
Frontiers in Immunology | www.frontiersin.

Edited by:
Jagadeesh Bayry,

Institut National de la Santé et de la
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The roleofendolysosomalCa2+signalling in immunityhasbeenasubjectof increasing interest
in recent years. Here, we discuss evolving knowledge relating to the contribution of
endolysosomal Ca2+ channels that include TPCs, TRPMLs, and P2X4R in physiological
processes related to innate and adaptive immunity—including phagocytosis, inflammation,
cytokine/chemokine release, dendritic, natural killer, and T cell activation andmigration—and
we underscore the paucity of clinical studies in this field. Emerging biomedical and
translational data have led to important new insights into the critical roles of these channels
in immune cell function and the regulation of innate and adaptive immune responses. The
evolving immunological significance of endolysosomal Ca2+ signalling warrants further
investigations to better characterize the roles of these channels in immunity in order to
expand our knowledge about the pathology of inflammatory and autoimmune diseases and
develop endolysosomal Ca2+ channels as viable biomarkers and therapeutic and preventive
targets for remodelling the immune response.
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INTRODUCTION

Innate and adaptive immunity are two fundamental components of the immune system. The cross-
talk between innate and adaptive responses is important in maintaining a functional immune
system in order to protect the individual against foreign substances such as allergens, toxins, tumour
cells, bacteria, and viruses. The innate immune system involves monocytes, macrophages, dendritic
cells, mast cells, basophils, neutrophils, eosinophils, and natural killer cells; whereas the adaptive
immune system is composed of B cells and T cells. Several studies have indicated that intracellular
Ca2+ signalling is critical to maintaining various immune cell functions (1–3) and attributed the
development of multiple autoimmune and inflammatory diseases to Ca2+ dysregulation (4, 5).

Ca2+ signalling mediated by endolysosomal channels is emerging as a player in processes related to
immune cell functions such as phagocytosis; the release of inflammatory mediators; antigen
presentation; inflammation; cellular trafficking; and T cell migration. Endo-lysosomal Ca2+ channels
are localized in early, late, and recycling endosomes, lysosomes, and autophagosomes. They are
comprised of two-pore channels (TPCs, also known as TPCNs); transient receptor potential cation
channels; mucolipins (TRPML); and the P2X4 ATP-activated cation channel. A significant contribution
of endolysosomal Ca2+ signalling has been demonstrated in phagocytosis, which is a vital physiological
process in cellular immunity mediated by TPCs, TRPML1, and P2X4R (6, 7). TRPML2 is an
endolysosomal Ca2+ channel that has been shown to have direct roles in the release of chemokine/
cytokine (8). Additionally, TPC1 is an endolysosomal Ca2+ channel that has been reported to be involved
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in the development of the immune response and the release of
inflammatory mediators (9). Although it has become clear that
endolysosomal Ca2+ signals play pivotal roles in health and disease,
the complex dynamics underlying the regulation of Ca2+ signalling
via endolysosomal channels and the involvement of these in
physiological processes related to immunity have remained
elusive. Here, we highlight the emerging roles of endolysosomal
Ca2+ channels in various physiological processes related to
immunity (as shown in Figure 1 and Table 1). Our intent is to
reveal their potential as key pieces in a puzzle that will help increase
understanding of the pathophysiology of autoimmune and
Frontiers in Immunology | www.frontiersin.org 2
inflammatory disorders and develop endolysosomal Ca2+

channels as targets for future immunotherapy.
TPCS IN PHAGOCYTOSIS,
INFLAMMATORY RESPONSE,
AND VIRUS TRAFFICKING

The two-pore channels (TPCs) are present as two isoforms in
mammals—TPC1andTPC2.Debate continues as towhetherTPCs
are primarily Ca2+ or Na+ channels (16). Data from several studies
FIGURE 1 | Schematic representation of the main calcium endolysosomal Ca2+ channels involved in immunity. The evolving contributions of TPCs, TRPMLs and
P2X4R in innate and adaptive immune responses and their vital roles in various stages of phagocytosis.
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suggest thatTPCsbehave differently in different biological contexts.
They can trigger Ca2+ or Na+ release upon binding to second
messengers: nicotinic acid adenine dinucleotide phosphate
(NAADP), acts directly or indirectly to release Ca2+, and
phosphatidylinositol 3,5-bisphosphate [PI (3,5)P2] to release Na+

