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Postnatal therapeutic approaches in genetic 
neurodevelopmental disorders

Gilad Levy1, Boaz Barak1, 2 , *

Abstract  
Genetic neurodevelopmental disorders are characterized by abnormal neurophysiological 
and behavioral phenotypes, affecting individuals worldwide. While the subject has been 
heavily researched, current treatment options relate mostly to alleviating symptoms, 
rather than targeting the altered genome itself. In this review, we address the neurogenetic 
basis of neurodevelopmental disorders, genetic tools that are enabling precision 
research of these disorders in animal models, and postnatal gene-therapy approaches for 
neurodevelopmental disorders derived from preclinical studies in the laboratory. 
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Neurodevelopmental Disorders
Most neurodevelopmental disorders (NDDs) are caused 
by gene mutations or deletions that result in abnormal 
expression or regulation of a single gene or set of genes 
(Deciphering Developmental Disorders Study, 2015). 
NDDs pose an immense challenge for scientists who are 
seeking to decipher the mechanisms governing the various 
abnormalities. Furthermore, physicians can only help alleviate 
the symptomatic conditions, while cognitive properties 
remain damaged. The prevalence of NDDs varies greatly. For 
example, the prevalence of autism spectrum disorder (ASD) 
and pervasive developmental disorders is believed to be 
around 60 out of 10,000 successful births (Elsabbagh et al., 
2012). Rett syndrome (RTT) incidence is evaluated at 1 out 
of 10,000–15,000 successful births (Hagberg, 1985), while 
that of Williams syndrome (WS) is 1 out of 7500 successful 
births (Strømme et al., 2002) and Angelman syndrome (AS) 
prevalence is estimated at around 1 out of 20,000 successful 
births (Williams et al., 1995). The financial cost of supporting 
an individual with a NDD throughout his or her life is 
estimated at over $2 million, with special education, loss of 
parent productivity, and residential and general health care 
during adulthood being the main cost components (Buescher 
et al., 2014).

Due to the advances made in molecular biology over the 
last few decades, the genetic basis of some NDDs has been 
validated. For instance, the etiology and genetic causes of 
WS (Pober, 2010), AS (Knoll et al., 1989) and RTT (Amir et 
al., 1999) have been studied and discovered. However, not 
all NDDs can be linked to a genetic cause. For example, ASD 
represents a spectrum of disorders that vary in phenotypic 
characterization and severity, having a complex and 
heterogeneous etiology. Recent technological advances in 
molecular biology and genetic tools have led to an increasing 
number of studies focused on the genetic etiology of ASDs, 
but we still can only account for genetically related etiology in 

about 10–20% of ASD cases (Geschwind, 2011). 

Because the differences in NDD etiology are broad, the 
affected neurobiological properties differ, leading to 
differential onset time of the altered neurodevelopment 
(Thurm et al., 2018). In some NDDs, phenotypic defects 
can be observed in as early as embryonic development, or 
immediately at birth, and some show normal development 
until a later age, such as fragile X syndrome (Garber et al., 
2008). Similar to the time of symptom onset, the time of 
occurrence of deficits and damage to sensitive central nervous 
system (CNS)-related properties varies, from as early as the 
embryonic stage to early postnatal stages. NDDs may affect 
multiple systems other than the CNS, leading to vascular-
related complications, muscular impairments, hormone 
and ion imbalances, and other physiological and systemic 
complications. Overall, these defects, occurring during critical 
time windows of development of various systems, may cause 
irreversible damage that persists through development and 
adulthood (Meredith, 2015). Thus, the developmental aspect 
is crucial, meaning that early intervention is preferred. 

Current therapeutic approaches to NDDs integrate behavioral 
cognitive therapy with pharmaceutical agents to treat 
prominent symptoms. However, recent advances in genetic 
tools for postnatal genetic manipulations, such as restoration 
or in vivo editing of a gene of interest, offer a unique approach 
for therapeutic intervention, with the potential to rescue 
the genetic disorder directly, rather than only treating the 
symptoms. In this review, we present current knowledge 
on in vivo postnatal genetic treatments, focusing on studies 
performed with animal models of NDDs.

Search Strategy and Selection Criteria 
Studies cited in this review were found on the PubMed and 
Google Scholar databases, between January and February 
2020, using mainly the search terms: Neurodevelopmental 
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disorders, Gene restoration, Genetic therapy, Adeno-
assoc iated v i rus ,  CRISPR-Cas9,  Prec l in ica l  studies , 
Developmental window, Mouse models, Non-human primates, 
and various combinations of the above terms.

Neurogenetic Basis of Neurodevelopmental 
Disorders 
For a few decades now, many NDDs have been thought to 
have a neurogenetic cause. Studies conducted on monozygotic 
and dizygotic twins, along with those on other affected 
family members have revealed a strong association between 
common genetic conditions and disorders such as ASD (Tick et 
al., 2016) and schizophrenia (Sullivan et al., 2003). Advances 
in molecular biology have offered a unique opportunity to 
examine the precise genetic mechanism of several disorders. 
For example, gene-association studies have pinpointed specific 
loci that are susceptible to genetic abnormalities, marking 
worthy candidates for further study and therapeutic targeting 
(Niemi et al., 2018). Together, the technological advances and 
related studies have enabled the identification of few main 
mechanisms responsible for genetic alterations in NDDs.

