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Abstract

Aims

In this study, the efficacy of proanthocyanidins (PCs) against oxidative damage was sys-

tematically reviewed to facilitate their use in various applications.

Methods

Ameta-analysis was performed by two researchers. Each investigator independently

searched electronic databases, including Cochrane, PubMed, Springer, Web of Science,

China National Knowledge Infrastructure (CKNI), China Science and Technology Journal

Database (CSTJ), and WanFang Data, and analyzed published data from 29 studies on the

effects of PCs against oxidative damage. Oxidative stress indexes included superoxide dis-

mutase (SOD), malondialdehyde (MDA), catalase (CAT), glutathione (GSH), glutathione

peroxidase (GPx), and total antioxidative capacity (T-AOC).

Results

Compared with the oxidative damage model group, PCs effectively improved the T-AOC,

SOD, GSH, GPx, and CAT levels, and reduced the MDA levels; these differences were sta-

tistically significant (P < 0.05). In studies that used the gavage method, SOD (95% CI, 2.33–

4.00) and GPx (95% CI, 2.10–4.05) were 3.16-fold and 3.08-fold higher in the PC group

than in the control group, respectively. In studies that used the feeding method, SOD (95%

CI, 0.32–1.74) and GPx (95% CI, -0.31 to 1.65) were 1.03-fold and 0.67-fold higher in the

PC group than in the control group, respectively. Statistically significant differences in the

effects of PCs (P < 0.00001) were observed between these two methods. MDA estimated

from tissue samples (95% CI, -5.82 to -2.60) was 4.32-fold lower in the PC group than in the

control group. In contrast, MDA estimated using serum samples (95% CI, -4.07 to -2.06)
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was 3.06-fold lower in the PC group than in the control group. The effect of PCs on MDA

was significantly greater in tissue samples than in serum samples (P = 0.02).

Conclusion

PCs effectively antagonize oxidative damage and enhance antioxidant capacity. The antag-

onistic effect may be related to intervention time, intervention method, and the source from

which the indexes are estimated.

Introduction
Oxidative stress is caused by an imbalance between the production of reactive oxygen species
(ROS) and the ability of a biological system to eliminate ROS or repair the resulting damage
[1]. Thus, oxidative stress may result in an increased number of free radicals and cause lipid
peroxidation, eventually leading to apoptosis and many diseases [2]. Increasing evidence has
shown that oxidative stress plays a particularly important role in the development of cardiovas-
cular diseases such as atherosclerosis, hypertension, atrial fibrillation, and cardiomyopathy [3].
Many reactive substances, such as arsenic [4] and hydrogen peroxide (H2O2) [5], can result in
organismal damage via ROS and oxidative stress. Therefore, it is important to repair damage
using antioxidant agents.

The effects of antioxidant substances such as vitamin C [6], E [7], and luteins [8] have been
extensively studied owing to their health benefits. Additionally, the relative antioxidant efficacy
of these substances has been previously examined. In particular, proanthocyanidins (PCs) have
gained recent attention. These polyphenols are abundant in grape, haw, and gingko [9]. PCs
have high antioxidant capacities and are efficient free radical scavengers. They are highly water
soluble, easy to extract, rich in various plants, and can be absorbed naturally [10]. The antioxi-
dative effects of PCs have not been systematically reviewed; additionally, the reported antioxi-
dant efficacy of these compounds differs among studies [11–13], and their antioxidative ability
is still unclear. Therefore, we performed a systematic review and meta-analysis based on a liter-
ature search to comprehensively analyze relevant data regarding the efficacy of PCs against oxi-
dative damage. This work provides a scientific basis for the development and utilization of PC-
based resources. According to the PICOS framework, the subjects, intervention, controls, and
outcomes considered in this analysis were mice, PCs, an oxidative damage model, and enzyme
levels with respect to oxidative stress, respectively. Randomized controlled mouse experiments
were considered.

Materials and Methods

Eligibility criteria
The eligibility criteria were as follows. Randomized controlled mouse experiments and studies
published in either Chinese or English were included. All strains and mouse genders were
included in the present study. Oxidative damage model groups induced by any substance were
used as the controls. The experimental groups included interventions with PCs only. If various
doses of PCs were used in a study, the highest dose was chosen for this analysis. Valid outcome
measures included the levels of enzymes related to oxidative stress measured by a microplate
reader. These indicators of oxidative stress included superoxide dismutase (SOD),
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malondialdehyde (MDA), catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx),
and total antioxidative capacity (T-AOC).

