
RESEARCH ARTICLE

A kinase inhibitor library screen identifies

novel enzymes involved in ototoxic damage to

the murine organ of Corti

Matthew Ryals1, Kwang Pak1, Rahul Jalota1, Arwa Kurabi1, Allen F. Ryan1,2*

1 Department of Surgery/Otolaryngology, University of California, San Diego, School of Medicine, La Jolla,

California, United States of America, 2 Research Service, Veterans Administration Medical Center, San

Diego, California, United States of America

* afryan@ucsd.edu

Abstract

Ototoxicity is a significant side effect of a number of drugs, including the aminoglycoside

antibiotics and platinum-based chemotherapeutic agents that are used to treat life-threaten-

ing illnesses. Although much progress has been made, the mechanisms that lead to ototoxic

loss of inner ear sensory hair cells (HCs) remains incompletely understood. Given the criti-

cal role of protein phosphorylation in intracellular processes, including both damage and sur-

vival signaling, we screened a library of kinase inhibitors targeting members of all the major

families in the kinome. Micro-explants from the organ of Corti of mice in which only the sen-

sory cells express GFP were exposed to 200 μM of the ototoxic aminoglycoside gentamicin

with or without three dosages of each kinase inhibitor. The loss of sensory cells was com-

pared to that seen with gentamicin alone, or without treatment. Of the 160 inhibitors, 15

exhibited a statistically significant protective effect, while 3 significantly enhanced HC loss.

The results confirm some previous studies of kinase involvement in HC damage and sur-

vival, and also highlight several novel potential kinase pathway contributions to ototoxicity.

Introduction

Patients who receive ototoxic drugs, including aminoglycosides and platinum-based antican-

cer agents, frequently experience permanent sensorineural hearing loss. Ototoxicity due to

aminoglycoside treatment for multi-drug resistant tuberculosis can exceed 50% [1–2], and

children treated for cystic fibrosis nearly 25% [3] while the incidence of hearing loss following

cisplatin or carboplatin treatment exceed 60% [4–5]. The primary targets of this ototoxicity are

the sensory cells of the inner ear, known as hair cells (HCs), with the outer HCs being more

sensitive than the inner HCs (e.g. [6]).

Understanding the cellular mechanisms that underlie ototoxic damage to HCs remains an

area of active investigation. The generation of reactive oxygen species (ROS) originating from

the mitochondria of HCs have been strongly linked to the early stages of ototoxicity (e.g. [7]).

Downstream, the activation of the pro-apoptotic kRas/cdc42/JNK signaling cascade leading to

the phosphorylation of cJun has also been implicated (e.g. [8]), as have apoptosis (e.g. [9]) and
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necroptosis [10]. There are numerous studies showing a protective effect of various pharmaco-

logical agents directed against these cellular processes (e.g. [8, 11–13]). However, given the

complexity of intracellular signaling and other events, it seems likely that additional processes

contribute to ototoxic HC damage.

To discover such processes, several systems have been developed to screen for otoprotective

agents. These include, in particular, immortalized mammalian cell lines derived from inner

ear cells (e.g. [14]) and the zebrafish lateral line (e.g. [15]). These systems have been highly use-

ful and have contributed significantly to our knowledge of HC loss mechanisms. However,

they do not directly address the highly specialized mammalian HCs. Moreover, given that the

unique mammalian outer HC is the most sensitive HC to a variety of forms of damage (e.g.

[6,16,17]), we felt that a screen that included this cell type would be useful in illuminating

mechanisms of mammalian HC loss.

The purpose of the present study was to develop an assay using the mammalian organ of

Corti (oC), which could evaluate a variety of compounds to test for potential modification of

the HC toxicity of gentamicin, a powerfully ototoxic aminoglycoside antibiotic. A strong dos-

age was chosen that produced total or near-total HC loss. The loss occurred over a time course

of several days as opposed to hours, to more closely mimic the time course of HC loss during

in vivo ototoxicity. We chose to evaluate the assay using a library of kinase inhibitors. Phos-

phorylation is an important means of post-translational modification of proteins, which plays

a major role in intracellular signaling and other cellular processes (e.g. [18,19]). It therefore

seemed possible that a screen of inhibitors targeting all the major families of the mammalian

kinome would identify novel processes involved in ototoxic HC damage. In addition, if suc-

cessfully developed, the assay could also be useful for screening the effects of other pharmaco-

logical agents on mammalian HC damage.

Materials and methods

Animals

Experiments were performed on transgenic mice, in which eGFP (enhanced green fluorescent

protein) was selectively expressed in HCs under the control of a pou4f3 promoter construct

[20], bred onto a CBA background. The transgenic mice were generated in our laboratory and

bred for use. All experiments were performed to National Institutes of Health guidelines and

approved by the Institutional Animal Care and Use Committee of the VA San Diego Medical

Center. Animals were held in standard rodent boxes in containing two females and one male.

Upon evidence of pregnancy, the male was removed. Rodent chow and water were freely avail-

able, and environmental enrichment was provided. Mouse pups were deeply anesthetized with

rodent cocktail (2.0 mg/kg xylazine and 40.0 mg/kg ketamine i.m.) prior to sacrifice to dissect

the organ of Corti.

Kinase inhibitor libraries

The kinase inhibitory compounds used (EMD Calbiochem Kinase Inhibitor Libraries) con-

sisted of two libraries (Libraries I and II) of 80 inhibitory compounds each. The libraries were

provided in two separate sets of plates, and all compounds were provided in DMSO. Each

library included both DMSO and blank wells for controls.