Alterations in gene dosage due to copy number variations
Copy number variation (CNV) may refer to either deletion, 
duplication or inversion of a genomic sequence. CNV is 
a genetic mechanism that allows the creation of genetic 
diversity in a population, but may also be an underlying cause 
for various NDDs (Sebat et al., 2007; Takumi and Tamada, 
2018). CNVs cause genomic differences via structural variance, 
which can result in complex rearrangements of alleles and 
chromosomes (Malhotra and Sebat, 2012) through different 
mechanisms (Zhang et al., 2009). Although single-nucleotide 
polymorphisms (SNPs) are the main source of general genetic 
variation in the population, CNV effects have been shown 
to differ from those of SNPs on genetic variation in gene 
expression, such as altered gene dosage and gene regulation, 
thus emphasizing the importance of CNVs in genetic disorders 
(Stranger et al., 2007). CNVs are ubiquitously present in 
the human genome, resulting in different levels of gene 
expression across individuals (Freeman et al., 2006). The 
understanding of CNVs’ importance in genetic and phenotypic 
variance in humans has led to an increasing number of studies 
aimed at elucidating the etiology of different conditions, such 
as attention-deficit/hyperactivity disorder (ADHD) (Elia et al., 
2010), ASD (Pinto et al., 2010) and schizophrenia (Xu et al., 
2008).

WS, for example, is a NDD caused by a heterozygous 
microdeletion on chromosome 7q11.23 (Pober, 2010). The 
haploinsufficiency caused by the deletion of about 26 genes 
from the WS chromosome region (WSCR) is manifested 
by, among other things, a maladjusted, overly friendly 
personality, a unique intellectual profile and increased anxiety 
(Pober, 2010). The idea of specific loci being susceptible to 
genetic variability is manifested in chromosome 7q11.23, as 
microduplication of the WSCR was shown to be associated 
with ASD (Sanders et al., 2011; Morris et al., 2015). Therefore, 
CNVs such as deletion and duplications in the WSCR cause 
cognitive, biological, physiological and behavioral defects, the 
symptoms and phenotype of which depend on the genetic 
variation.

Specific gene mutations
Genetic alterations underlying NDDs may involve several 
genes. However, some of the NDDs have a monogenic cause 
(Renieri et al., 2003; Betancur and Buxbaum, 2013), such 
as SHANK3-related mutations in ASD (Peça et al., 2011) and 
methyl-CpG-binding protein 2 (MECP2) loss-of-function 
mutations in RTT (Amir et al., 1999). Monogenic NDDs 
relate to disorders mediated by mutations of a single gene. 
Suggested mechanisms of monogenic NDDs may include 

SNPs, which severely alter the genetic product (Zhou et al., 
2016), and variations of the genetic sequence of a single gene, 
including deletion, duplication, inversion or silencing of the 
specific gene sequence (Kishino et al., 1997; Guy et al., 2001; 
Ramocki et al., 2010). Postnatal therapeutic approaches may 
offer better treatments for monogenic disorders, as genetic 
restoration or interference of a single target is more feasible 
than of a set of different genetic targets.

While fatal in males, RTT is a progressive NDD in females, 
usually caused by de-novo dominant loss-of-function 
mutations in the X-linked gene MECP2 (Amir et al., 1999), 
characterized by normal development up to 6 to 18 months, 
followed by a severe decline in psychiatric, motor and lingual 
abilities (Hagberg et al., 1983). MECP2 is a risk gene, as its 
duplication is associated with infantile hypotonia, mental 
retardation, epilepsy, speech impairment and autistic features 
in males, whereas females remain mostly unaffected (Ramocki 
et al., 2010). Fragile X syndrome is another example of a NDD 
associated with a dominant X-linked aberration. Most cases 
of fragile X syndrome are caused by transcriptional silencing 
of the FMR1 gene (Fu et al., 1991). Affected individuals are 
mostly males, and they present symptoms that vary in severity 
and character, including mental and emotional disabilities 
(Garber et al., 2008).

SHANK3 is a post-synaptic scaffolding protein that forms the 
platform for postsynaptic density complexes in glutamatergic 
synapses (Baron et al., 2006; Monteiro and Feng, 2017). 
SHANK3 haploinsufficiency is associated with ASD, specifically 
Phelan–McDermid syndrome (Wilson et al., 2003; Durand et 
al., 2007). Moreover, a single-nucleotide insertion mutation 
in one copy of the SHANK3 gene was shown to cause severe 
speech impairment and mental retardation in two brothers 
(Durand et al., 2007). The monogenic contribution of SHANK3 
to ASD and ASD-like syndromes has been validated by a few 
studies, affirming the need for further exploration of this risk 
gene and its effects on NDDs (Moessner et al., 2007; Gauthier 
et al., 2009; Peça et al., 2011; Mei et al., 2016; Zhou et al., 
2016; Amal et al., 2018).