(17–20). Phagocytosis by macrophages is a physiological process
initiated by our innate immune system as the first line of defines
against both pathogens (bacteria, toxins, viruses) and tumour cells.
Lysosomes are multifunctional organelles and play vital roles in
phagocytosis, particularly in the late stages of phagosome
maturation (21). A recent study by Suresh et al. (22) has
uncovered the role of the tubular state of lysosomes in
phagocytosis, which is known to modulate processes related to
immunity, such as antigen presentation. The study found that
lysosome tubular states mediate phagocytosis and enhanced
phagosome-lysosome fusion in RAW 264.7 cells (an in vitro
model of murine macrophages) (22). Another recent study by
Freeman et al. suggested the possibility that TPC2 acts as a
regulator of the lysosome tubulation process (23). The study
showed that TPC2 overexpression drives lysosome tubulation in a
mechanism involving phosphatidylinositol 3,5-bisphosphate
activation (23). Additionally, TPC1 and TPC2 expression at the
mRNA level was found to be significantly upregulated in bone
marrow-derived macrophages compared to mouse embryonic
fibroblasts (23). The participation of endolysosomal Ca2+-
mediated phagosome-lysosome fusion was implicated in the
maturation of the phagosome phase, where the phagosome fused
with the lysosome, ultimately becoming a phagolysosome, which is
a fundamental step of phagocytosis. Recently, Davis et al. (6)
identified a role for NAADP evoked TPC-endolysosomal Ca2+

signalling from the nanodomains involving calcineurin activity and
dynamine 2 activation in macrophages at the scission of
phagosomes from the plasma membrane stage of phagocytosis
for small and large particles (6), which suggests that TPC1 or TPC2
may act as downstream regulators of phagocytosis inmacrophages.

Previously, Davis et al. deciphered the biological significance of
NAADP/TPC/Ca2+ signalling in T cell biology. They found that
Frontiers in Immunology | www.frontiersin.org 3
NAADP-mediatedCa2+ release is a significant pathway that drives T
cell cytolytic granule exocytosis (15). Recently, Elisabeth et al. (2020)
reported for the first time that endolysosomal Ca2+ signals via TPC1
mediate the development of the immune response by triggering the
release of inflammatory mediators in a mechanism involving Ca2+

cross talk between TPC1-mediated and endoplasmic reticulum (ER)
Ca2+ stores (9). In the in vivo TPC1KO murine model, systemic
anaphylaxiswas exaggerated,manifested by a profounddrop in body
temperature compared to WT mice (9). The study also found that
TPC1 modulation either by genetic deletion or by pharmacological
inhibition by trans-Ned-19 augmentedmastocyte degranulation and
evoked the release of inflammatory mediator (histamine) frommast
cells (9), which are tissue-resident cells of the immune system that
play a role in inflammatory and allergic reactions. The number and
the size of the mastocytes were significantly attenuated in the TPC1-
deficient murine model compared to WT controls (9). The cellular
mechanisms underlying the regulation of TPC1-mediated
endolysosomal Ca2+ signals in the development of inflammatory
and allergic reactions warrants further investigation to aid the
development of new drugs for the treatment of anaphylaxis and
allergic hypersensitivity.

The NAADP/TPC/Ca2+ signalling pathway has been shown to
play an important role in virus trafficking. Gunaratne et al. showed
that TPC (TPC1 and TPC2) knockdown hampered Middle East
Respiratory Syndrome coronavirus (MERS-CoV) infection in
human embryonic kidney 293 (HEK293) cells (24). Ca2+

signalling via TPCs (involving TPC1 and TPC2) regulates Ebola
virus entry and plays a significant biological role in virus trafficking
and preventing the infection (25). Pharmacological inhibition or
genetic knockoutofTPCsdiminished the capacityof theEbolavirus
to infect cells in in vitro or in vivo models (25). The candidacy of
these channels as druggable targets for future antiviral therapy is
supported by the availability of FDA-approved drugs, such as
dopamine antagonists (e.g. fluphenazine and pimozide) and
selective oestrogen receptor modulators (including raloxifene,
clomiphene, and tamoxifen) that inhibit TPC function and hinder
Ebola virus-like particle entry into HeLa Kyoto cells in vitro (26).
TABLE 1 | Some experimental evidence supporting endolysosomal Ca2+ signalling involvement in physiological processes attributed to immunity.

