol(Data)) {
  for (j in 1:6) {
    sumstats[i,j]<-summary(Data[,i])[j]
  }
}
colnames(sumstats)<-c("Min", "1Q", "Median", "Mean", "3Q", "Max")
rownames(sumstats)<-colnames(Data)
xtable(sumstats, digits=4)

Training and testing datasets
f<-0.8 # training set length 
t<-nrow(Data) # Dataset length
data_train<-Data[1:round(t*f),]
data_test<-Data[(round(t*f)+1):t,]

Statistical models’ forecasts
spec1<-ugarchspec(variance.model = list(model = "sGARCH",garchOrder = c(1, 1)), 

mean.model = list(armaOrder = c(1, 0)), distribution.model = "norm")
spec2<-ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1, 1)), 

mean.model = list(armaOrder = c(1, 0)),distribution.model = "std")
spec3<-ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1, 1)), 

mean.model = list(armaOrder = c(1, 0)),distribution.model = "ged")
ARMA<-matrix(NA, nrow=round((1-f)*t), ncol=ncol(Data))
garchN<-matrix(NA, nrow=round((1-f)*t), ncol=ncol(Data))
garchT<-matrix(NA, nrow=round((1-f)*t), ncol=ncol(Data))
garchG<-matrix(NA, nrow=round((1-f)*t), ncol=ncol(Data))
for (i in 1:ncol(Data)) {
    ARMA[,i]<-forecast(Arima(data_train[,i], order=c(1,0,1)), h=round((1-f)*t))$mean
    garchN[,i]<-ugarchforecast(ugarchfit(spec1, data_train[,i], solver = ’hybrid’), n.ahead 

= round((1-f)*t))@forecast$seriesFor
    garchT[,i]<-ugarchforecast(ugarchfit(spec2, data_train[,i], solver = ’hybrid’), n.ahead 

= round((1-f)*t))@forecast$seriesFor
    garchG[,i]<-ugarchforecast(ugarchfit(spec3, data_train[,i], solver = ’hybrid’), n.ahead 

= round((1-f)*t))@forecast$seriesFor
}

Predictive accuracy - Root Mean Square Error (MSFE) results
MSFE1<-vector(mode="numeric", length=ncol(Data))
MSFE2<-vector(mode="numeric", length=ncol(Data))
MSFE3<-vector(mode="numeric", length=ncol(Data))
MSFE4<-vector(mode="numeric", length=ncol(Data))
for (i in 1:ncol(Data)) {
  MSFE1[i]<-sqrt(mean((ARMA[,i]-data_test[,i])^2))
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  MSFE2[i]<-sqrt(mean((garchN[,i]-data_test[,i])^2))
  MSFE3[i]<-sqrt(mean((garchT[,i]-data_test[,i])^2))
  MSFE4[i]<-sqrt(mean((garchG[,i]-data_test[,i])^2))
}
results<-cbind(MSFE1, MSFE2, MSFE3, MSFE4)
rownames(results)<-colnames(Data)
colnames(results)<-c("ARMA(1,1)", "GARCH(1,1)", "t-GARCH(1,1)", 

"GED-GARCH(1,1)")
results 

Forecast combination
results<-matrix(NA, nrow = ncol(Data), ncol=3)
for (i in 1:ncol(Data)) try({
  results[i,1]<-comb_CLS(foreccomb(data_test[,i], cbind(ARMA[,i], garchN[,i], 

garchT[,i], garchG[,i])))$Accuracy_Train[2]
  results[i,2]<-comb_LAD(foreccomb(data_test[,i], cbind(ARMA[,i], garchN[,i], 

garchT[,i], garchG[,i])))$Accuracy_Train[2]
  lpnorm<-lmp(data_test[,i]~cbind(ARMA[,i], garchN[,i], garchT[,i], garchG[,i]), 

p=1.5)
  results[i,3]<-accuracy(fitted(lpnorm), data_test[,i])[2]
}, silent=T)
rownames(results)<-colnames(Data)
colnames(results)<-c("CLS", "LAD", "Lp-norm")
results

Appendix 3

MSFE graphs for different regression-based combination approaches:
See Figs. 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 

28 and 29.