Epigenetic alterations 
Epigenetic modifications are considered as the interface 
plane between biology and environmental influences (Feil 
and  Fraga, 2012). Main epigenetic mechanisms include DNA 
methylation (Moore et al., 2013) and histone modification 
(Bannister and Kouzarides, 2011). Although the original DNA 
sequence remains unchanged, epigenetics alterations affect 
gene expression and cell function (Dall’Aglio et al., 2018). 
Epigenetics and several NDDs have been linked, including ASD 
(Ladd-Acosta et al., 2014) and ADHD (Wilmot et al., 2016).

Prominent example of a NDD caused by epigenetic alterations 
is AS, characterized by unique cognitive, personality and 
physiological profiles, including mental retardation, frequent 
seizures and increased smiling and laughing (Kishino et al., 
1997). AS is caused by a genetic mechanism called imprinting, 
in which the maternal and paternal alleles differ in their 
contribution to the phenotypic effect due to methylation of 
the inactive allele (Kishino et al., 1997). AS is characterized 
with a defect in the maternal copy of the UBE3A gene which 
may either be deleted (70%), mutated (10%), non-existent 
(uniparental disomy, 2–3%) or malfunctioning due to an 
imprinting defect (3–5%) (Williams et al., 1995). Similar to 
AS, Prader–Willi syndrome (PWS) is also caused by defects 
in UBE3A. However, in PWS, the paternal copy of UBE3A is 
inactive (due to deletion or other causes) (Cassidy, 1984). 
Both AS and PWS share malfunctions in 15q11.2-q13, but 
they differ in which allele is inactive due to methylation; the 
maternal copy in AS and the paternal copy in PWS (Knoll et al., 
1989; Reis et al., 1994). AS and PWS support the idea that not 
only does the type of genetic variation (deletion, duplication, 
inversion) dictate the effects on biological and behavioral 
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aspects, but also the identity of the damaged allele is of 
importance.

Advances in molecular biology have enabled the scientific 
community to gain a clear insight of the genetic basis 
responsible for certain NDDs. For example, individuals 
with WS have similar genetic deficits in 95% of the cases 
(Korenberg et al., 2000). However, the genetic architecture 
of most NDDs is highly complex (Devlin and Scherer, 2012; 
Lesch, 2016; Deciphering Developmental Disorders Study, 
2017), thus requiring the development of multiple genetic 
therapeutic approaches, to maximize the arsenal of possible 
treatments. Furthermore, genetic deficits include not only 
germline transmitted mutations, but also postzygotic de-novo 
mutations that may contribute to somatic brain mosaicism, 
shown to result in abnormal brain development and NDDs 
(D’Gama and Walsh, 2018). Additionally, the genetic basis of 
NDDs may be polygenetic, affect multiple organ systems and 
brain regions, and cause abnormal cognitive and physiological 
development throughout life. Moreover, while risk genes 
for NDD such as ASD have been classified as having synaptic 
activity or developmental importance, recent studies have 
shown this division is not accurate, an example of how 
genetic mutations may result in multiple deficits (Heavner 
and Smith, 2020). Acknowledging these barriers is of extreme 
importance, as it will enable the scientific community to 
better prioritize the animal model research in order to dissect 
the underlying genetic causation of NDDs and better pivot  
the development of genetic therapeutic tools. 

The broad heterogeneity of genetic deficits such as CNVs, 
SNPs and epigenetic alterations limits our efforts to link 
specific genetic deficits with corresponding behavioral and 
neurological phenotypes (Devlin and Scherer, 2012). These 
limitations also exist in the clinic, where ASD, for example, 
is diagnosed mostly based on behavioral examination of the 
individual and following DSM guidelines, and to a much less 
extent by a genetic screening or biological examination. 

Animal Models for Neurodevelopmental 
Disorders 
To better dissect the mechanisms affected by genetic 
alterations, animal models offer a suitable platform to perform 
extensive research on the etiology, characteristics, deficits 
and potential therapeutic approaches related to NDDs. 
Different animal models, such as rodents (Crawley, 2012) and 
non-human primates (NHPs) (Kishi et al., 2014; Miller et al., 
2016), retain some well-conserved biological and behavioral 
characteristics that are also present in humans. Thus, 
modeling human genetic conditions using laboratory animals 
has advanced, in recent years, our understanding of the 
mechanisms underlying different symptoms and phenotypes 
in various genetic disorders.

Genetic tools to dissect neurodevelopmental disorders
Genetic tools such as the Cre-LoxP system (Schwenk et al., 
1995) and CRISPR-Cas9 (clustered, regularly interspaced, short 
palindromic repeats and CRISPR-associated protein) (Ran et 
al., 2013) have enabled the creation of animal models that 
express a specific human, or non-human genetic condition, 
responsible for mediating NDDs. By using these genetic 
tools at different stages during development, a mechanistic 
understanding of the developmental trajectory of these 
genetic alterations and an understanding of abnormal 
development in a variety of NDDs can be acquired (Amir 
et al., 1999; Sakurai et al., 2011; Segura-Puimedon et al., 
2014; Enkhmandakh et al., 2016; Zhou et al., 2016). For 
example, precise targeting of specific genes that are deleted 
in WS, using these genetic tools, helped dissect the role and 
downstream interactions of genes deleted from the WSCR in 
humans, improving our ability to analyze which deleted gene 

in WS is associated with the different phenotypes associated 
with the disorder (Sakurai et al., 2011; Segura-Puimedon 
et al., 2014; Barak et al., 2019). However, the same genetic 
manipulation in humans and animal models (rodents or NHPs) 
does not always result in the same biological and behavioral 
phenotypes (Osborne, 2010). 

