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Abstract  
Although recent advanced sequencing technologies have improved the resolution of genomic 
and proteomic data to better characterize molecular phenotypes, efficient computational tools to 
analyze and interpret the large-scale omic data are still needed. To address this, we have 
developed a network-based bioinformatic tool called Ollivier-Ricci curvature-omics (ORCO). 
ORCO incorporates gene interaction information with omic data into a biological network, and 
computes Ollivier-Ricci curvature (ORC) values for individual interactions. ORC, an edge-based 
measure, indicates network robustness and captures global gene signaling changes in 
functional cooperation using a consistent information passing measure, thereby helping identify 
therapeutic targets and regulatory modules in biological systems. This tool can be applicable to 
any data that can be represented as a network. ORCO is an open-source Python package and 
publicly available on GitHub at https://github.com/aksimhal/ORC-Omics. 
 
Introduction  
Recent advanced sequencing technologies enable researchers to investigate biological 
phenotypes related to a disease through whole genome-wide landscape scans. As a result, 
there has been unprecedented increase in high resolution biological data such as RNA-seq, 
DNA-seq, and proteomic sequencing data. A number of tools have been developed in the field 
of bioinformatics to analyze the large-scale data, including DESeq2, edgeR, GSEA, and UMAP 
[1,2]. However, bioinformatic tools with the capability that assesses the robustness of 
interactions via the entire biological systems are still lacking. Biological systems can be 
represented as undirected graphs where nodes represent a key component and edges 
represent interactions or correlations between components. Examples include genomic 
networks, where genes represent nodes and gene interaction information defines edges, and 
proteomic networks, where proteins represent nodes and expression correlation levels 
represent edges.  
 
A key goal of analyzing biological systems is understanding critical genes for a given data 
context as well as the behavior of their local neighborhoods. There are many network analysis 
methods that can be applied, such as node connectedness, centrality, and eigenvector 
centrality [3]. However, graph analysis tools with the capability to assesses the robustness of 
interactions including the entire system are still needed. To address this, we have developed a 
network-based tool, called Ollivier-Ricci curvature-omics (ORCO). ORCO utilizes Ollivier-Ricci 
curvature (ORC), an extended notion of Ricci curvature defined on a Riemannian manifold [4]. 
Given a biological network, ORCO measures edge weights using a consistent information 
passing measure in neighborhoods of the two nodes. This metric reflects more realistic 
biological interactions compared to simple correlation between two nodes. Therefore, the 
network-based approach could provide unique and unexplored insights into the underlying 
biology and help identify therapeutic targets and regulatory modules within biological systems 
[5].  
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Examples of robust features include redundancy and feedback loops. For example, redundancy 
ensures that an electrical power grid keeps transmitting even if an individual power station is 
down. In a protein-protein interaction network, the feedback behavior may enable a cell to 
develop drug resistance. A lack of robust connectivity between network nodes may indicate a 
vulnerability in coordinated action. In principle, ORC can be considered to quantify the number 
of pathways between two nodes. The more pathways exist between a pair of nodes, the more 
robust the relationship between the two nodes is considered to be. Inversely, if removing a 
single edge in a network makes it impossible for information to pass through, then that edge is 
considered fragile. Long-range changes in robustness indicate system-level changes in 
functional cooperation, which may bear important biological implications. For example, 
abnormalities in robustness may translate to potential therapeutic targets [6].  
 
ORC has been used in various biomedical studies, including brain connectivity analysis and 
genomic network analysis in cancer cells [7,8]. In [9,10], ORC was used to elucidate differences 
in brain connectivity of children with autism spectrum disorders (ASD). It was shown that the 
information provided by ORC was not simply complimentary to the information displayed by 
alternative methods but uncovered previously unknown connectivity patterns. In oncology, ORC 
has been used in a variety of applications. In [11], ORC was used to identify a novel gene 
signature for high-risk multiple myeloma. In [12], a dynamic form of ORC was used to identify 
therapeutic targets in sarcoma. In [13–15], ORC was used to identify robust genes while taking 
into account various types of interaction data. ORC also has been shown to improve the 
performance of neural networks. In [16], the authors used ORC to improve the messaging-
passing capabilities of their graph neural networks. ORC was also used for community detection 
[17]. Together, these works demonstrate that the curvature of biological networks can serve as 
a prognostic biomarker for various disease states, identify previously unknown high-risk patient 
groups, and rank their unique geometric vulnerabilities.  
 
Here, we present ORC-Omics (ORCO), an open-source Python library explicitly designed for 
typical bioinformatics network analysis. ORCO incorporates node data and node adjacency and 
outputs a network where edge weights represent the robustness between nodes. Additionally, 
while ORCO is designed for omic data, it can be used in any context where data is represented 
as a network.  
 
Software 
The following sections provide a technical overview of the method and input data requirements. 
We describe the input data using genomic data as an example but any appropriate data type 
could be used.  
 
