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ABSTRACT: A challenge for chemiresistive-type gas sensors distinguishing mixture gases
is that for highly accurate recognition, massive data processing acquired from various types
of sensor configurations must be considered. The impact of data processing is indeed
ineffective and time-consuming. Herein, we systemically investigate the effect of the
selectivity for a target gas on the prediction accuracy of gas concentration via machine
learning based on a support vector machine model. The selectivity factor S(X) of a gas
sensor for a target gas “X” is introduced to reveal the correlation between the prediction
accuracy and selectivity of gas sensors. The presented work suggests that (i) the strong
correlation between the selectivity factor and prediction accuracy has a proportional
relationship, (ii) the enhancement of the prediction accuracy of an elemental sensor with a
low sensitivity factor can be attained by a complementary combination of the other sensor
with a high selectivity factor, and (iii) it can also be boosted by combining the sensor
having even a low selectivity factor.

■ INTRODUCTION
A central hurdle in the recent research fields for chemiresistive-
type gas sensors is to gain selectivity for a target analyte, which
greatly impedes their further development.1−7 In typical
chemiresistive-type gas sensors, the gas response of target
analytes can be extracted from the variation in measurable
electrical signals stimulated by charge interactions between the
gas molecules and the semiconductor surface. Recently,
considerable interest has focused on boosting the response
of specific gases to gain gas selectivity. Two representative
strategies are available to enhance the gas selectivity of
chemiresistive-type gas sensors. First, the diversification of the
device is currently being pursued beyond simple resistor-type
devices. It has been demonstrated that gas sensors based on p-
n junctions are able to realize high selectivity through the gas
adsorption-dependent modulation of a space charge region
between the p-n junctions, which is attributable to the
alteration in carrier concentration before and after the surface
adsorption of target gases.8−10 Similarly, a barristor-type gas
sensor secured the selectivity by maximizing the response via
modulation of the Schottky barrier height between the
heterojunctions associated with gas adsorption-stimulated
variation in the work function.11,12 Second, surface mod-
ification and functionalization of sensing materials have been
adopted concentrically to engineer the gas adsorption energy at
the surface of the sensing materials. To achieve gas selectivity,
metal−organic frameworks have been utilized on the surface of
sensing materials for gas filtering via a molecular sieving
effect.13−15 A combination of a polar siloxane polymer layer
and metal oxide thin films has also been implemented to
discriminate between polar and nonpolar gases for volatile

organic compound gases.16,17 In addition, considerable interest
has focused on the complementary hybridization of metal
oxides and catalysts to reduce the activation energy for the
charge interaction of adsorbed specific analytes with the
sensing materials.18,19

Based on these results, it can be deduced that central
research to achieve the gas selectivity of chemiresistive-type gas
sensors has been constrained to boost the response of a specific
gas among diverse gases, which is distinctly accompanied with
limited research on sensing materials and device architecture.
In general, the gas response relies on the combination of target
gas selectivity and its concentration, which can be defined as
follows

S Cresponse(X) (X) (X)α= · · (1)

where α is an environmental factor containing the working
pressure, the volume of the container, the surface-to-volume
area for the sensing material, the temperature, the humidity,
etc. S(X) is the selectivity factor for the target gas X, and C(X)
is its concentration. The selectivity factor can be determined
by the correlation between the absorption energy and the
activation energy for the charge interaction with gas molecules.
In general, a gas sensor with high selectivity for A gas is
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relevant to a higher S(A) value compared with S(B), S(C), ...,
and S(X) values corresponding to the B, C, ..., and X gases
(S(A) ≫ S(B), S(C), ... and S(X)), respectively. In this regard,
it is noted that two cases associated with a higher S(A) value
combined with a lower C(A) and a lower S(A) value with
higher C(A) are indistinguishable. These relationships can be
summarized as follows

S S C A C B(A) (B) and ( ) ( ) response(A)

response(B)

≫ ≪ →

≈ (2)

To overcome this unattainable hurdle, an alternative strategy
involving machine learning (ML) based on statistical data
processing has recently attracted tremendous interest, which
corroborates new insights into the capability of identifying a
target gas in undefined gaseous mixtures using a simple
analytical comparison of gas responses.20,21 However, a vast
amount of data is indispensable for ML with guaranteed
accuracy, which encounters a limitation that an inefficient
process for additional distinct feature extraction is needed.22,23