Overall, genetic modeling of NDDs in animal models sheds 
light on the underlying mechanism by which the genetic 
aberration affects the individual, and pivots research toward 
possible therapeutic targets in the associated disorders (Zoghbi 
and Bear, 2012).

Rodent models
Key benefits in studying rodents as animal models are the 
variety of developed genetic tools that specifically suit their 
genetic background. Rodent models with targeted mutations 
in genes homologous to those found altered in human 
patients aid us in preclinical screening for possible therapeutic 
agents and approaches (Crawley, 2012; Kaiser and Feng, 
2015).

Different NDDs, such as ASD and schizophrenia, have been 
shown to share a similar genetic basis (de Lacy and King, 
2013). At the molecular level, it has been suggested that 
defective synapse development and maintenance are key to 
the emergence of these disorders (Kenny et al., 2014). Shank3 
is a gene of interest when observing the interaction between 
ASD and schizophrenia. Recently, different mutations of  
Shank3 in mice were shown to result in synaptic dysfunction 
and either ASD or schizophrenia-like motifs (Zhou et al., 2016). 

The mouse model enables us to gain more mechanistic 
information on the etiology of NDDs. For example, using a 
mouse model for WS, we recently revealed novel aspects in 
how WS manifests in the CNS (Bey and Jiang, 2014; Barak 
et al., 2019). Results of that study indicated a key role for 
neuronal Gtf2i, a gene known to be related to the hypersocial 
phenotype (Dai et al., 2009; Antonell et al., 2010; Sakurai et 
al., 2011; Borralleras et al., 2015), in myelin formation and 
maintenance. Abnormalities in white matter integrity that 
were found in our mouse model for WS were then validated 
in human tissues, shedding new light on the disorder’s mode 
of operation in the CNS and offering a new perspective on 
potential therapeutic agents for WS in humans (Barak et al., 
2019).

Another NDD that has been studied mechanistically in 
mouse models is fragile X syndrome. Excess activation of 
mGluR5, a metabotropic glutamate receptor, was shown to 
contribute to the fragile X syndrome pathology (Dölen et al., 
2007). Additionally, RTT was also modeled in mouse models, 
where mice with a truncated allele of Mecp2 exhibited 
learning and memory impairments, synaptic dysfunction, 
and synaptic ultrastructural abnormalities during early stages 
of development, suggesting an early time window for the 
described pathogenesis in RTT (Moretti et al., 2006).

Non-human primates models
Due to the remarkable differences between rodents and 
humans, research conducted on the former may not be 
replicable in clinical trials (Hyman, 2014; Izpisua Belmonte 
et al., 2015). To fill the gap, genetic tools for the creation of 
NHP models of various medical conditions have recently been 
studied (Okano et al., 2012; Kishi et al., 2014; Kumita et al., 
2019).  NHP models are thought to more accurately represent 
the human condition, in cognitive and biological aspects, 
reducing the evolutionary distance between the animal 
model and the patient. However, genetic tools for NHPs are 
still lacking compared to those available for rodent research. 
As such, the study of NDDs in NHPs has yet to reach its full 
potential.

Review
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In 2009, germline transmission was achieved in the common 
marmoset (Callithrix jacchus), providing researchers with 
an alternative model for human conditions that offers a 
greater translational value than rodent models (Sasaki et al., 
2009). The common marmoset is a valuable candidate for 
modeling NDDs as it shows unique behavioral and cognitive 
traits, similar to those found in humans (Dell’Mour et al., 
2009), and shares biological, anatomical and developmental 
characteristics with humans (Abbott et al., 2003). 

Following the common marmoset, other NHP models for NDDs 
were created (Zhou et al., 2019), using genetic tools such as 
viral gene expression and gene editing by CRISPR-Cas9. For 
example, overexpression of Mecp2 (Liu et al., 2016) or Shank3 
deficiency (Zhou et al., 2017) were modeled in cynomolgus 
monkeys (Macaca fascicularis), in an attempt to better dissect 
and characterize neuronal and behavioral defects of ASD. RTT 
models were also developed in cynomolgus monkeys, using 
TALEN editing. The similarity between the model and the 
manifestation of RTT in humans was remarkable, including 
structural, behavioral and immunological aspects (Chen et al., 
2017).

Nevertheless, advances in developing NHP models are 
essential, and can be achieved by creating a wide array of 
genetic tools, and by the development of behavioral tasks that 
are specifically suited to NHPs.

In order to understand whether the genetic basis and 
behavioral alterations in NDDs are shared between animal 
models and humans, scientists have developed techniques to 
examine prominent behavioral characteristics in various NDDs 
in animals, such as repetitive behavior (Crawley, 1999, 2008; 
Moy et al., 2008), OCD (Burguière et al., 2015; Monteiro 
and Feng, 2016), cognition properties (Brooks et al., 2005; 
Crawley, 2008; Wolf et al., 2016), alterations in social behavior 
(Crawley, 1999, 2008; Moy et al., 2008; Netser et al., 2009), 
motor functions and anxiety (Crawley, 1985). These tests 
enable scientists to evaluate new animal models for various 
NDDs and also examine whether a potential treatment has 
alleviated behavioral deficits.