In vitro screening

The oC was dissected from the cochleas of 3–5 day old pou4f3/eGFP mouse pups. The apical

region of each epithelium, which is relatively insensitive to aminoglycoside toxicity, was
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discarded. The basal and middle regions of the epithelium were cut into micro-explants, con-

sisting of approximately 20 inner HCs and the associated outer HCs, using a diamond scalpel.

Preliminary testing established that HCs in basal and middle turn micro-explants behaved

similarly in response to 200 μM gentamicin. The micro-explants were plated on in flat-bottom,

96-well plates in media consisting of DMEM/F-12, penicillin and 5% FBS. The cultures were

pretreated, beginning at the initiation of culture, for 24 hrs with one of the 160 kinase inhibi-

tors at concentrations of 50, 100, or 500 nM. The distributions of the library kinase inhibitor

targets within the major classes of the kinome are illustrated graphically in Fig 1. In addition,

the inhibitors are listed in S1 Table. Each inhibitor was diluted in media with DMSO, with the

total amount of DMSO in the culture media adjusted to 0.1% in each well. Media containing

200 μM gentamicin and one inhibitor concentration plus DMSO was substituted after the

overnight pretreatment, on day 0 (D0), and the micro-explants were then cultured for 72 hrs

through D3. Negative controls were cultured from D0-D3 in media alone with no inhibitors,

while positive controls were cultured in media with the addition of 200 μM gentamicin with

no inhibitors beginning on D0. Both controls contained 0.1% DMSO. Each inhibitor concen-

tration and control condition was performed in triplicate, thus each 96-well plate tested 7

inhibitors plus controls. The limited size of the testing plates required verification that the con-

trol conditions were consistent from plate to plate, and thus both controls were included in

each plate. GFP-positive cells were imaged by inverted fluorescence microcopy on each day of

treatment.

Validation and analysis

Inhibitor hits were identified qualitatively during the first round of inhibitor screening, based

on visually obvious increases in GFP-positive HC survival. Following this initial identification

of compounds of interest, repeat plates were prepared in an identical manner for all hits. Two

additional concentrations of each compound, 10 nM and 1000 nM, were also tested. Finally,

micro-explants showing either HC protection or enhanced HC damage were treated with the

compound alone at 1000 nM to evaluate toxicity. HC counts, including both inner and outer

HCs, were then performed for both the first and repeat tests. Survival curves were generated

for each condition, by normalizing HC counts to the number of HCs present on D0 (at the ini-

tiation of gentamicin treatment), since each micro-explant contained a slightly different start-

ing HC number. Any micro-explants that did not attach and flatten in the well by D0 were

excluded, as HC counts could not be accurately quantified at this time. Statistical analysis of

HC counts was performed using GraphPad Prism 6, StatView 5. Inhibitor treatment and con-

trol group data at each time point were analyzed by one-way ANOVA with posthoc Fisher’s

least significant difference and Tukey tests (with Bonferroni correction for multiple compari-

sons) to identify significant differences between treatment and control groups.

Results

Control micro-explants

Imaging of GFP-positive cells in negative and positive control wells showed a similar behavior

of micro-explant cells. Negative control micro-explants showed high survival of GFP-positive

HCs on D1-D2, with some loss apparent on D3 (Fig 2A and 2B), as is commonly seen in long-

term neonatal oC cultures. Positive control micro-explants showed increasing losses of GFP-

positive HCs from D1 onward (Fig 3A and 3B).

HC counts from negative and positive controls were pooled for each library. They were

converted to percent survival based on D0 HC numbers, prior to gentamicin exposure (Fig 4).

Negative control micro-explants for Libraries I and II showed high levels of HC survival on
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both D1 (96% and 98%, respectively) and D2 (90% and 93%, respectively). By D3 negative con-

trol micro-explants showed reduced HC survival (64% and 71%, respectively). Positive control

micro-explants from Libraries I and II showed significantly reduced survival on D1, after 24

hrs exposure to gentamicin (57% and 53%, respectively), and significantly lower survival after

48 hrs exposure on D2 (14% and 10%, respectively). D3 positive control micro-explants

showed continued loss of GFP-positive cells (8% and 7% respectively). Repeated measures

ANOVA followed with Fisher’s PLSD posthoc test showed a highly significant difference

between negative and positive controls over time (p<0.0001), but no significant difference

between the two negative control pools or the two positive control pools for Libraries I and II,

despite the large number of samples (p = 0.1208 and p = 0.2659, respectively). Variability

Fig 1. Distribution of tested inhibitors across the kinome. The inhibitor targets are indicated in red. The

kinome diagram is adapted, with permission, from Cell Signaling Technologies.

https://doi.org/10.1371/journal.pone.0186001.g001
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Fig 2. Negative control cultures. Montages of representative negative control (untreated) oC micro-

explants from the screen of Library I (2A) and Library II (2B), from D1 through D4. HC loss was minimal

through D3, with some loss by D4, for both libraries. (Fluorescence intensity for this and the following figures

has been slightly enhanced for later days, as HC GFP intensity faded over time.)

https://doi.org/10.1371/journal.pone.0186001.g002
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Fig 3. Positive control cultures. Sample montages of representative, positive control (gentamicin treated)

oC micro-explants from the Library I (3A) and Library II (3B) screens. Gentamicin was added on D1, after 1

day of kinase inhibitor treatment.

https://doi.org/10.1371/journal.pone.0186001.g003
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across cultures in the same condition and at the same time was low. The control micro-

explants thus provided stable baselines against which the effects of inhibitor treatments could

be evaluated.