Exclusion criteria
The exclusion criteria were as follows: (1) repeat publications, (2) incomplete information, (3)
insufficient or insignificant statistical data, (4) unrelated to the study objectives, (5) lack of
appropriate controls, and (6) reviews.

Search strategy
Searches were performed using the electronic databases Cochrane, PubMed, Springer, Web of
Science, China Science and Technology Journal Database (CSTJ), WanFang Data, and China
National Knowledge Infrastructure (CKNI) (last search updated on April 30, 2015) using
PICOS. The key search string was (mice OR rat) AND (procyanidins OR proanthocyanidins)
AND (antioxygenation OR antioxidant OR antioxidation) and the language was restricted to
English and Chinese. We read both of the title and abstract first to make a decision whether the
study is suitable for our study.

Data extraction
Two reviewers (SGL and MCX) independently screened full-length articles. The following
information was extracted from the complete manuscripts of each qualified study: publication
characteristics (title of the study, first author, publication date, and journal/magazine), basal
data (n, mean ± SD) for the experimental and control groups, PC intervention modes, period
of PC treatment, outcome indicators, and the source of indicator estimates (i.e., serum or tissue
samples) (S1 File). If the two reviewers hold different opinions, then we invited the Prof. GSX,
who is teaching meta-analysis subject in university, to make a final decision of the results.

Data analysis
The mean values for each outcome indicator differed between the experimental and control
groups. Significant heterogeneity was detected (P< 0.05, I2 > 75%); therefore, a random-
effects model was applied for the meta-analysis. A multivariate meta-regression analysis was
performed to determine the source of heterogeneity. Continuous variables were estimated as
standardized mean differences (SMDs) with 95% confidence intervals (CI) between the PC-
treated animals and control animals. All reported P-values are two-sided and a significance
level of 0.05 was used. For additional insight, subgroup analyses were performed based on
intervention mode (feed or gavage), length of PC treatment (<30 d or�30 d), and sample
source (serum or tissue samples) to determine the factors associated with differences among
study results in the outcome indicators. Publication bias was explored using funnel plots. All
analyses were implemented in Review Manager Version 5.2 (The Nordic Cochrane Centre,
The Cochrane Collaboration, 2012) and Stata 12.0.

Results

Study characteristics
Using the search strategy, 462 articles were identified (Fig 1), of which 29 were valid for the
meta-analysis according to the eligibility and exclusion criterias. [14–42] (Table 1). Mice were
used as animal models in these studies, and each study investigated the effect of PCs on oxida-
tive damage. The oxidative damage models were primarily mice induced by various substances
(e.g., arsenite, H2O2, and fluorine), and the antioxidative damage models were provided
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various PCs as interventions. PCs were administered by feeding (n = 3) or gavage (n = 26). The
PC intervention time varied among studies, and was categorized as<30 d (n = 17) or�30 d
(n = 12). Oxidative stress indexes (i.e., MDA, SOD, GPx, T-AOC, GSH, and CAT) were exam-
ined using serum (n = 19) and tissue samples (n = 10).

Meta-analyses
Effect of PC on SOD. A total of 28 studies estimated SOD levels. A pooled analysis

showed that the SOD level was 2.91-fold higher in the experimental group than in the control
group (95% CI, 2.16–3.67; Z = 7.53; P< 0.00001) with significant heterogeneity (P< 0.0001;
I2 = 88%; Fig 2).

Effect of PC on T-AOC. A total of 4 studies estimated T-AOC levels. A pooled analysis
showed that the T-AOC level was 3.79-fold higher in the experimental group than in the con-
trol group (95% CI, 0.69–6.88; Z = 2.40; P = 0.02) with significant heterogeneity (P< 0.0001;
I2 = 94%; Fig 3).

Effect of PC on GSH. A total of 9 studies estimated GSH levels. A pooled analysis showed
that the GSH level was 4.53-fold higher in the experimental group than in the control group
(95% CI, 2.30–6.76; Z = 3.97; P< 0.0001) with significant heterogeneity (P< 0.00001; I2 =
93%; Fig 4).

Effect of PC on GPx. Fourteen studies described GPx levels. A pooled analysis showed
that the GPx level was 2.68-fold higher in the experimental group than in the control group
(95% CI, 1.80–3.56; Z = 5.96; P< 0.00001) with significant heterogeneity (P< 0.00001; I2 =
85%; Fig 5).