Postnatal Gene-Therapy Approaches in 
Neurodevelopmental Disorders 
Current postnatal treatments offered for NDDs include mostly 
symptomatic and behavioral therapy. Until about a decade 
ago, gene therapy was an unreachable dream, which today 
has become a reality. However, gene-therapy techniques in 
humans have not yet matured enough to produce consistent 
results. Some of the major questions that remain unanswered 
are related to the critical time window for effective gene 
therapy in NDDs, routes of intervention, efficiency and 
effective duration of genetic treatment, and the need for 
personalized genetic therapy for every individual.

Importance of the developmental window in genetic 
treatment of neurodevelopmental disorders
The human nervous system is constantly changing (Marín, 
2016; Silbereis et al., 2016), with specific periods along 
development during which the brain’s plasticity and 
susceptibility to change are high, also known as critical 
periods (Hensch, 2004; Hübener and Bonhoeffer, 2014). 
One of the mechanisms suggested to play a major role in 
NDDs is abnormal formation and regulation of synapses and 
protein complexes during these critical periods (Ramocki and 
Zoghbi, 2008; Harlow et al., 2010; Zoghbi and Bear, 2012; 
Meredith, 2015; Marín, 2016). A prominent example of the 
importance of the timing of the therapeutic intervention is 
a recent study in a mouse model for AS that demonstrated 
the differential effectiveness of Ube3a re-expression at 
different developmental stages (Silva-Santos et al., 2015). 
That study demonstrated that although synaptic plasticity in 

the hippocampus was restored regardless of the intervention 
timing, other symptoms such as motor defects, anxiety, 
repetitive behavior and epilepsy were alleviated only with 
earlier intervention onset (Silva-Santos et al., 2015).

However, some studies debate the role of the critical period 
in treating NDDs. In contrast to how we understood the role 
of critical period in NDDs, recent studies show that some of 
the phenotypes present in these disorders may be alleviated 
or reversed as a result of postnatal treatment, well after the 
critical period has ended (Ehninger et al., 2008; Castrén et 
al., 2012; Hübener and Bonhoeffer, 2014). For example, a 
conditional knock-in mouse model of Shank3 showed that 
reinstatement of Shank3 expression in adult mice results in 
improvements at both the molecular and behavioral levels 
(Mei et al., 2016). Furthermore, neurological defects in a 
mouse model for RTT were alleviated following reactivation of 
MeCP2 expression, in both adult and immature mice (Guy et 
al., 2007). These studies suggest that different brain regions 
and functions have distinct critical periods, and that postnatal 
genetic treatments for NDDs may be effective even when 
administered in advanced postnatal stages. 

Routes of administration of therapeutic agents
Delivery of therapeutic agents to targeted areas throughout 
the body, and specifically the brain, is another challenge in the 
development of gene therapy. Transfer of therapeutic agents 
into the CNS requires passing the blood-brain barrier (BBB) 
(Hawkins and Davis, 2005; Abbott et al., 2010), a selective 
and non-permissive barrier aimed at protecting the CNS. 
Unfortunately, most therapeutic agents cannot pass the BBB 
without an additional transfer vector (Pardridge, 2005). As 
a result, gene delivery into the CNS is largely dependent on 
invasive methods, which allow the direct application of the 
therapeutic vector into specific brain regions, eliminating the 
need to cross the BBB. Methods of direct intervention into 
the CNS include intracranial delivery by intraparenchymal, 
intracisternal, intrathecal and intracerebroventricular 
injections (Figure 1). These invasive methods usually require 
stereotaxic injection and surgical intervention, with the 
possibility of applying long-lasting drug-releasing depots 
or catheters. The main advantages of using such delivery 
methods are bypassing of the BBB and direct application 
of high concentrations of the therapeutic agent in specific 
brain regions. However, these methods are considered less 
therapeutic in their general approach as they require surgical 
intervention, and are thus prone to infection and other 
surgical complications that can lead to side effects such as 
elevated intracranial pressure.

The non- invas ive  approaches,  spec i f ica l ly  for  CNS 
transduction, include intravenous (IV) and intranasal 
administration of drugs. IV administration methods (Figure 1) 
are as simple as taking a blood test, and has proven efficient 
with transfer vectors that can self-cross the BBB, such as 
adeno-associated virus (AAV) serotypes AAV9 (Zincarelli et al., 
2008; Duque et al., 2009; Foust et al., 2009) and PHP.eB (Chan 
et al., 2017; Dayton et al., 2018). Systemic administration, 
by its very nature, is more therapeutically relevant than 
surgical intervention, as the latter is highly invasive, and 
because systemic administration can easily be performed on 
a continuous basis. However, systemic administration has 
some disadvantages, including: 1) limited biodistribution of 
the therapeutic agent throughout the entire body, resulting in 
low concentrations of therapeutic agent at the target site, and 
thereby requiring delivery of a higher drug dosage compared 
to invasive methods; 2) multisystemic immune response, 
depending on the transfer vector; 3) toxicity in different 
tissues, such as the liver, due to enhanced accumulation of 
the agent. Intranasal is another form of non-invasive delivery 
method, which allows bypassing the BBB by transporting 
drugs through the nasal cavity into the CNS. There is growing 
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evidence of the efficiency of intranasal transfer of drugs 
to the CNS, in particular of particles that are incapable of 
self-passage through the BBB (Crowe et al., 2018). Overall, 
efficient transduction, repeatable treatments and above all, 
safety, are the main criteria when deciding upon a route of 
administration.