Immunohistological characterization of control oC micro-explants

Negative control oC micro-explants were cultured for 4 days, representing the maximum

number of days in the kinase inhibitor screen. After fixation and immunohiostochemistry (Fig

5A), counterstaining with DAPI revealed intact nuclei in all GFP-positive cells. Phalloidin

staining revealed on the presence of stereocilia on almost all GPF-positive cells, confirming

their identity as HCs and their general condition. Distortion of the epithelium, due to expan-

sion and migration of nonsensory cells, was apparent, and is commonly seen in oC cultures

over time [21]. Positive control micro-explants (treated with gentamicin alone) were also cul-

tured for 4 days and immunostained in the same manner (Fig 5B). For the greatly reduced

numbers of GFP-positive cells, DAPI-stained nuclei and phalloidin-positive stereocilia bundles

Fig 4. Quantitative analysis of positive and negative oC controls. Averaged cell counts from all control micro-explants from Library I

and Library II plates, showing highly reproducible survival curves between D2-D4, referenced to the HC counts on D1. Error bars represent

±SEM.

https://doi.org/10.1371/journal.pone.0186001.g004
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Fig 5. Morphology of positive and negative controls. Micro-explants of GFP-expressing HCs after 4 days

in culture. The micro-explants have been stained with Texas-Red conjugated phalloidin to label the actin in

HC stereocilia bundles and DAPI to label cell nuclei. The negative control is typical. The positive control micro-

explant was chosen because a more than average number of HCs survived, so that HC morphology could be

illustrated.

https://doi.org/10.1371/journal.pone.0186001.g005
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remained present. As in the micro-explant illustrated, the great majority of outer HCs and

many inner HCs were lost from gentamicin-treated micro-explants by D4.

Results from libraries I and II

It should be noted that Libraries I and II terminology have no functional significance, but

merely represent the plate division of the entire collection of compounds. The numerical

nomenclature of compounds is preserved to permit ready reference to the manufacturer’s list

of inhibitors and their properties listed on their website [22].

Inhibitors found to influence GFP-positive cells in the micro-explant screen are summa-

rized in Table 1. One-way ANOVA between inhibitor concentrations and controls followed by

a Fisher’s PLSD posthoc test showed significant protection for 8 inhibitors in Library I, and 7

inhibitors for Library II. Examples of HC survival curves for several protective inhibitors are

illustrated in Fig 6. In addition, 4 inhibitors were observed to have either a toxic effect alone in

the micro-explant screen, prior to the addition of gentamicin, or to exert a synergistic damag-

ing effect with gentamicin exposure. Examples are presented in Fig 7, and the results described

in detail below.

Protective library I inhibitors

Inhibitor 7 from Library I (I7) is an inhibitor of the Akt pathway, Akt Inhibitor X. A protective

effect of I7 was observed throughout the period of culture at several concentrations.

I26 is an inhibitor of the epidermal growth factor receptor (EGFR). The protective effect of

the inhibitor against 200 μM of gentamicin was strongest at the 10, 50 and 1000 nM concentra-

tions, and occurred throughout the exposure period. The effect against HC death was strongest

at D2 and D3 (post 24–48 hrs of culture with gentamicin); however, a protective effect was

observed up to 72 hrs post exposure to gentamicin. Significant structural morphology differ-

ences were observed after culturing overnight with inhibitor alone, primarily that outer HCs

appeared to move away from the row of inner HCs and form a bundle of cells.

I35, Flt-inhibitor 3, is an inhibitor of both Flt3 and c-kit at the concentrations used. It also

has inhibitory effects on KDR, c-Abl, Cdk1, c-Src, and Tie-2; however, the inhibition of these

molecules requires higher concentrations than those used in this assay. The protective effect

was observed at 500 and 1000 nM concentrations, and was strongest at D1 after 24 hrs culture

with gentamicin.

I54, PDGFR Inhibitor II, is an inhibitor with activity against PDGFR, c-Abl, Lck, c-Src, and

Fyn at the concentrations used in this assay. A robust protective effect was observed at 500 nM

concentration, and could be observed at D2-D4 (post 72 hrs of culture with gentamicin).

I55, PDGF RTK Inhibitor, is an inhibitor of PDGFR phosphorylation and c-kit. The protec-

tive effect was strongest at the 100, 500 and 1000 nM concentrations on D1 and D2, with some

protective effect still observed on D3.

I56 is an inhibitor of RNA-dependent protein kinase (PKR) autophosphorylation. The pro-

tective effect of this inhibitor was observed at all inhibitor concentrations. It was maximal on

D1, but continued through D3.

I62, PP3, was included in the library as a negative control for the Src inhibitor PP2. Its

inhibitory effect was observed at D2 at the 100 nM concentration. I62 does have activity

against EGFR and the EGFR inhibitor I26 did inhibit HC loss, but the IC50 of I62 against

EGFR is 2.7 μM. It is also unclear why, at the 100 nM concentration and not the 500 nM con-

centration, I62 would have a protective effect and that it was seen only at D2. This may have

been a false hit, and it is possible that additional replication with this inhibitor would yield no

significant effect.

Kinase screen to identify novel ototoxic pathways
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Protective library II inhibitors

II10, compound C, is a selective inhibitor of bone morphogenetic protein (BMP) and is also an

inhibitor of AMPK. The strongest protective effects were observed at 500 and 1000 nM con-

centrations on D1, with only 1000 nM being protective on D2 and loss of significant protection

on D3.

II23, Casein kinase inhibitor 2, is an inhibitor of casein kinase 2 (CK2). The protective effect

of II23 was observed at the 100 and 500 nM concentrations. The effect was strongest on D1,

with a weak protective effect on D2 at the 500 nM concentration.

Table 1. Kinase inhibitors influencing gentamicin-induced HC damage.