Immune
system

Endolysosomal Ca2+

channel
Process related to immunity In vitro/in vivo Ref.

Innate immunity
Macrophages TPCs Phagocytosis RAW 264.7,BMDM of WT, TPC1KO, TPC2KO, TPDKO and

TRPML-1KO mice
(6)

TRPML1
P2X4R Human alveolar, THP-1, NR8383, J774, mouse peritoneal, and

RAW264
(7)

TRPML2 CCL2 chemokine release BMDM of WT and TRPML-2KO mice (8)
Dendritic cells TRPML1 DC chemotaxis, and migration BMDCs of WT and TRPML1 KO mice (10)

P2X4R Priming dendritic cells for Th2 inducing IL-1ß
secretion

BMDCs of WT and P2RX4 KO mice (11)

Mast cells TPC1 Inflammatory mediator release (histamine) WT and TPC1KO mice (9)
NK cells TRPML1 NK cell education NK cells sorted from PBMC (12)
Adaptive immunity
B-cells TRPMLs (TRPML1 and

TRPML2)
B-cell antigen presentation DT40 B-lymphocytes (13)

T-cells P2X4R T-cell recruitment and migration Primary T cells and Jurkat T cells (14)
TPCs
(TPC1 and TPC2)

T cell cytolytic granule exocytosis Jurkat 1G4 cells (15)
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Functional characterisation of fluphenazine and raloxifene revealed
that they blockTPC2activity bydecreasing the channel opening time
(26). The SARS-CoV2 outbreak led to a revisiting of the role of
endolysosomal Ca2+ signalling, particularly via TPCs, in virus
trafficking and infectivity. Recent evidence has shown that TPC2,
phosphatidylinositol 3-phosphate 5-kinase (PIKfyve), and cathepsin
L regulate SARS-CoV-2 entry in an in vitromodel (HEK293/hACE2
cells) (27). Similarly, Clementi et al. found that inhibition of TPC2
function via pharmacologicalmeans bynaringenin or knockdownby
siRNA attenuated SARS-CoV2 infection in vitro (28).

Despite the growing evidence linking TPC/Ca2+ signalling to
physiological processes attributed to immunity, research in this
area is still in its infancy. Further investigations utilizing
biomedical (in vitro and in vivo) and clinical models will
decode the role of TPC/Ca2+ signalling in immunity and will
contribute to advancing our knowledge regarding the roles of
this signalling pathway in the pathogenesis of immune system
diseases and might lead to the development of therapeutic agents
to treat or prevent diseases related to the immune response.
TRPMLS IN PHAGOCYTOSIS, ANTIGEN
PRESENTATION AND CHEMOKINE/
CYTOKINE RELEASE