Main Methods and Technologies for Genetic 
Intervention in Neurodevelopmental Disorder 
Research and Treatment
In developing tools that will enable genetic intervention, 
one must ensure that they can efficiently and accurately 
manipulate a genetic sequence, and a technique needs to be 
harnessed to deliver the developed tool selectively to targeted 
tissues. While the genetic therapy research field continues 
to evolve, the tools generated so far are sufficient for testing 
their properties in preclinical and clinical trials. NDDs are 
a prominent family of conditions that will benefit from the 
emerging research in the field. Some of the fundamental 
techniques in gene therapy related to NDDs are discussed 
below, together with current gene-therapy studies in animal 
models for NDDs.

AAV as a gene-transfer vector
AAV is a non-pathogenic, non-immunogenic transfer agent 
that enables targeting specific tissues and organs through 
genetic engineering of the virus (Burger et al. 2005; Mandel 
et al., 2006; Duan, 2016; Hocquemiller et al., 2016; Srivastava, 
2016; Naso et al., 2017; Hudry and Vandenberghe, 2019). 
The use of AAV has become widespread in many biological 
studies, while proving to be an efficient tool for gene transfer 
and manipulation (Hermonat and Muzyczka, 1984; Kay et al., 
2001; Daily et al., 2011; Borralleras et al., 2015; Luoni et al., 
2019), with promising results that have led to clinical success 
(Mingozzi and High, 2011; Ylä-Herttuala, 2012). Other viral 
vectors, such as lentivirus—a subtype of retrovirus, are also 
candidates for gene therapy (Dull et al., 1998; Galimi and 
Verma, 2002; Park, 2007; Cockrell and Kafri, 2011); however, 
this review will focus on AAV, as retroviral characteristics 
include adverse side effects such as malintegration in the 
genome (Hacein-Bey-Abina et al., 2003a, b) and genotoxicity 
(Montini et al., 2006). One example of the use of AAV as 
a possible therapeutic agent in NDD is the introduction 
of the exogenous Ube3a in a mouse model of AS (Daily et 
al., 2011). Direct injection of a Ube3a-transducing AAV9 
vector to the hippocampus improved early-phase long-term 
potentiation (LTP) and associative learning in manipulated 
AS mice compared to controls (Daily et al., 2011). Another 
example of a gene-restoration study by administration of an 

AAV directly into the CNS was performed in a mouse model 
for WS (Borralleras et al., 2015). Intracisternal injection of a 
Gtf2i-transducing vector into a mouse with complete deletion 
of the WSCR improved behavioral attributes such as motor 
coordination, sociability and anxiety, and normalized the 
expression levels of molecular factors such as brain-derived 
neurotrophic factor (Bdnf) in specific brain areas (Borralleras 
et al., 2015). Although a prime candidate for serving as a 
therapeutic agent, AAV suffers from a few limitations. First, 
the capacity of an engineered AAV vector is limited, where 
the insert between the two inverted terminal repeats can 
be no longer than 4.7 kb (Wu et al., 2010). Second, even 
though AAV is mostly non-pathogenic and non-immunogenic, 
some studies have found evidence of hepatic genotoxicity 
of AAV following in vivo gene manipulation by AAV vector, 
resulting in hepatocellular carcinoma (Donsante et al., 2007; 
Chandler et al., 2015) and liver failure (Hinderer et al., 2018). 
The administration method of AAV is a crucial limitation for 
NDDs which are caused by genetic defects in the CNS, as until 
recently, AAV penetration through the BBB was limited. This 
limitation required direct administration of the vector into the 
CNS by surgical intervention, thus lowering the translational 
value of such treatment to the clinic. However, recently, a new 
and exciting AAV capsid, PHP.eB, was shown to have improved 
efficacy at penetrating the BBB via systemic administration 
of the virus (Chan et al., 2017). Interestingly, RTT mice with 
a genetically encoded Mecp2 mutation were treated with IV 
systemic administration of Mecp2-transducing PHP.eB virus at 
4 weeks of age, resulting in delayed progression of symptoms 
and improved lifespan (Luoni et al., 2019). 

AAV offers a great opportunity for alleviating monogenic 
disorders. However, NDDs pose a challenge for gene therapy 
by AAV, as many of them manifesting with systemic defects 
are not monogenic and require the therapeutic agent to reach 
the CNS. 