To address this issue, for simplification of processes, we
accordingly investigated the effect of the selectivity of an
individual gas sensor for the target gas on the prediction
accuracy of gas concentration via machine learning based on a
support vector machine (SVM) model. The SVM is connected
to an algorithm for building a predictive machine learning
model, which strongly relies on statistical learning theory based
on the idea of finding the best separating hyperplane of two
point sets in the sample space in terms of classification error

and separation margin. There are several ML-assisted gas
recognition models using artificial neural networks (ANN),
principal component analysis (PCA), and K-nearest neighbors
(KNN). However, those approaches are still limited on the
practical application due to the strong dependency on the
initial selection of weights and thresholds, relatively poor
accuracy, and the memory issue on storing the massive
data.24−26 Since the SVM can effectively resolve the above-
mentioned problems and it is a simple and effective technique
for quantitatively analyzing gas mixtures as this can address the
cross sensitivity problem of gas sensor arrays, it has emerged as
a promising candidate for general classification and regression
in a wide range of research fields, such as pattern recognition,
material design, and the prediction of material’s proper-
ties.27−29 The response gained from an array of 16 gas sensors
for ethylene and CO mixture gases, a representative and easily
accessible feature, was allocated as the feature data for ML.
Electrochemical conversion from carbon monoxide (CO) to
ethylene, which is one of the important building blocks for the
chemical industry and usually produced by steam cracking of
naphtha feedstocks at 800−900 °C, has been actively studied
and considered as an energy-efficient electrochemical reduc-
tion process.30−32 Therefore, the implementation of a selective
detection device should be done for an accurate quantitative
analysis of each individual gas from CO and ethylene mixture
gases. To validate the correlation between the selectivity and
prediction accuracy, the selectivity factor, S(X), was deduced
via a systematic study of the gas response with altering
multigas concentrations. Then, optimized conditions associ-

Figure 1. (a) Dynamic response curves acquired from an array of 16 commercial gas sensors (b) under exposure to mixture gases with diverse
concentration. (c) Schematic illustration of the machine learning (ML) process with a support vector machine (SVM) model based on the k-fold (k
= 5) cross-validation protocol. (d) Schematic diagram of data preparation for ML.
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ated with a combination of individual sensors were derived to
improve the prediction accuracy of ML for gas concentrations.

■ RESULTS AND DISCUSSION
To verify the validity of the proposed strategy, an open sensor
array dataset collected from the University of California Irvine

(UCI) was used, which contains the dynamic gas responses
gained from arrays of 16 commercial sensors (TGS2600,
TGS2602, TGS2610, and TGS2620; four units of each type)
under ethylene and CO mixtures in air with diverse
concentrations.30 The operating temperature can be adjusted
by 5 V of applied voltage, which was integrated with a chip

Figure 2. Dynamic gas response curves of (a) sensor #1 and (b) sensor #16 for CO and ethylene gases with diverse concentration and (c) gas
concentration profile (red (blue) shaded regions: CO (ethylene) without ethylene (CO)). Correlations between gas response values gained from
sensor #1 for (d) CO and (e) ethylene and their concentration. (f) Contour plot for gas response of sensor #1 for both CO and ethylene
concentrations. Plot of gas response values gained from sensor #16 for (g) CO and (h) ethylene as a function of their concentration. (i) Contour
plot for gas response of sensor #16 for both CO and ethylene concentrations.
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heater as the sensor platform. The measurement was
conducted by the continuous acquisition of the 16-sensor
array signals (electrical current) for a duration of about 12 h
without interruption while the concentration levels changed
randomly. The concentration transitions were set at random
times (in the interval of 80−120 s) and to random
concentration levels. Response can be converted to resistance
(kΩ) by 40.000/R, where R is the value of response.33 ML was
conducted using MATLAB software for conducting the
support vector machine (SVM) model with the k-fold
validation method. Based on the datasets, the training data
was organized for ML, as described in Figure 1. Time-
evolution gas response curves for an array containing 16
commercial gas sensors were acquired under exposure to
mixture gases (CO + ethylene) with diverse concentrations, as
displayed in Figure 1a,b. The dynamic response curve
corroborates a gas injection-dependent variation in the time-
domain electrical signal, in which the maximized electrical
conductivity can be defined as the gas response value. Based on
these results, it can be ascertained that the 16-unit sensors
exhibited discernible gas responses by altering the concen-
tration of the target gas mixture. To predict the concentration
of multiple gases using an ML technique, we adopted the SVM
model with k-fold cross-validation (k = 5) in MATLAB
software, as represented in Figure 1c. Since two classes of
datasets consisting of labeled data (or answer data) and feature

data were needed for utilizing the ML method, we rationally
assigned the target gas concentrations and gas response as the
labeled data and feature data, respectively, as represented in
Figure 1d. The details of the experimental conditions are
described in the Supporting Information.
To verify the concentration discrimination capability via ML