Transient receptor potential cation channels (TRPMLs;
mucolipins) are a subfamily of the TRP channel family, and
composed of TRPML1, TRPML2 and TRPML3 in mammals;
they are localized in the endolysosomal compartments (29).
TRPMLs play a significant role in endolysosomal biology,
specifically, endolysosomal trafficking that leads to autophagy
(30). Notably, the roles of TRPMLs (particularly TRPML1 and
TRPML2) in physiological processes related to immune cell
functions are evolving (31, 32), underscoring the importance of
fully characterizing the biological and clinical functions of these
channels in the immune system. Song et al. (33) reported the first
evidence of the interconnection between TRPMLs (TRPML1 and
TRPML2) and B-cell antigen presentation in vertebrates (33). The
TRPML1-mediatedCa2+ signalling pathway has been implicated in
phagocytosis (6, 13, 34). TRPML1 acts as a regulator of phagosome
maturation, FYVE finger-containing phosphoinositide kinase
(PIKfyve), and (PI(3,5)P2)-mediated Ca2+ signals via TRPML1-
triggered phagosome-lysosome fusion (13). A previous study
implicated (PI(3,5)P2)/TRPML1/Ca2+ signalling as a modulator
of phagocytosis by regulating focal exocytosis, which is significant
for phagosomebiogenesis (34).Recently, knockout ofTRPML1was
shown to attenuate the phagocytosis of large particles in murine
bone marrow derived macrophages (BMDMs), indicating that
lysosomal Ca2+ release via TRPML1 is necessary for large target
phagocytosis (6). TRPML1/Ca2+ signalling is involved in lysosome
tubulation (35); this process plays roles in phagocytosis and antigen
presentation. Recently, Goodridge et al. (36) identified a pivotal role
for lysosomalCa2+ release viaTRPML1as ameditator of the natural
killer (NK) cell function (36). Previous studies demonstrated that
TRPML1 lysosomal Ca2+ signals were involved in dendritic RNA
transportation through the modulation of Toll-like receptor 7
(TLR7) signalling (12). Additionally, the Ca2+ signalling mediated
Frontiers in Immunology | www.frontiersin.org 4
by TRPML1 regulates two important dendritic cell functions
involving migration and chemotaxis (37). These findings highlight
the evolution of TRPML1 as a modulator of innate and adaptive
immunecell functions; thus, itwarrants further investigation toreveal
themolecular mechanisms of TRPML1 in immunity via in vitro and
in vivomodels.TRPML2/Ca2+ signallingmodulates chemokine (C-C
motif) ligand 2 (CCL2; also known as monocyte chemoattractant
protein 1 (MCP1)) release from macrophages (8) and acts as a key
regulator of monocyte and macrophage infiltrations and migration
(10). Consequently, Ca2+ signalling via TRPML2 modulates the
inflammation by regulating the release of CCL2; this may serve as a
viable therapeutic target for patients with inflammatory diseases. In
addition to the involvement of TRPML2 in chemokine release, it was
shown that TRPML2-evoked endolysosomal Ca2+ signalling plays a
role in viral trafficking (38). To our knowledge, there is a lack of
molecular evidence characterising the role of TRPML3 in immunity.
Although the evolving body of evidence highlights that
endolysosomal Ca2+ signals mediated by TRPMLs play important
roles in innate and adaptive immunity, further studies are required to
decipher the precise mechanisms underlying the physiological
processes of these channels in immunity, from chemokine/cytokine
release to antigen presentation.

P2X4 R IN PHAGOCYTOSIS,
INFLAMMATION, CYTOKINE
RELEASE AND INVOLVEMENT IN
T CELL MIGRATION

The P2X4 receptor belongs to the purinergic receptor family, is
involved in ATP-evoked Ca2+ release, and is localized to the
endolysosomal system (39). P2X4R-mediated Ca2+ signalling is
recognized as a key mediator in inflammation and neuropathic
pain (40–42). Recent studies have continued to shed light on the
roles of P2X4R in physiological processes related to immunity.
Upregulation of P2X4R protein expression was observed in the
early stages of phagocytosis (with initial phagocytic stimuli) in
alveolar macrophages (7), which suggested the involvement of
P2X4R in phagocytosis. As discussed earlier concerning the roles of
TPCsandTRPMLs inphagocytosis,we speculate that endolysosomal
ion channels dynamically communicate at a molecular level to
ultimately mediate phagocytosis; additionally, these channels have
distinctive roles in different phases of this process. P2X4R mediates
allergen-induced airway inflammation through the regulation of
priming dendritic cells for T helper 2 (Th2), inducing IL-1ß
(Interleukin 1 beta) secretion (43). Similarly, P2X4R was found to
modulate the P2X7 receptor-mediated release of two pro-
inflammatory cytokines, IL-1ß and IL18 (Interleukin-18), which
mediate inflammation in murine bone marrow-derived dendritic
cells (BMDCs) (11).P2X4R-deficientmice exhibitedprotective effects
against ischemic acute kidney injury compared to WT mice; this
effect was studied at the molecular level and linked to P2X4R-
augmented ischemic acute kidney injury via a mechanism
involving the activation of NLRP3 (NLR family pyrin domain
containing 3) in inflammasome signaling (44). Inflammasome is a
multiprotein complex that plays a fundamental role in inflammation
of innate immune cells through the activation of caspase 1, which is
April 2021 | Volume 12 | Article 656965
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responsible for cleavage of the precursor forms of two important
inflammatory mediators, IL-1ß and IL18, into biologically active
cytokines (44). Further research is required todetermine the complex
interplay between P2RX4, inflammasome, and the release of IL-1ß
and IL18. Pharmacological inhibition of P2RX4 via 5-BDBD (5-(3-
bromophenyl)-1,3-dihydro-2H-benzofuro[3,2-e]-1,4-diazepin-2-1)
hampered T-cell migration (45). T-cell migration is a critical step in
T-cell function. Additionally, Ledderose et al. (44) have provided
substantial further evidence to confirm this finding. With an in vivo
mousemodel, they found thatpharmacologicalmodulationofP2X4R
by 5-BDBD resulted in the rejection of lung transplants by impairing
T-cell recruitment in allograft tissue (45). Overexpression of P2X4R
wasdetected inCD4+Tcells fromperipheralbloodandadipose tissue
in obese, healthy subjects, indicating a possible role for P2X4R in
chronic inflammation associated with obesity (46).