Input data  
ORCO requires two input data. The first is a 2D matrix of non-negative feature data where the 
columns represent samples and rows represent features (e.g., genes). The second is a 2D 
adjacency matrix where the dimensions match the number of features in the dataset. This 
adjacency matrix should be a binary symmetric matrix where a positive value indicates an 
interaction between features. Other input parameters associated with the ORC formulation may 
be modified and described in more detail on the GitHub page. An example input data structure 
would be a comma-separated values (CSV) file with n columns where each column represents 
a sample and m rows where each row represents a gene. Depending on the data modality, the 
value of each cell could be gene expression or other omic data.  
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For genomics data, adjacency matrixes can describe genes that are known to physically 
interact, co-express, or are connected. For omics data, the matrixes can represent any 
appropriate type of interaction. Common sources of protein interaction information include the 
Human Protein Reference Database [18] (HPRD) and the String protein-protein interaction 
network [19].  
 
Ollivier-Ricci Curvature 
The following sections describe the both the computation of edge probabilities from node data 
and the implementation of ORC used.  
 
A notion of graph distance, defined between every two nodes in the network, is required for 
computing ORC. The standard hop distance may be used. Alternatively, a more informed 
weighted hop distance can be computed by considering a random walk on the weighted graph 
as follows. For each sample, the weights 𝑤! for each node 𝑖 are assigned by mapping the 
genomic data for each gene to the corresponding node in the graph. The node weights are then 
used to define transition probabilities from one gene to another, which is only non-negative if 
there is an edge (i.e., protein interaction) between the corresponding genes. The transition 
probability from gene 𝑖 to any neighboring gene 𝑗, denoted 𝑝!,#, is computed based on the mass 
action principle normalized over all neighbors to ensure it is a probability, defined as follows:  
 

𝑝!,# =	 '
𝑤#

∑ 𝑤$$∼!
, 𝑗 ∼ 𝑖

															0, 𝑗	 ≁ 𝑖
, (1) 

where 𝑘 ∼ 𝑖 denotes the set of nodes 𝑘 that have an edge connecting to node 𝑖. 
 
 
Considering that the higher the probability of transitioning from one gene to another, the smaller 
the edge length should be,  the edge weights 𝑤!# for each edge (i, j) are defined as a function of 
the transition probabilities in each direction as shown in Equation 2:  
 

𝑤!,# =
1

1𝑤2!#
, where	𝑤2!# =

𝑝!,# + 𝑝#,!
2 . (2) 

 
The weighted hop distance between any two nodes 𝑖 and 𝑗, denoted 𝑑(𝑖, 𝑗), is then the minimum 
accrued weight over all paths connecting nodes 𝑖 and 𝑗. 
 
Formally, ORC between any two nodes 𝑖 and 𝑗 is defined in Equation 3:  
 

𝜅&'(𝑖, 𝑗) = 1	 −	
𝑊(>𝜇! , 𝜇#@
𝑑(𝑖, 𝑗)

, (3) 

 
where  is the Wasserstein distance, also known as the Earth Mover’s distance (EMD), 
between the probability distributions, 𝜇! and 𝜇# associated with nodes 𝑖 and 𝑗, respectively. The 
probability distribution around a given node (gene), 𝜇!, is defined by the mass action principle, 
normalized by the net action over all of its neighbors, as follows:  
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𝜇!(𝑘) = B
𝑟$

∑ 𝑟##∼!
, 𝑘 ∼ 𝑖

0, 𝑘 ≁ 𝑖
. (4) 

 
Here rk denotes the weight of node 𝑘 (e.g., the  RNA-Seq value), and the denominator d(i, j) is 
the weighted shortest path between the two nodes, described above.  
 
The output of this method is a graph with an ORC value for each edge. This output can be 
analyzed in several ways. Figure 1 illustrates an example that shows the cascading effects of 
overexpression of a single gene throughout the network. ORCO can be installed via Python’s 
package installer ‘pip.’ The source code, documentation, and examples can be accessed at 
github.com/aksimhal/ORC-Omics. ORCO represents a powerful tool for researchers to analyze 
genomic data through a network lens.  
 
Runtime considerations 
ORC requires the solution of OMT problems between every pair of nodes and hence 
computation time can be significant. The problem is symmetric in origin/target nodes and can be 
easily parallelized and ORCO uses multiple cores if provided. Typical runtime for a 500-node, 
31,000 edge random Erdős–Rényi graph with random node weights is approximately 12 
seconds on an 8-core 8 GB M1 Apple MacBook Pro.  
 
Conclusion 
ORCO is an open-source tool that provides an easy entry point into Wasserstein-based network 
analysis. As shown in prior publications, ORC has helped discover novel oncological insights; 
however, the depth of insight ORC can provide is underexplored, and there are still many 
cancer types for which ORC has yet to be thoroughly investigated. We hope this tool will assist 
other researchers with their science.  
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Figure 1: ORCO example. Each subfigure has the same topology and node weights, except for 
node F. In (A), Gene F has a weight of 0.1. In (B), Gene F has a weight of 1.0. (C) shows the 
change in robustness (network B – network A) that cascade throughout the network based on 
an overexpression of Gene F. For example, as Gene F expression increases, the connection 
between Gene D and Gene A becomes more fragile. On the other hand, the connection 
between Gene B and Gene A becomes more robust.  
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