Library I Protective

Inhibitors

Strength/Day of Protective Effect Optimal Inhibitory

Concentration

Target/IC50 information

I5 Akt Inhibitor V

Triciribine

Weak D1 (100 nM p <0.01) 100 nM (D2) IC50 = 20 nM HIV-1, HIV-2

I7 Akt Inhibitor X Strong D1 (1000 nM, p <.01) 1000 nM (D1) IC50 = 1000 nM Akt

I26 EGFR Inhibitor Strong D1 (1000, 500 nM p <0.0001

Strong D2 (1000, 500 nM p <0.002)

Strong D3 (1000, 500 nM p <0.004)

1000 nM (D1-D3) IC50 = 63 nM EGFR

I35 Flt-3 Inhibitor III Medium D1 (1000, 500 nM, p <0.04) 1000 nM (D1) IC50 = 50 nM Flt3

260 nM cKit

I54 PDGF Receptor TK

Inhibitor IV

Strong D1-D3 (500, 1000 nM p

<0.0005)

500,1000 nM (D1-D3) IC50 = 4.2 nM and 45 nM

PDGFR-b and PDGFR-a,

respectively; 22 nM, 100 nM,185 nM and 378 nM cAbl, Lck,

c-Src, Fyn, respectively

I55 PDGF RTK Inhibitor Strong D1 1000 nM p< .001;

Medium D1 (100 nM p <0.01,

Medium 500 nM (D2/3, p <0.02)

Medium D2 (100 nM p <0.004)

Medium D3 100 nM p <0.03)

1000 nM (D1) IC50 = 4 nM PDGFR

phosphorylation; 7.6 nM 500

PDGFR kinase activity;

234 nM c-kit receptor activity; 434 nM c-kit receptor

phosphorylation

I56 PKR Inhibitor Strong D1 (1000 nM p < .0001)

Medium D1 (50 nM p <0.001,

100 nM p <0.0001, 500 nM p <0.0001)

1000 nM (D1) IC50 = 210 nM for RNA- induced PKR auto-

phosphorylation; 100 nM for rescue of PKR-dependent

translation block

I62 PP3 Medium D3 (p = 0.008) 100 nM (D2) IC50 = 2700 nM for EGFR

II10 AMPK Inhibitor,

Compound C

Strong D1 (500, 1000 nM p <0.001)

Medium D2 (1000 nM p <.01)

500 nM (D1 Ki = 109 nM in the presence of 5mM ATP and absence of

AMP

II23 Casein Kinase II

Inhibitor III, TBCA

Strong D1 (500, 1000 nM p <0.001,

100 nM p <0.01)

Weak D2 (500 nM p <0.05)

500 nM (D1) IC50 = 110 nM for CK2

II27 Cdk4 Inhibitor II,

NSC 625987

Strong D1 (1000 nM 500 nM p <0.001,

100 nM p = 0.021, 50 nM p <0.001)

Weak D2 (50 nM p <0.01)

Weak D3 (50 nM p <0.02)

50 nM (D2-D4) IC50 = 200 nM for Cdk4/D1

II41 Fascaplysin,

Synthetic

Strong D1 (500, 1000 nM p <0.0001,

Weak D1 (100 nM p <0.03, 50 nM p

<.04)

Medium D2 (500, 1000 nM p <0.001)

Weak D3 (500, 1000 nM p <0.03)

1000 nM (D1-D3) IC50 = 350 nM for Cdk4/D1

II74 p38 MAP Kinase

Inhibitor III

Weak D2 (100 nM p = 0.02) 100 nM (D2) IC50 = 380 nM for p38a

II75 p38 MAP Kinase

Inhibitor

Strong D1 (100 nM p <0.02)

Weak D2 (100 nM p <0.03,

500 nM p <0.03)

100 nM (D1-D2) IC50 = 35 nM for p38MAPK

II95 Tpl2 Kinase

Inhibitor

Medium D1 (50 nM p <0.03)

Weak D2 (500 nM p <0.03)

Weak D3 (500 nM p <0.03)

50 nM (D1) IC50 = 50 nM for Tpl2 Kinase

https://doi.org/10.1371/journal.pone.0186001.t001

Kinase screen to identify novel ototoxic pathways

PLOS ONE | https://doi.org/10.1371/journal.pone.0186001 October 19, 2017 10 / 21

https://doi.org/10.1371/journal.pone.0186001.t001
https://doi.org/10.1371/journal.pone.0186001


II27, Cdk4 inhibitor II, and II41, fascalypsin, are selective inhibitors of Cdk4. The strongest

protective effect for II27 was observed on D1 at all concentrations. A protective effect was also

observed in the 50 nM group on D2 and D3. Cdk4 inhibitor II alone enhanced HC survival

above that seen with no treatment. The strongest protective effect of II41 was observed at the

500 and 1000 nM concentrations throughout the gentamicin exposure period. In contrast,

treatment with 1000 uM fascaplysin alone proved to be toxic on D2 and D3.

Fig 6. Protective kinase inhibitors. Survival curves for several inhibitors that exhibited significant (p < .05) protective effects after 1, 2 and/

or 3 days of gentamicin exposure (D2-D4). For each inhibitor and dose, cell survival counts have been normalized to cell counts on D0, just

before gentamicin was initially added, and pooled for all treated micro-explants.

https://doi.org/10.1371/journal.pone.0186001.g006

Fig 7. Damaging kinase inhibitors. Survival data are shown from D0, after 1 day of inhibitor treatment alone, and for days 1 to 3 of

gentamicin treatment (D2-4), for two of the three inhibitors that significantly enhanced HC damage. Two modes of damage are illustrated.

