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Abstract

With the change in lifestyle and aging of the population, osteoarthritis (OA) is emerg-

ing as a major medical burden globally. OA is a chronic inflammatory and degenera-

tive disease initially manifesting with joint pain and eventually leading to permanent

disability. To date, there are no drugs available for the definitive treatment of osteoar-

thritis and most therapies have been palliative in nature by alleviating symptoms

rather than curing the disease. This coupledwith the vague understanding of the early

symptoms andmethods of diagnosis so that the disease continues as a global problem

and calls for concerted research efforts. A cascade of events regulates the onset and

progression of osteoarthritis starting with the production of proinflammatory cyto-

kines, including interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α; catabolic
enzymes, such as matrix metalloproteinases (MMPs)-1, -3, and -13, culminating into

cartilage breakdown, loss of lubrication, pain, and inability to load the joint. Although

intra-articular injections of small andmacromolecules are often prescribed to alleviate

symptoms, low residence times within the synovial cavity severely impair their effi-

cacy. This reviewwill briefly describe the factors dictating the onset and progression of

the disease, present the current clinically approved methods for its treatment and
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diagnosis, and finally elaborate on themain challenges and opportunities for the appli-

cation of nano/micromedicines in the treatment of osteoarthritis. Thus, future treat-

ment regimens will benefit from simultaneous consideration of the

mechanobiological, the inflammatory, and tissue degradation aspects of the disease.
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1 | INTRODUCTION

Osteoarthritis (OA) is the most common form of arthritis that simultaneously affects the lives of elderly people as well as
young individuals suffering post traumatic injuries (Loeser et al., 2016). This chronic inflammatory disease can potentially
influence any articular joints, but knees, hands, feet, and fingers are more affected. OA is a complex disease affecting the
whole joint, in which subchondral sclerosis, synovial membrane inflammation, and enzymatic degradation of the extracel-
lular matrix (ECM) concomitantly have a pivotal role. These processes result in the progressive degeneration of cartilage.
OA represents the main source of joint pain and its progression can be associated with functional loss and, eventually,
permanent disability (Martel-Pelletier et al., 2016). The 2017 Global Burden of Disease Study reports that over 300 million
people are affected by OA, with a higher prevalence in women and elderly individuals (Safiri et al., 2020). In addition to
age, other modifiable and non-modifiable risk factors can promote OA including obesity, lack of exercise, genetic predis-
position, and bone density (Loeser et al., 2016; Martel-Pelletier et al., 2016; Shaik et al., 2018). Considering its high inci-
dence and negative outcomes, OA is associated with an enormous economic burden on national healthcare and society
(Cross et al., 2014; Vos et al., 2012). It has been predicted that the economic burden of OA in the US only could be close
to $200 billion/year by 2030 (Colombo et al., 2021). Indeed, the aging of the world's population will inevitably contribute
to increase the incidence of this disease thus requiring more research efforts to identify effective and definitive therapies.

Several pharmacological and non-pharmacological approaches, either individually or in combination, are currently
used for managing this widespread disease and public health issue. Nowadays, pharmacological treatments are mostly
limited to alleviate the symptoms, such as pain, stiffness and swelling, rather than reversing and curing the disease. In
general, an ideal OA drug therapy should revert the damage to joint structures, reduce pain, inflammation, and improve
or restore joint function. Yet, no approved disease modifying osteoarthritis drugs (DMOADs) are available for clinical use.
Considering the localized nature of the disease, the direct injection of the medication into the joint cavity is frequently
prescribed, as it reduces possible side effects associated with drug systemic exposure. However, intra-articularly
(IA) injected drugs are often rapidly removed from the joint space through venules and lymphatic vessels located in the
synovium (Brown et al., 2019; Edwards, 2011; Gerwin et al., 2006; Kumar & Sharma, 2020). Increasing the residence time
of therapeutic agents within the joint represents a big challenge in the management of OA. This goal could be effectively
addressed by the application of nano/microtechnologies to create local drug depots directly at the target site thus reducing
the frequency of administrations while improving patient compliance with the treatment (Kou et al., 2019). Also, consid-
ering the multiple pathological processes involved in the OA development, different pathways could be simultaneously
targeted using nano/microtechnologies capable to precisely deploy different therapeutic molecules (Kass &
Nguyen, 2021). In this review, after briefly introducing the physiopathology of osteoarthritis, clinically approved IA treat-
ments, the most recent and promising preclinical intervention strategies will be described and critically analyzed.