for individual gas sensors with differentiated selectivity for CO
and ethylene, two representative sensors were prudently
selected from the sensor array (sensors #1 and #16). Sensor
#1 (TGS 2600, Figaro) possesses high selectivity for gaseous
air contaminants such as H2 and CO, whereas sensor #16
(TGS 2620, Figaro) possesses a high response for ethylene.
The selection of two representative sensors enables us to hint
at a correlation between the ML-based concentration
discrimination capability and discernible gas selectivity. From
Figure 2a,b, sensors #1 and #16 show distinct response signals
for CO and ethylene gases, and a gas concentration-dependent
variation in the response can readily be discerned for each gas.
As expected, the response extracted from sensor #1 was more
sensitive to altering the concentration of CO (red shaded
region), and the response of sensor #16 was more sensitive to
ethylene (blue shaded region). The gas response of sensor #1
corresponding to the individual CO (ethylene) gas without the
ethylene (CO) gas as a function of the gas concentration is
plotted in Figure 2d,e, for a detailed comparison of the
selectivity factor for sensor #1. In addition, the concentration-

Figure 3. Plot of predicted concentration vs real gas concentration of CO and ethylene using (a,b) sensor #1, (d,e) sensor #16, and (g,h) sensor #1
combined with sensor #16. Accuracy profiles acquired from ML for CO and ethylene gases using (c) sensor #1, (f) sensor #16, and (i) sensor #1
combined with sensor #16.
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dependent gas response of sensor #1 for ethylene and CO
target gases is summarized as a contour plot in Figure 2f. From
the results shown in Figure 2d−f, the response gained from
sensor #1 was influenced by regulating the concentration of the
two gases, in which the concentration of CO gas predom-
inantly affects the gas response of sensor #1, as expressed by
S1(CO) > S1(ethylene). An identical analysis was conducted
for sensor #16, and the extracted results are summarized in
Figure 2g−i. Contrary to sensor #1, sensor #16 showed a
higher selectivity factor for ethylene, as denoted by S16(CO) <
S16(ethylene). To investigate the discernable trend of other gas
sensors in the array, a repeated analysis was performed on
sensors #2 to #15, as summarized in Figure S1, corroborating
that the gas sensors with high selectivity factors for CO gas
were sensors #1, #9, and #10, and those for ethylene gas
corresponded to sensors #3, #4, #7, #8, #11, #12, #15, and #16
(S3,4,7,8,11,12,15(CO) < S3,4,7,8,11,12,15(ethylene)).
The primary goal of this study is to ascertain the correlation

between the selectivity factor for a specific gas and the
prediction accuracy of each gas concentration in the gas
mixture. Accordingly, the data acquired from CO-sensitive

sensor #1, ethylene-sensitive sensor #16, and sensor #1
combined with sensor #16 were constructed for ML by
using the SVM model with the k-fold cross-validation method.
The prediction results of CO and ethylene concentrations for
sensors #1 and #16 are displayed in Figure 3a−f. The accuracy
(R2) can be calculated using the residual scatter from the fitting
line as follows

R
y p
y y

accuracy( , %) 1
( )
( )

2
2

2= −
∑ −
∑ − ̅ (3)

where y is the real value, p is the predicted value, and y̅ is the
mean of the real value at the specified corresponding gas
concentration. Then, y − p can be described as a residual
scatter from the prediction of the real value through the
machine learning results. y − y̅ is the total variance. In general,
because a higher R2 leads to a well-fitted model compared with
the real values, the accuracy of the training model from the
SVM model can be estimated using the R2 value. The residual
plots are summarized in Figure S2, and the accuracy results are
shown in Figure 3c,f. To clearly observe the scattered values

Figure 4. Relationships of predicted gas concentration vs real gas concentration for (a−d) CO and (e−h) ethylene with increasing numbers of unit
sensors. Accuracy profiles of the machine learning results with altering (i) number of unit sensors and (j) combination of sensors.
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compared to the best fit (red dashed line), another linear
fitting line (blue dashed line) for the scatter was involved in
the prediction scatter plots, as shown in Figure 3. The
estimated values for the slope and intercept are summarized in
Table S1. As we expected, the ML result for sensor #1 exhibits
a high scored accuracy of 80.2% for CO gas and a relatively low
accuracy of 27.0% for ethylene gas. Conversely, we ascertained
that the result from sensor #16 presents an accuracy of 11.7%
for CO and 71.5% for ethylene gas. Intriguingly, the
concentration discrimination capability via ML for both gases
was accomplished by the coupling of sensors #1 and #16 (CO
of 85.7% and ethylene of 86.2%), as presented in Figure 3g−i.
These results can be summarized with a notation of the
prediction accuracy as “A” and target gas as “X” as follows