Effect of PC on CAT. Nine studies estimated CAT levels. A pooled analysis showed that
the CAT level was 4.95-fold higher in the experimental group than in the control group (95%
CI, 2.99–6.90; Z = 4.96; P< 0.00001) with significant heterogeneity (P< 0.00001; I2 = 92%;
Fig 6).

Effect of PC on MDA. Twenty-five studies described MDA levels. A pooled analysis
showed that the MDA level was 3.06-fold lower in the experimental group than in the control

Fig 1. Flowchart of search strategy. The meta-analysis included animal studies that investigated the
antioxidant effect of proanthocyanidins (PCs).

doi:10.1371/journal.pone.0139455.g001

Antioxidative Effects of Procyanidins

PLOS ONE | DOI:10.1371/journal.pone.0139455 October 1, 2015 4 / 14



group (95% CI, 4.07–2.06; Z = 5.99; P< 0.00001) with significant heterogeneity (P< 0.00001;
I2 = 92%; Fig 7).

Subgroup analyses. We conducted a subgroup analysis considering the mode of interven-
tion (gavage vs. feed), intervention period (<30 d vs.�30 d), and source of samples (tissue vs.
serum). The SMD between PCs and control groups for SOD and GPx of tissue samples, gavage,
and�30-d interventions were higher than those for serum samples, feeding, and<30-d inter-
ventions (P< 0.05, see Fig 8A1, 8A2, 8B1, 8B2 and 8B3). Furthermore, the SMD of MDA
between the PC and control groups was significantly higher for tissue samples than for serum
samples (P< 0.05, see Fig 8C1). The SMD of CAT between the PC and control groups was also
higher for interventions of�30 d than for those of<30 d (P< 0.05, see Fig 8D3). We did not
detect statistically significant differences in GSH or T-AOC (see Fig 8C3, 8D1 and 8D2).

Sensitivity analysis. A sensitivity analysis was performed to evaluate the robustness of the
study results. Specifically, we conducted a sensitivity analysis for SOD because it was estimated
in 28 studies. Fig 9 shows the stability results for all studies; these results indicated that no

Table 1. Characteristics of the animal studies included in the meta-analysis.

First author (year) Language n Mode of intervention Period of PC(day) Source of indicators Outcome indicators

Su-Jin2009 [14] English 10 Feed <30d Tissue 2.3.6

Mi-Ok Shin2010 [15] English 6 Feed <30d Tissue 1

Xiayuan2010 [16] Chinese 8 Gavage <30d Serum 1.2

Adem Guler2011 [17] English 8 Gavage <30d Tissue 1.2.3.4

HUANG Qi-liang2011 [18] English 10 Gavage �30d Serum 1.2

Lijianling2011 [19] Chinese 10 Gavage <30d Tissue 1.2

Osama M.Ashour2011 [20] English 12 Gavage <30d Tissue 1.2.5.6

Xielimei2011 [21] Chinese 10 Gavage �30d Tissue 1.2

Soo-Kyong Choi2012 [22] English 8 Feed <30d Tissue 2.3.5

Vijayakumar2012 [23] English 6 Gavage <30d Tissue 2.3.5.6

Wangweifen2012 [24] Chinese 10 Gavage <30d Tissue 1.2

Xiao GENG2012 [25] English 8 Gavage <30d Tissue 1.2

Yu Deng2012 [26] English 8 Gavage <30d Tissue 1.2.3.5

zhangxuan2012 [27] English 16 Gavage <30d Tissue 1.2.3.6

zhaopeng2012 [28] Chinese 12 Gavage �30d Serum 1.2.3

Bailijun2013 [29] Chinese 5 Gavage <30d Serum 1.2.3.6

Dingyusong2013 [30] Chinese 10 Gavage �30d Tissue 1.2

Hanaa A2013 [31] English 6 Gavage �30d Tissue 1.2.3.4

Jiangyanfei2013 [32] Chinese 12 Gavage �30d Serum 1.2

Miaozhiru2013 [33] Chinese 10 Gavage �30d Serum 1.2.3.5

E Bakar2014 [34] English 7 Gavage <30d Tissue 1.2.4.5

Gaolu2014 [35] Chinese 10 Gavage �30d Serum 1.2.3.6

Hua Zhang2014 [36] English 10 Gavage �30d Tissue 1.2.5.6

Juan Xiao2014 [37] English 10 Gavage <30d Serum 1.2.3

Noorah2014 [38] English 10 Gavage <30d Tissue 2.6

Tingting Ren2014 [39] English 8 Gavage �30d Serum 2.5

Wangcheng2014 [40] Chinese 10 Gavage �30d Tissue 1.2.4.5

Ying GAO2014 [41] English 10 Gavage �30d Tissue 1.2.3

Esrafil Mansouri2015 [42] English 10 Gavage <30d Serum 1.2.3.6

Note: n = number of experimental animals; 1 = malondialdehyde, 2 = superoxide dismutase, 3 = glutathione peroxidase, 4 = total antioxidative capacity,