Naturally occurring AAVs have limited tropism properties, 
and therefore a method of cell-type-specific AAV selection 
is required. Cre recombinase-based AAV targeted evolution 
(CREATE) is a method of developing AAV capsids with high 
transduction efficiency, in a cell-type-specific manner 
(Deverman et al., 2016). By harnessing CREATE, development 
of CNS-specific capsids has improved dramatically in recent 
years, including successful transduction of neurons with 
PHP.B and PHP.eB serotypes, and transduction of astrocytes 
with the PHP.S serotype (Chan et al., 2017). In addition to 
capsid engineering, specificity of transduction is increased 
via promoter-dependent transgene expression (Shevtsova 
et al., 2005; Gray et al., 2011). Therefore, transduction of 
specific CNS cell types through IV systemic administration is 
now feasible with the correct vector, capsid and promoter 
design. Because the genetic defects in various disorders may 
be tissue- and cell-type-specific, the need to develop tissue-
specific capsids and identify cell-type-specific promoters is 
high.

Expanding the capacity of the AAV transgene-transduction 
cassette is also of great importance in facilitating genetic 
treatment by AAV. Transgene expression of vectors including 
the gene of interest, cell-specific promoter and reporter 
sequence are limited to the current AAV capacity of 4.7 
kb between inverted terminal repeats, resulting in limited 
potential to reintroduce longer genes. Currently, dual- and 
triple-vector approaches, each expressing a fragment of a 
split transgene, are in use (Duan et al., 2001, 2003; Hirsch 
et al., 2016; Pate et al., 2019). Furthermore, gene therapy 
studies utilizing AAV technology in mice are very common, 
however, NHP studies utilizing AAV as a gene therapy approach 
are scarce, especially studies focused on NDDs. AAV has 
been shown to successfully transduce gene expression in 
NHP studies (Samaranch et al., 2012; Hinderer et al., 2014; 
György et al., 2019). Further studies of NDDs models in NHP 

 A    B    C   

 D    E   

Facial vein injection Retro-orbital injection Tail vein injection

Stereotaxic injectionIntrathecal injection

Figure 1 ｜ Illustrative description of routes of administration of 
gene-therapy agents.  
(A) Facial vein injection in neonatal pup, (B) retro-orbital injection, (C) tail vein 
injection, (D) intrathecal injection, (E) stereotaxic injection.  
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incorporating AAV as potential gene transfer vector could 
dramatically increase the relevance of this technology in the 
lab and clinic.

CRISPR-Cas9 as a gene-editing tool
CRISPR-Cas9 is a valuable modifier of gene sequence and 
function, with great potential clinical implications. Genome 
editing by CRISPR is largely believed to be a one-time, long-
lasting treatment, unlike other gene therapies. This type II 
bacterial system utilizes a combination of a single guide RNA 
(sgRNA) to target specific loci in the genome, and the Cas9 
protein for precise gene editing by either nonhomologous 
end joining or precise homology-directed repair (HDR) using 
a DNA-repair template (Cong et al., 2013; Doudna and 
Charpentier, 2014; Sander and Joung, 2014). CRISPR has been 
largely utilized in generating transgenic laboratory animal 
models (Wang et al., 2013; Yang et al., 2013; Niu et al., 2014; 
Kumita et al., 2019; Offen et al., 2019; Qiu et al., 2019; Zhou 
et al., 2019) and ex vivo genetic manipulations, enabling the 
creation of genetically modified cell lines in 2–3 weeks (Ran 
et al., 2013). However, CRIPSR technology is faced with a few 
issues when implemented in in vivo systems, such as limited 
HDR efficiency and delivery methods.

To overcome delivery limitations, AAV was suggested as a 
transfer vector for Streptococcus pyogenes Cas9 (SpCas9,  
4.2 kb) and the sgRNA (Senís et al., 2014). However, due 
to AAV’s limited packaging ability, dual-vector studies were 
suggested, each vector carrying either the SpCas9 or the 
sgRNA molecule. In 2014, in vivo genetic editing by CRISPR-
Cas9 was achieved in a dual-vector study, manipulating the 
levels of a few genes in the CNS of mice, including Mecp2 
which is associated with RTT and intellectual disability 
disorders (Swiech et al., 2015). Chimeric serotypes of 
different AAV vectors were also modified to improve CNS-
transduction efficiency, allowing for the transfer of sgRNA 
targeting the specific schizophrenia risk gene miR137 and 
deleting it in a CNS-specific manner in CRISPR-Cas9 knock-in 
mice (Murlidharan et al., 2016). In a different study, CRISPR-
mediated suppression of the expression of a mutant Htt gene 
(mHtt) in the striatum of an HD140Q knock-in mouse model 
for Huntington’s disease alleviated motor deficits (Yang et al., 
2017).

Shorter orthologues of the Cas9 molecule have been recently 
discovered, such as the Staphylococcus aureus Cas9 (SaCas9, 
3.16 kb) (Ran et al., 2015) and Campylobacter jejuni Cas9 
(CjCas9, 2.95 kb) (Kim et al., 2017), increasing the potential 
for proper packaging in AAV and the latter’s potential to act as 
an expression vector for CRISPR, enabling combined packaging 
of the Cas9 nuclease and the sgRNA in a single AAV vector. 