Inhibitor II26 had some toxic effect on HC survival on its own, but especially at 500 nM it strongly enhanced the damaging effects of the

aminoglycoside. In contrast, 24 hrs of treatment with inhibitor II71 at all concentrations tested caused near total or complete loss of HCs on

D1, prior to the addition of gentamicin, indicating very strong and independent toxicity.

https://doi.org/10.1371/journal.pone.0186001.g007
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II74, p38 MAPK Inhibitor III, II75, p38 MAPK Inhibitor and II7, PD169316, are selective

inhibitors of the p38α MAPK. The strongest protective effect of II74 was observed at the 500

nM concentration on D2; of II75 was at the 100 and 500 nM concentrations on D1; and of II77

was at the 100 and 500 nM concentrations on D2. It should also be noted that there were addi-

tional p38 MAPK inhibitors in this library (II78, II83, II86, and II89) that did not exhibit a sig-

nificant effect on HC survival.

Finally, II95, STO-609, is an inhibitor of Tpl2 kinase. The strongest protective effect was

observed at the 50 nM concentration on D1 and D2.

Inhibitors that increased HC damage

Library II, inhibitor 26: II26, another Cdk4 inhibitor, is suppresses the activity of both Cdk2

and Cdk4. It is more specific for Cdk4 (IC50 = 76 nM) than for Cdk2 (IC50 = 520 nM), and it

also has activity against Cdk1 (IC50 = 2.1 μM), although this latter effect was likely not seen at

the concentrations used in this assay. Interestingly, this inhibitor was only toxic at the 500 nM

concentration and only in combination with gentamicin. The 100 nM and 50 nM concentra-

tions had no significant effects on the normal course of the gentamicin toxicity (Fig 7, left

panel).

Library II, inhibitor 71: II71, NF-kB activation inhibitor, suppresses NF-kB activation. The

toxic effect of II71 was observed as a near total loss of HCs at all concentrations (50, 100 and

500 nM), even before the addition of gentamicin on D0. Not surprisingly, the 1000 nM com-

pound alone was also highly toxic (Fig 7, right panel).

Library II, inhibitor 88: II88, SC-68376, is an inhibitor of Chk1 which also has inhibitor

activities against Cdk1. It did not influence HC survival alone, but enhanced the toxicity of

gentamicin. Enhancement was strongest at the 500 nM concentration on D1 after 24 hrs of

gentamicin exposure, although significant increases in HC loss were also observed at the 100

nM and 50 nM concentrations by D2.

The general kinase inhibitor staurosporine, contained in both libraries (I95 and II92,

respectively), also demonstrated a profound damaging effect on HCs when applied prior to

gentamicin, comparable to II71 and similar to that reported in previous studies [23].

Discussion

We developed an assay based on micro-explants of the neonatal mouse oC to screen kinase

inhibitors that span the major families of the kinome for the ability to alter aminoglycoside

damage to mammalian cochlear HCs. Positive hits were confirmed by re-screening. This

resulted in the identification of contributions from diverse kinase families. Some of the kinases

identified have been implicated previously in HC damage, while others are novel.

Protective kinase inhibitors

I7 (Akt Inhibitor X). The protective effect of I7 was seen at the 500 and 1000 nM concentra-

tions, and was strongest at D2 (after 48 hrs culture with gentamicin). There is prior evidence

that Akt and PKC signaling is up-regulated following exposure to gentamicin in neonatal rat

oC explants, and that inhibition of either pathway in conjunction with gentamicin exposure

was found to worsen HC death in explants [24]. Why the results of I7 were opposed to these

published findings is not clear. However, it is possible that I7 has a different influence on the

three isoforms of Akt than the inhibitor used in the cited prior study. It is well known that dif-

ferent isoforms of signaling molecules can have distinct effects) [25], and differing roles of Akt

isoforms in ototoxicity have been documented [26].
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I26 (EGFR Inhibitor). EGFR has been shown to be expressed in rat oC at postnatal day 3

(P3) [27,28], and to be upregulated after aminoglycoside exposure rat oC explants [29]. How-

ever, treatment of explants with EGF did not show a protective effect [29]. Results with I26

suggest that one or more members of the EGF family may be involved in mediating HC dam-

age. In other systems, EGFR inhibition has been shown to protect cells from ROS generation

and cell death [30].

I35 (Flt-3 inhibitor 3). At the concentrations used in our study, I35 inhibits Flt3 and c-Kit.

While Flt3 and c-Kit have not previously been implicated in HC damage, rare cases of deafness

following c-Kit inhibition in patients has been reported [31,32]. This suggests Flt3 inhibition

as a possible mechanism for the effects of I35. Flt3 inhibition has been shown to protect neu-

rons against oxidative stress associated with glutamate toxicity [33].

I54 (PDGF Receptor TK Inhibitor IV). I54 is an inhibitor of not only PDGFR, but also c-

Abl, Lck, c-Src, and Fyn at the concentrations used in this assay. A robust protective effect

was observed at 500 nM concentration, and was present at D1-D3. c-Abl has been shown to

be up-regulated in mouse oC following gentamicin exposure [34]. c-Src signaling has been

implicated in noise-induced hearing loss, and treatment of chinchillas with Src inhibitors on

the round window membrane prior to noise exposure was found to protect against HC

death as measured by threshold shift and cyctocochleogram. c-Src signaling may mediate

both mechanical and metabolic induction of apoptotic signaling in HCs, which means that it

may also play a role in aminoglycoside-induced HC death due to aminoglycoside-induced

dysregulation of cell metabolism. c-Src is involved both in apoptotic signaling due to cyto-

skeleton changes that stress cellular connections (anoikis) in the oC, and also in activation of

reactive oxygen species (ROS) production [35]. A protective effect was observed via ABR

threshold shift in noise-exposed chinchillas given a c-Src inhibitor plus n-acetyl cysteine

(NAC), where NAC co-therapy provided no additional benefit [36]. As ROS generation is

linked to aminoclycoside toxicity in HCs [7], prevention of ROS generation via blockage of

c-Src in noise-induced hearing loss may overlap with gentamicin exposure in terms of pro-

tection. Furthermore, in a study of rats given cisplatin with or without a c-Src inhibitor, a

protective effect was observed via both improved ABR threshold shift and OHC survival in

the inhibitor treatment group [37]. The relatively strong effect of this inhibitor may be

related to its broad inhibitory profile, which could have influenced more than one HC dam-

age process.