5 = glutathione, and 6 = catalase.

doi:10.1371/journal.pone.0139455.t001
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individual study influenced the combined results. The method of intervention and the source
of the outcome indicators (i.e., serum or tissue samples) significantly influenced the outcome
indicators. A trend toward greater improvements was observed (Fig 8) when PC treatments
were applied using the gavage method and when parameter estimates were based on tissue
samples. The funnel plot for the studies that include estimates of SOD suggests that values
were approximately evenly distributed around the overall mean estimate (Fig 10). Based on a
multivariate meta-regression analysis, the source of outcome indicators (P = 0.040) and inter-
vention method (P = 0.038) were significantly associated with differences in SOD.

Discussion
Our results showed that PC intervention increases the levels of the antioxidative indicators
SOD, CAT, GSH, GPx, and T-AOC, and decreases the concentration of MDA in oxidative
damage mouse models. The reported effects of PCs were also influenced by other factors, such
as the mode of intervention, treatment period, and sample source. Based on this meta-analysis
of published papers, PCs have an obvious antioxidative effect.

PCs, a type of polyphenol, were first extracted from haw in Germany [43]. These com-
pounds contain various amounts of catechin and epicatechin [44]. Depending on the degree of
polymerization, dipolymer–tetramers are usually called oligomeric procyanidins, and others
are usually called procyanidolic polymers [45]. The widely distributed dipolymers are the focus
of research and are among the most important PCs [46].

Fig 2. Effect of PC on superoxide dismutase (SOD). Forest plot showing the impact of PC treatment on
SOD compared with controls. Abbreviations: SMD = standardized mean difference, IV = independent
variable, 95% CI = 95% confidence interval.

doi:10.1371/journal.pone.0139455.g002

Fig 3. Effect of PC on total antioxidative capacity (T-AOC). Forest plot showing the impact of PC treatment on T-AOC, compared with controls.
Abbreviations: SMD = standardized mean difference, IV = independent variable, 95% CI = 95% confidence interval.

doi:10.1371/journal.pone.0139455.g003
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PCs are excellent antioxidants and free-radical scavengers; their antioxidative ability exceeds
that of vitamins C and E [47]. The results of this meta-analysis also indicated that PCs, which
can effectively improve the activity of antioxidative enzymes and reduce lipid peroxidation
products, have an obvious antioxidant effect. The influence of PCs on SOD, GPx, and CAT can
be maximized by applying the gavage mode instead of the normal feeding mode. This may be
attributed to the precise control of PC intake by the investigator when using the gavage
method. PCs can more effectively enhance antioxidant enzyme activity in tissues than in
serum. We speculated that the indicators in serum samples reflect the whole-body oxidation-
antioxidation levels, rather than that of a specific organ or tissue. In addition, the effect of PCs
on the T-AOC index was not significant, probably owing to the small sample size (i.e., 4 stud-
ies). The results of the subgroup analysis will facilitate the selection of detection indexes in
future studies regarding the antioxidative effect of PCs.

The antioxidative role of PCs is complex (Fig 11). Some harmful substances (such as H202,
ethanol, galactose, and so on) induce oxidative stress and ROS production, and ultimately
cause lipid peroxidation. The antioxidant defense system is activated and antioxidants (such as

Fig 4. Effect of PC on glutathione (GSH). Forest plot showing the impact of PC treatment on GSH,
compared with controls. Abbreviations: SMD = standardized mean difference, IV = independent variable,
95% CI = 95% confidence interval.

doi:10.1371/journal.pone.0139455.g004

Fig 5. Effect of PC on glutathione peroxidase (GPx). Forest plot showing the impact of PC treatment on
GPx, compared with controls. Abbreviations: SMD = standardized mean difference, IV = independent
variable, 95% CI = 95% confidence interval.

doi:10.1371/journal.pone.0139455.g005

Fig 6. Effect of PC on catalase (CAT). Forest plot showing the impact of PC treatment on CAT, compared
with controls. Abbreviations: SMD = standardized mean difference, IV = independent variable, 95% CI = 95%
confidence interval.