Overall, these findings underline the immunological
significance of P2X4R in innate and adaptive immunity and
warrant further investigations to biologically and clinically
characterize the multi-functional role of P2X4R in immunity.
This may further the development of immunomodulators to
treat inflammatory diseases and prevent graft rejection and
transplantation complications.
CLINICAL INVESTIGATIONS OF
ENDOLYSOSOMAL CA2+ CHANNELS
IN DISORDERS RELATED TO THE
IMMUNE SYSTEM

Although there is a growing scientific interest in the role of
endolysosomal Ca2+ channels in immunity, there is a paucity of
studies that categorize these channels clinically. Recently, a genome-
wide association study in the Han Chinese population identified
TPCN2 as one of four gene signatures attributed to systemic lupus
erythematosus (SLE) susceptibility, which is characterized as a
chronic autoimmune disease (14). Significantly overexpressed P2X4

at the protein level was discovered in tissues of patients with hepatitis
C virus-induced hepatocellular carcinoma compared to non-
hepatitis C virus-induced hepatocellular carcinoma (47). This
finding raises a clinical question regarding the possibility of
targeting P2X4 to modulate the immune response that contributes
to hepatitis C virus-induced hepatocellular carcinoma, which
warrants further investigation to understand the role of P2X4 in
hepatitis C virus-induced hepatocellular carcinoma pathology.
Frontiers in Immunology | www.frontiersin.org 5
CLOSING REMARKS AND FUTURE
PERSPECTIVES

An evolving body of evidence continues to uncover the function of
endolysosomal Ca2+ signalling in innate and adaptive immune cell
responses. It has become clear that endolysosomal Ca2+ channels,
mainly TPC2 and TRPML-1, serve a critical role in phagocytosis at a
global level, with distinctive roles at different stages of the phagocytic
process. Importantly, TRPML-2 and P2X4R are implicated in
modulating chemokine and cytokine release and consequently their
effect on inflammation; however, the precisemechanisms underlying
the action of these channels remain elusive and require further
investigation to define a specific upstream or downstream target to
overcome problems posed by the ubiquity of Ca2+ signals in our cells
and to modulate the innate immune response. Recent studies shed
light on the roles of TRPML-1 and P2X4 in adaptive immune cell
function and raise questions regarding their candidacy as valuable
targets for modulation of adaptive immune responses. Regardless of
the paucity of clinical evidence, GWAS revealed the potential
applications of TPC2 as a biomarker in the definition of SLE
susceptibility in the Chinese population and warrants validation in
prospective cohorts of a diverse population. Despite the exploratory
nature of the evidence highlighting the role of endolysosomal Ca2+

signalling in various processes related to immunity, this mini-review
offers some insights into the pivotal roles of these channels in the
specific mechanisms of innate and adaptive immunity that lead to
inflammation and disorders related to the immune system.
Additionally, it raises questions regarding the clinical utility of
these channels as biomarkers or immunotherapy targets to
modulate innate and adaptive immune responses.
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