I55 (PDGF Receptor TK Inhibitor). I55 inhibits phosphorylation of the PDGFR as well as

of c-Kit. Its protective effect was strongest at the 500 and 1000 nM concentrations on D1 with

a protective effect at 500 nM still observed on D2. Given the overlap in inhibition targets

between this inhibitor and both I35 and I54, there may well be overlap in the mechanisms

underlying the effects of these compounds.

I56 (PKR inhibitor). I56 inhibits RNA-dependent protein kinase (PKR) autophosphoryla-

tion. PKR-like endoplasmic reticulum kinase (PERK) is one mediator of unfolded protein ER-

stress response via translation inhibitor eIF2α. ER stress has recently been implicated in ami-

noglycoside ototoxicity [38–40]. The eIF2α kinases share a large degree of homology in their

kinase domains [41], so it may be reasonable to think that I56 has activity against PERK and/

or have activity specifically against the pro-apoptotic UPR signaling mechanism. In mouse car-

diomyocytes, cisplatin toxicity involves activation of PKR as measured via phospho-eIF2α
[42]. The ototoxic effects of acetaminophen (APAP) have also been attributed to activation of

ER stress via PERK activity increasing levels of phospho-eIF2α in HEI-OC1 cells [39].

I62 (PP3). I63 inhibits EGFR kinase. A protective effect was observed at D3 at 100 nM. I62

has activity against EGFR at an IC50 of 2.7 μM, so this is an unlikely effect for this compound.

Thus, it is unclear why the 100 nM concentration and not the 500 nM would have a protective
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effect, or why this would only become apparent at D3. It is possible that additional replication

with this inhibitor would reveal this to have been a false hit.

II10 (Compound C). II10 is a selective inhibitor of bone morphogenetic protein (BMP) as

well as of AMPK. The strongest protective effect was observed at 500 nM concentration on

D1, with only 1000 nM showing protection on D2. Because BMP seems unlikely to be involved

in ototoxic signaling, our analysis of this assay focuses on the role of AMPK signaling in genta-

micin-induced ototoxicity. It has been demonstrated that ROS activation of AMPK can lead to

e2F1-mediated apoptotic signaling. This signaling pathway can be activated by hypermethyla-

tion of 12S rRNA by methyltransferase mtTFB1. In mtTFB1-overexpressing transgenic mice,

progressive hearing loss is observed along with apoptosis in the stria vascularis and SGNs. The

human mutation, A1555G in mtDNA, can cause maternally inherited deafness due in part to

the same hypermethylation event leading to impaired mitochondrial ribosome function.

Patient-derived A1555G cells with methylated 12S rRNA activate AMPK and trigger e2F1-me-

diated apoptosis in vitro [43]. Given the role of mitochondrial stress and ROS generation asso-

ciated with gentamicin, blockade AMPK signaling to prevent e2F1-mediated apoptosis could

be a plausible protective mechanism of II10. Conversely metformin has a protective effect in

HEI-OC1 cells when they are treated with gentamicin via modulation of intracellular calcium

flux and reduction of ROS species [44]. Metformin can activate AMPK signaling in both hepa-

tocytes and skeletal muscle cells [45], so it is unclear if the activation of AMPK is responsible

for the protective effect of metformin or if there are pleiotropic effects in oC cells beyond

AMPK signaling. Furthermore AMPK has been shown to play a pivotal role in regulation of

voltage-gated potassium (BK) channels, and in AMPK-knockout mice both BK channel levels

and recovery from acoustic trauma were impaired compared to wild type despite the threshold

shift being relatively similar [46]. Thus there may be several roles for AMPK signaling in the

inner ear, and inhibition of those pathways having to do with pro-apoptotic signaling may

cause a short-term protective effect against gentamicin.

II23 (Casein Kinase Inhibitor III). II23 is an inhibitor of casein kinase 2 (CK2). The protec-

tive effect of II23 was observed at 100 and 500 nM. II23 lost its protective effect at 1000 nM,

perhaps due to the inhibition of other kinases at this dose. CK2 is a Ser/Thr specific kinase that

is involved in a number of signal transduction pathways. There is some evidence to suggest

that CK2 may play a role in apoptotic signaling, especially in response to oxidative stress. In a

human neuronal blastoma cell lineage overexpressing α-synuclein, promotion of aggregates of

α-synuclein due to oxidative stress treatment was linked to an increase CK2 and cathepsin D.

Furthermore, CK2 inhibition was shown to lower α-synuclein in stressed cells, linking CK2 to

the cellular stress pathway [47]. Another study showed that CK2 inhibition in rat PC12 adrenal

cell line can lower the level of oxidative-stress induced apoptosis by suppressing a number of

apoptotic pathways include caspase-8-, bid-, and mitochondrially-mediated apoptosis [48].