doi:10.1371/journal.pone.0139455.g006
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GSH, SOD, CAT, and GPx) remove excess free radicals and peroxides. If the degree of oxida-
tion is beyond the capacity of antioxidant molecules, the levels of GSH, SOD, CAT, GPx, etc.,
will be reduced. PCs contain many phenolic hydroxyl groups and release H+ when they are

Fig 7. Effect of PC onmalondialdehyde (MDA). Forest plot showing the impact of PC treatment on MDA,
compared with controls. Abbreviations: SMD = standardized mean difference, IV = independent variable,
95% CI = 95% confidence interval.

doi:10.1371/journal.pone.0139455.g007

Fig 8. Subgroup analyses to determine the effect of PC on oxidative damage. Based on a subgroup
analysis, the effect of PC using the gavage mode was stronger than that observed using the feeding mode
(P < 0.00001; A2, B2). The effect of PC on MDAmeasured in tissue samples was significantly stronger than
that measured in serum samples (P = 0.02; C1). Abbreviations: SMD = standardized mean difference.

doi:10.1371/journal.pone.0139455.g008
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oxidized, which can bind active oxygen radicals competitively to block the reaction chains of
free radicals [48]. This reduces the consumption of antioxidants, increases the activity of anti-
oxidative enzymes, improves antioxidative ability, and increases the T-AOC levels. In addition,
it may be connected with increased expression of B-cell lymphoma-2 (Bcl-2), which can
enhance antioxidation in cells. Liming [49], Yujie [50], and others have found that PC signifi-
cantly increases the expression of Bcl-2, which increases the activity of antioxidant enzymes
based on in vivo and vitro experiments.

Fig 9. Sensitivity analysis for SOD. Stable results were observed for all studies, indicating that no individual
study influenced the combined results. Abbreviations: SMD = standard mean difference, SE = standard error.

doi:10.1371/journal.pone.0139455.g009

Fig 10. Funnel plot for the studies that estimated SOD.Dotted line shows the overall estimated standard mean difference.The figure showed that the
studies distributed symmetrically around the overall mean estimate.

doi:10.1371/journal.pone.0139455.g010
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This meta-analysis included 29 published papers. The quality of these studies was sufficient to
analyze the combined effects of PCs. The sensitivity analysis demonstrated the robustness of the
overall results. Similarly, the symmetric distribution of the studies in a funnel plot demonstrated
the lack of a publication bias. Although there was heterogeneity among studies, the randomized
effect model was used to integrate the results and a subgroup analysis and meta-regression were

Fig 11. Antioxidant mechanism of PCs. PCs contain many phenolic hydroxyl groups and release H+ when they are oxidized, which can bind active oxygen
radicals and competitively block the reaction chains of free radicals, reducing the consumption of antioxidants and increasing the activity of antioxidant
enzymes. Abbreviations: LP represents lipid peroxidation, GSSG represents oxidized glutathione.

doi:10.1371/journal.pone.0139455.g011
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used to evaluate the heterogeneity. All of the above analyses support the validity of using the
combined results of the 29 studies to determine the effect of PCs.

In summary, the results of the present study support the strong antioxidative effect of PCs as
evidenced by the levels of oxidative stress indicators in a systematic review of relevant published
papers. PCs are able to block the free radical chain reaction by eliminating radicals. They may also
regulate the signaling pathway related to oxidative stress, thereby improving antioxidative activity.
These results provide a scientific basis for the development and utilization of PC-based resources.

Outlook
PCs have important antioxidative and antitumor effects and have protective effects with
respect to the cardiovascular system and other biological activities [51]. They are widely used
in medicine, health care products, and cosmetics [52]. Despite their wide use and increasing
data related to their effects, the mechanisms that mediate the antioxidative effect of PCs are
unclear. To improve product development and the utilization of PCs, it is necessary to deter-
mine the enzymes, receptor genes, and signaling pathways involved in the antioxidation pro-
cess [53]. Additional examinations of the molecular mechanisms of PCs are needed to
maximize their benefits with respect to human health.

Limitations
A limitation of the present study was the obvious heterogeneity in the data. Heterogeneity was
observed with respect to subgroup factors, animal strains, reagents, PC dosages, and many
other factors. Using a funnel plot analysis, we detected some evidence for a publication bias.
We only considered manuscripts published in English and Chinese in this study and were not
able to retrieve negative results.

Supporting Information
S1 File. Raw Data of 29 studies. All data in the present study were extracted from 29 papers
(references 14–42) and we display the data in the table as a supporting information to show the
data availability.
(XLS)
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