Genome editing of somatic cells outside the CNS in a 
therapeutic manner was shown to be feasible, with the 
correction of Duchenne muscular dystrophy in an adult 
mouse model for the disorder, by administering AAV-CRISPR 
treatment based on SaCas9 (Nelson et al., 2016). Non-viral 
delivery approaches are also a viable option for the transfer 
of CRISPR-related products into nuclei in a tissue-specific 
manner. For example, combined AAV and lipid nanoparticle 
delivery of CRISPR products to the liver gave a therapeutic 
outcome (Yin et al., 2016). However, tools for the systemic 
delivery of lipid nanoparticles and other non-viral molecules 
to the CNS are still under development. Moreover, more 
studies employing CNS-targeted genome editing are required 
to examine the potential of CRISPR-mediated gene therapy for 
the treatment of NDDs.

Antisense oligonucleotides
Antisense oligonucleotides (ASOs) are short nucleic acid 
sequences that are capable of hybridizing to a specific mRNA 
molecule and interfering with its downstream translation 

into a protein (De Mesmaeker et al., 1995). As such, ASOs 
are prime candidates for modifying protein levels and to act 
as therapeutic agents in NDDs caused by the misexpression 
of genes. For example, MECP2 duplication syndrome is a 
common NDD in males, estimated to cause 1% of unexplained 
X-linked mental retardation (Lugtenberg et al., 2009). Affected 
individuals present seizures, epilepsy, recurrent infections, 
intellectual disability and delayed psychomotor development 
(Ramocki et al., 2010; Van Esch, 2011). In a study from 2015, 
postnatal use of ASO treatment ameliorated symptoms in 
an adult transgenic Mecp2 duplication mouse model for 
RTT (Sztainberg et al., 2015). Furthermore, ASO treatment 
corrected MECP2 mRNA expression levels in lymphoblastoid 
cells from human patients with MECP2 duplication (Sztainberg 
et al., 2015). 

ASOs were also shown to be an effective tool for harnessing 
the intact and silenced paternal allele of Ube3a in AS by 
targeting the Ube3a antisense transcript (Ube3a-ATS) (Meng 
et al., 2015). Treatment with a sequence-specific ASO against 
Ube3a-ATS resulted in reduced Ube3a-ATS and increased 
Ube3a levels, both in vivo and in vitro. Of clinical relevance, 
the ASO treatment unsilenced the paternal Ube3a allele 
throughout the brain and ameliorated cognitive deficits in an 
animal model for AS (Meng et al., 2015).

ASOs have also been shown to be an effective course of 
treatment in other CNS-related conditions, such as rescuing 
hearing in a mouse model of human deafness (Lentz et 
al., 2013) and ameliorating severe spinal muscular atrophy 
(Passini et al., 2011). Together, these findings strengthen the 
therapeutic potential of ASO treatment in various CNS-related 
conditions, including NDDs.

Conclusions and Future Directions in 
Gene-Therapy Approaches for 
Neurodevelopmental Disorders
The prospect of gene therapy for certain NDDs is tangible. 
The genomic revolution and constant progress in the research 
of NDDs and neuropsychiatric conditions are providing 
the scientific community with a better perspective on the 
underlying mechanisms of these disorders, with a large 
number of them having genetic etiology. These advances are 
enabling better design of animal models and of preclinical 
therapeutic studies. 

While the field of gene therapy is rapidly progressing, the 
number of successful clinical trials is still limited, suggesting 
that further exploration is required to improve the bench-
to-bedside success rate. A few promising aspects for future 
progress in the field should be further developed to maximize 
the chances of developing an effective tool, among them 
those mentioned above, as well as RNA interference (RNAi) 
and non-viral methods of gene-therapy induction.

RNAi is a process in which small, non-coding RNA sequences, 
such as short interfering RNA (siRNA) (Chang et al., 2009) 
and microRNA (miRNA) (Lee et al., 1993; Lee and Ambros, 
2001; Shomron, 2010), regulate gene expression via mRNA 
degradation or inhibition of translation to proteins in a 
sequence-specific manner. Dysregulation of RNAi molecules 
has been associated with NDDs (Chang et al., 2009; Xu 
et al., 2010; Meza-Sosa et al., 2012; Sun and Shi, 2015), 
emphasizing their spatiotemporal importance for normal 
brain development. Directing the knowledge accumulated 
in extensive research on the roles and mechanisms of RNAi 
processes to possible innovative therapeutic approaches 
seems to be the next step. 

In parallel to advances in gene-therapy strategies, those 
for administering these therapies to the CNS are lacking 
in therapeutic potential, as they usually require surgical 
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intervention and/or recurring treatments. Promising vehicles 
for the introduction of gene therapy into the CNS include 
nanoparticles (Lee et al., 2018), which are able to carry 
several therapeutic agents, e.g., nucleic acids and proteins. 
Furthermore, nanoparticles offer cell-specific delivery of their 
cargo and reduced toxicity (Mizrahy et al., 2019). Relevant 
subsets of nanoparticles carriers are polymeric nanoparticles 
(Dikpati et al., 2012), solid lipid nanoparticles (Hou et al., 
2003) and nanoliposomes (Allen and Cullis, 2013), all of which 
have been shown to have BBB penetrating capabilities.
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