II27 (NSC 625987) and II41 (Fascaplysin). II27 and II41 are selective inhibitors of Cdk4/6,

which are important for cell cycle G1 phase progression. In the avian inner ear, Cdk inhibitors

like p27Kip1 have been shown to protect HCs from gentamicin-induced ototoxicity [49]. Thus

it would appear that tightly regulating the cell cycle in HCs is important for their survival. The

link between gentamicin and Cdk4 inhibition may be that cell survival is promoted due to a

prolonging of cell cycle arrest by Cdk4 blockade during gentamicin exposure. While the HCs

of the murine inner ear are post-mitotic by days 3–5 [50], it is possible that gentamicin damage

forces HCs into the cell cycle pathway, as has been suggested by Tao and Segil [51]. The cell

cycle can be fatal for post-mitotic cells [52]. Cell cycle arrest, induced by Cdk4 inhibition,

could prevent or delay this process.

II74 (P38 MAPK Inhibitor III), II75 (p39 MPK Inhibitor) and II77 (PD169316). II74, II75

and II77 are inhibitors of the p38α MAPK. Their strongest protective effect was observed at
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the 500 nM concentration on D2. It has been shown in rat P3 oC culture that minocycline can

decrease gentamicin-induced apoptosis by inhibiting phosphorylation of p38 MAPK, activa-

tion of caspase-3, and mitochondrial cytochrome c release; however, p38 MAPK inhibition

alone was not as protective as the inhibition minocycline provided [53]. p38 MAPK phosphor-

ylation has been demonstrated following noise exposure, and treatment with a p38 MAPK

inhibitor reduced threshold shift and protected HCs in treated mice post-noise exposure [54].

The PKC inhibitor Gö6976 also has activity against p38 MAPK, and has been shown to protect

neurons from lipopolysaccharide-induced inflammation and glial-mediated damage [55].

Interestingly, this same inhibitor, Gö6976, has been shown to be protective against gentamicin

in the immortalized oC cell line OC-k3 [56]. Although PKCα activation was demonstrated in

this paper, PKCα signaling was only present for the first 15 minutes of gentamicin exposure in

these cells but the inhibitor treatment was effective up to 48 hrs post gentamicin exposure. It

may thus be that p38 MAPK inhibition was the primary protective mediator in these cells. It

should be noted that Gö6976 was an inhibitor (I31) in this screen; however, the concentration

of gentamicin used in this assay was four times higher than in the assay where the protective

effect was observed and thus may overshadow a protective effect for this compound. Similarly,

several other p38 MAPK inhibitors in this assay (II78, II83, II86, and II89) were ineffective.

This could be related to the strength of inhibition. Alternatively, it is possible that the inhibi-

tors have differential effects on the four p38 MAPK isoforms [57]. In any case, the protective

effective of three p38 inhibitors in our screen suggests that p38 MAPK signaling plays a signifi-

cant role in play a role in gentamicin-induced ototoxicity, perhaps acting as a monitor for oxi-

dative stress in HCs and initiating cell death.

II95 (Tpl2 Kinase Inhibitor). Tpl2 kinase is an inducer of several kinase pathways, including

MAPK and IKK pathways. It has been shown to be critical in signaling for macrophage

response to LPS via MEK and ERK1/2. There is evidence that Tpl2 kinase stability and expres-

sion is in turn regulated by NF-kB signaling [58]. There is no prior evidence that Tpl2 kinase

has a role in aminoglycoside ototoxicity.

Damaging kinase inhibitors

II26 (Cdk4 Inhibitor) is an inhibitor of both Cdk2 and Cdk4 at the concentrations employed.

Taken alongside the protective effect of II41, a selective Cdk4/6 inhibitor, this result would

appear to implicate Cdk2 as a protective regulator of HC survival. Cdk2 is critical for the tran-

sition from the G1 phase of the cell cycle to the S phase. This would implicate a prolonged G1

phase and subsequent delay of cell cycle progression as potentially damaging to HCs. This is in

contradiction to the above interpretation regarding the protective effects of Cdk4 inhibitors.

However, arguing against a role for Cdk2 in aminoglycoside-induced damage is the fact that

three Cdk2 inhibitors in Library II (II30, II32, II33) showed no significant HC protection

against gentamicin damage.

II71 (NF-κB Activation Inhibitor). A previous study of NF-κB inhibition reported a similar

toxic effect on HCs in vitro [59], while NF-κB has also been shown to enhance HC death due

to cisplatin [60]. In mice, there is also evidence that deletion of the p50 subunit of NF-κB can

lead to enhanced noise-induced hearing loss as well as degeneration of SGNs although no

decrease HC numbers was observed [24]. In contrast, Jiang et al. [61] found NF-κB to protect

HCs from aminoglycoside ototoxicity. Our results support a role for NF-κB in promoting HC

damage.

II88 (SB218078). II88 is an inhibitor of Chk1 and also has activity against Cdk1. Chk1 is a

cell checkpoint regulator that is downstream of normal retinoblastoma protein (Rb) control in

the inner ear and vestibular system. Rb is a cell cycle progression inhibitor, and deletion of Rb
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from the inner ear can cause irregular proliferation and subsequent apoptosis of cochlear HCs.

Given that Chk1 has the ability to phosphorylate and inactivate Rb, it would be counterintui-

tive to assume that Chk1 inhibition would lead to increased toxicity [27]. It may therefore be

useful to consider Cdk1 inhibition. The specificity of II88 to Cdk1 is around 250 nM, consis-

tent with damage enhancement restricted to 500 nM. It would thus appear that the most toxic

effects of II88 occur when Cdk1 should be inhibited effectively. Interestingly, like Cdk2, Cdk1

is required for progression of cells from G1 to S phase of the cell cycle. This supports the

notion that this transition may somehow be protective for HCs. However, as with Cdk2, two

more specific Cdk1 inhibitors in library II, II18 and II19, failed to influence HC survival.