A A(CO) 80.2%, (ethylene) 27.0%1 1= = (4)

A A(CO) 11.7%, (ethylene) 71.5%16 16= = (5)

A A(CO) 85.7%, (ethylene) 86.7%1 16 1 16= =+ + (6)

These results corroborate a couple of salient phenomena for
the predictive capability via ML. First, there is a strong
correlation between the high selectivity factor of gas sensors
and ML results associated with prediction accuracy, which is a
proportional relationship

S S A A(CO) (ethylene) (CO) (ethylene)1 1 1 1> → > (7)

S S A A(CO) (ethylene) (CO) (ethylene)16 16 16 16< → <
(8)

Second, the enhancement of the prediction accuracy of an
elemental sensor with a low sensitivity factor can be attained
by a complementary combination of the other sensors with a
high selectivity factor.

A A A A(ethylene) (ethylene), (CO) (CO)1 1 16 16 1 16< <+ +
(9)

Finally, the prediction accuracy can also be boosted by
combining the sensor having even a low selectivity factor due
to an increase in feature data, A1(CO) < A1+16(CO) and
A16(ethylene) < A1+16(ethylene), which hints that a reliable gas
recognition system can be accomplished by applying ML to a
sensor array system consisting of multiple sensors with a low
selectivity factor.
To validate our suggestion, the prediction accuracy of CO

and ethylene gas concentrations by altering the number of unit
sensors #3, #4, #7, #8, #11, #12, #15, and #16 reveals a nearly
identical aspect of ethylene gas (Figure S1) with a relatively
low sensitivity factor for CO gas, as shown in Figure 4a−h. The
combination of unit sensors corresponds to #3 for one sensor,
#3, #4, and #7 for three sensors, #3, #4, #7, #8, and #11 for five
sensors, and #3, #4, #7, #8, #11, #12, #15, and #16 for eight
sensors. The dependencies of prediction accuracy (R2) for CO
and ethylene gases according to the variation in the number of
unit sensors and the combination of unit sensors are
summarized in Figure 4i,j, respectively. Their residual plots
are also summarized in Figures S3 and S4. It is worth noting
that the prediction accuracy for CO concentration is
accompanied by an increase in the number of unit sensors
(22.1% using a single sensor and 96.3% using eight sensors).
The prediction accuracy for the concentration of ethylene gas
was also enhanced from 83.3 to 95.5%. Based on our findings,
we can conclude that (i) the enhancement of prediction

accuracy of an elemental sensor with a low sensitivity factor
can be attained by a complementary combination of the other
sensor with a high selectivity factor, and further, (ii) it can also
be boosted by combining the sensor having even a low
selectivity factor due to an increase in feature data. These
results can be supported by the improvement in the prediction
accuracy of ML owing to the increase in the amount of feature
data and also the complementary synergetic effect through the
sensor array implementation, as proved in previous studies.34,35

■ CONCLUSIONS
In conclusion, we reported a strategy for the optimal sensor
configuration and combination to improve the accuracy of ML-
based prediction of gas concentrations using a sensor array
system. This strategy permits the minimization of the massive
amount of data required for ML and saves efforts to extract the
critical features effectively. The most basic feature data of the
gas sensor, response, was obtained from the sensor array
system composed of 16 sensors, and a dataset was constructed.
The correlation between the selectivity factor and prediction
accuracy was systemically investigated using the SVM model
for ML with the k-fold cross-validation protocol. Then, we
finally derived the optimal sensor configuration and combina-
tion to improve the accuracy of ML-based prediction of
concentrations using a sensor array system. It is also envisaged
that this methodology will corroborate an adequate solution
for prediction and recognition based on ML using a versatile
sensor array system.

■ EXPERIMENTAL SECTION
An open sensor array dataset collected from the University of
California Irvine (UCI) was used, which contains the dynamic
gas responses gained from arrays of 16 commercial sensors
under ethylene and CO mixtures in air with diverse
concentrations. The gas sensor array platform was consolidated
with a data acquisition system and a flow controlling system.
The measurement was conducted by the continuous
acquisition of the 16-sensor array signals with a data
acquisition board for a duration of about 12 h without
interruption while the concentration levels changed randomly.
Machine learning (ML) was conducted using MATLAB
software for conducting the support vector machine (SVM)
model with the k-fold validation method. Based on the
datasets, the training data was organized for ML. Detailed
methods and procedures are described in the Supporting
Information.
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