Fig. 6   Time series with 1000 simulated paths, homoskedastic errors, length 200, autoregressive process 0.2, 
p = 1.5, Root Mean Square Error: densities. Source: own elaboration
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Fig. 7   Time series with 1000 simulated paths, homoskedastic errors, length 200, autoregressive process 0.4, 
p = 1.5, Root Mean Square Error: densities. Source: own elaboration

Fig. 8   Time series with 1000 simulated paths, homoskedastic errors, length 200, autoregressive process 0.6, 
p = 1.5, Root Mean Square Error: densities. Source: own elaboration
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Fig. 9   Time series with 1000 simulated paths, homoskedastic errors, length 200, autoregressive process 0.8, 
p = 1.5, Root Mean Square Error: densities. Source: own elaboration

Fig. 10   Time series with 1000 simulated paths, homoskedastic errors, length 200, autoregressive process 
0.2, p = 2, Root Mean Square Error: densities. Source: own elaboration
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Fig. 11   Time series with 1000 simulated paths, homoskedastic errors, length 200, autoregressive process 
0.4, p = 2, Root Mean Square Error: densities. Source: own elaboration

Fig. 12   Time series with 1000 simulated paths, homoskedastic errors, length 200, autoregressive process 
0.6, p = 2, Root Mean Square Error: densities. Source: own elaboration
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Fig. 13   Time series with 1000 simulated paths, homoskedastic errors, length 200, autoregressive process 
0.8, p = 2, Root Mean Square Error: densities. Source: own elaboration

Fig. 14   Time series with 1000 simulated paths, homoskedastic errors, length 200, autoregressive process 
0.2, p = 2.5, Root Mean Square Error: densities. Source: own elaboration
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Fig. 15   Time series with 1000 simulated paths, homoskedastic errors, length 200, autoregressive process 
0.4, p = 2.5, Root Mean Square Error: densities. Source: own elaboration

Fig. 16   Time series with 1000 simulated paths, homoskedastic errors, length 200, autoregressive process 
0.6, p = 2.5, Root Mean Square Error: densities. Source: own elaboration
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Fig. 17   Time series with 1000 simulated paths, homoskedastic errors, length 200, autoregressive process 
0.8, p = 2.5, Root Mean Square Error: densities. Source: own elaboration

Fig. 18   Time series with 1000 simulated paths, heteroskedastic errors, length 200, autoregressive process 
0.2, p = 1.5, Root Mean Square Error: densities. Source: own elaboration
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Fig. 19   Time series with 1000 simulated paths, heteroskedastic errors, length 200, autoregressive process 
0.4, p = 1.5, Root Mean Square Error: densities. Source: own elaboration

Fig. 20   Time series with 1000 simulated paths, heteroskedastic errors, length 200, autoregressive process 
0.6, p = 1.5, Root Mean Square Error: densities. Source: own elaboration
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Fig. 21   Time series with 1000 simulated paths, heteroskedastic errors, length 200, autoregressive process 
0.8, p = 1.5, Root Mean Square Error: densities. Source: own elaboration

Fig. 22   Time series with 1000 simulated paths, heteroskedastic errors, length 200, autoregressive process 
0.2, p = 2, Root Mean Square Error: densities. Source: own elaboration
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Fig. 23   Time series with 1000 simulated paths, heteroskedastic errors, length 200, autoregressive process 
0.4, p = 2, Root Mean Square Error: densities. Source: own elaboration

Fig. 24   Time series with 1000 simulated paths, heteroskedastic errors, length 200, autoregressive process 
0.6, p = 2, Root Mean Square Error: densities. Source: own elaboration
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Fig. 25   Time series with 1000 simulated paths, heteroskedastic errors, length 200, autoregressive process 
0.8, p = 2, Root Mean Square Error: densities. Source: own elaboration

Fig. 26   Time series with 1000 simulated paths, heteroskedastic errors, length 200, autoregressive process 
0.2, p = 2.5, Root Mean Square Error: densities. Source: own elaboration
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Fig. 27   Time series with 1000 simulated paths, heteroskedastic errors, length 200, autoregressive process 
0.4, p = 2.5, Root Mean Square Error: densities. Source: own elaboration

Fig. 28   Time series with 1000 simulated paths, heteroskedastic errors, length 200, autoregressive process 
0.6, p = 2.5, Root Mean Square Error: densities. Source: own elaboration
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