The disparate effects of cell cycle inhibitors on gentamicin-induced cell death, with Cdk4

inhibitors protective and a Cdk2 inhibitor damaging, are difficult to reconcile. However, it has

been noted that while Cdk4 inhibitors are highly effective in arresting cell cycle, inhibition of

Cdk2 often does not reduce cell proliferation due to redundant cell cycle progression factors

[62]. In any event, the disparity points out an advantage of a compound screen, in that the

results do not fit neatly into current knowledge or theory.

Advantages and disadvantages of the screening assay

The results of this study validate the use of neonatal organ of Corti micro-explants as a

screening tool with which to evaluate the effects of pharmacological compounds on differen-

tiated mammalian HCs. Screening assays have the advantage that they can test the effects of

much larger numbers of compounds than more comprehensive studies. This allows the eval-

uation of potential therapeutic agents without a priori assumptions regarding the mecha-

nisms of HC damage, and permits the discovery of potential HC protectants or damaging

agents that might not have been predicted from current knowledge. In this screen, several

novel HC protectants were uncovered. A screen also provides comparative information on

the relative protective ability of compounds. Thus, we found that some compounds with sim-

ilar kinase targets displayed quite disparate protective ability. A critical advantage is that the

assay uses mammalian HCs rather than a cell line or HCs from a different vertebrate class.

Only mammals possess the highly differentiated outer HC, which is the most sensitive to

many forms of damage. Finally, the use of a transgenic in which HCs express GFP allows

monitoring of HC loss throughout the assay, decreasing the number of samples required as

well as experimental variability.

However, the nature of a screen means that the assay employed is necessarily constrained.

In our case, as in most screens, an in vitro procedure is necessary in order to increase through-

put. Dissecting and placing tissue in culture can of course alter the responses of cells. Because

fully adult mammalian cochlear HCs do not survive in culture, we have used neonatal organ of

Corti micro-explants. Neonatal HCs from rodents have significant differences from the inner

ear sensory cells of adult humans. They are not only from a distinct mammalian species, sepa-

rated by millions of years of evolution, they are also much more immature than any postnatal

human HCs. That said, there are more similarities between murine developing and adult

human HCs than there are differences. There have been many studies demonstrating that HCs

from both species respond similarly to toxins [63], while genetic defects that influence mouse

HCs often have similar effects on human HCs [64].

Another constraint is the limited number of conditions that can be evaluated, given that

micro-explants cannot be generated in the much larger numbers possible with cell lines or zeb-

rafish. We thus used only one rather high concentration of gentamicin. This potentially missed

compounds that might have been protective at a lower aminoglycoside dose. While we used

several concentrations of the screened compounds, dosages outside of this range might have
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proved more effective. Indeed, when additional dosages (10 and 1000 nM) were performed for

positive hits, protection was often observed. Of course, if these additional dosages had been

performed for all compounds it is possible that additional hits would have been discovered.

However, this study was performed as a screen, and testing a larger number of dosages on all

compounds would have made the screen less practical. That said, the results obtained with

1000 nM for the hits were generally positive, suggesting that we could have employed a wider

range for the three dosages used in the initial screen.

Another limitation is the period of time over which even neonatal HCs can be maintained

in culture. This necessitated that the pretreatment of micro-explants with compounds coin-

cided with the period necessary for micro-explant attachment to the culture well. Free-floating

micro-explants are difficult to reliably image, and thus HC counts were only be obtained after

pre-treatment. This raised the possibility that compound toxicity during pre-treatment might

be missed. While missing cells leave gaps in the regular array of inner and outer HCs, which

provided one means by which to identify toxicity when the initial micro-explant images were

obtained on D0, this is not an infallible measure. Also, the effects of compounds that might

require a longer pretreatment period could have been missed.

These and other issues mean that compounds identified in the current screen need to be

confirmed by more extensive studies and evaluated in adult animals in vivo, to identify those

that might potentially be translatable to humans.

Conclusions

This kinase screen has validated previous studies indicating the importance of several kinase

pathways in HC damage due to ototoxic compounds. These include the p38 MAPK, cSrc, and

G1 progression pathways. The screen has also identified novel potential mediators not previ-

ously shown to be involved in HC damage. These include Akt, EGFR, Flt3, c-Kit, AMPK, CK2

and Tpl2. These findings indicate the complexity of intracellular processes that can contribute

to ototoxic HC damage. None of our inhibitors proved to provide 100% protection, also con-

sistent with a damage process that involves multiple cellular pathways and components.

It is interesting to note that even when inhibitors of a particular kinase were effective in

protecting HCs, other inhibitors of that same kinase were not. Since these inhibitors are all

effective in other tissues and situations, this indicates that inhibitors have variable effects

depending upon context. This may also reflect the diversity of kinases, many of which have dif-

ferent isoforms that potentially play different roles [23].

While a substantial number of kinase inhibitors were protective, none offered complete

protection of HCs from damage. This is presumably related to the relatively high dose of genta-

micin employed. However, it may also reflect the complexity of damage processes and signal-

ing. This would be consistent with the results presented here and by many prior studies

implicating multiple cellular processes that contribute not only to HC damage and but also to

attempts by the HC to protect itself from injury. Inhibiting any one process may in the end be

insufficient to provide complete protection in the face of a strong damaging stimulus. Support-

ing this idea is the finding that I54, an inhibitor with a broad range of targets, was one of the

most protective inhibitors.

It is important to note that inhibitors of some kinases previously shown to be involved in

HC damage were not effective in this screen. This includes especially inhibitors of the JNK and

ERK MAPKs, which have been found to promote damage and survival, respectively, in amino-

glycoside HC toxicity [65,66]. This may be related to the high dose of aminoglycoside used in

our screen. Given the variability in results for other inhibitors targeting the same kinases, as

noted above, this is perhaps not surprising.
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