2 | THE ARCHITECTURE AND BIOLOGICAL STRUCTURE OF THE JOINT

Main structural and biological components of joints are the cartilage, the synovial fluid (SF) and the synovium. Articu-
lar cartilage is a thin layer (in human joints, hips and knees, �1–3 mm in thickness; Frisbie et al., 2006; Malda
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et al., 2013) that covers the ends of the bones in diarthrodial joints. It is a uniquely complex tissue devoid of blood ves-
sels, lymphatics or nerves and it adsorbs a wide range of mechanical loads and impacts, facilitating a virtually friction-
free movement. Highly specialized cells, the chondrocytes, sparsely distributed within this matrix are involved in the
homeostasis of this complex tissue (Figure 1). The articular tissue is composed predominantly of hyaluronic acid or
hyaluronan (HA), collagen fibrils (mostly type II collagen with some type IX and XI collagen), aggrecan proteoglycans
(PGs), and other macromolecules, which are continuously synthesized by chondrocytes (Eyre et al., 2006;
Freeman, 1979). HA is a linear high molecular weight (6500–10,900 kDa, Table 1) anionic polymer constituted by
repeating disaccharide units of D-glucuronic acid and D-N-acetylglucosamine attached by β (1–4) and β (1–3) glycosidic
bonds (Altman et al., 2015; Gupta et al., 2019; Moreland, 2003; Tamer, 2013). HA acts as a major component of the
ECM keeping the articular cartilage hydrated and creates the backbone for PGs of the ECM (Gupta et al., 2019). In this
way, it protects the cartilage and blocks the loss of PGs from the cartilage matrix into the synovial space, maintaining
the physical form of the ECM. The cartilage is lubricated by the components of SF that fills the synovial space. The
three key components of the SF are HA, the glycoprotein lubricin, and phosphatidylcholine (DPPC) (Figure 1). Due to
its viscoelastic properties, SF acts as a protective barrier between the bone ends as well as a biochemical pool for nutri-
ents and regulatory cytokines (Tamer, 2013). Hence, HA is responsible for both joint lubrication and shock absorption.
The joint cavity filled by the SF is lined by the synovium, a specialized connective tissue. Its main function is the main-
tenance of SF volume and composition, by producing lubricin and HA. Through the SF and together with subchondral
bone, the synovium also provides nutrition to the articular cartilage (Mathiessen & Conaghan, 2017). It is composed of
two portions: a layer of cells (intima) and the underlying tissue (subintima). The first one contains type B synoviocytes
and fibroblasts. These cells display distinct physico-chemical properties and are responsible for the overall maintenance
of the SF and the articular cavity (Hascall & Laurent, 1997). The outer layer—subintima—consists of three types of con-
nective tissues: fibrous (dense collagenous type), adipose (found essentially in fat pads), and areolar (loose collagenous
type; Mathiessen & Conaghan, 2017).

FIGURE 1 The knee joint. Schematic representation of the components of the knee articular joint, highlighting its cellular and

molecular components
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3 | PHYSIOPATHOLOGY OF OSTEOARTHRITIS

While OA pathogenesis is still to be completely elucidated, biological (breakdown and repair of joint cartilage) and
mechanical (wear-and-tear and biolubrication) processes are clearly documented to trigger disease progression (Martel-
Pelletier et al., 2016).

Under physiological conditions, cartilage homeostasis (normal cycle of breakdown and repair under mechanical
stress) is maintained by the dynamic remodeling of ECM (Figure 1). Differently, during OA progression, alteration of
the joint tissue metabolism (molecular derangement) followed by anatomic and/or physiologic derangements, such as
reduction of proteoglycans concentration, inflammation, and cartilage degradation facilitates the irreversible tissue dis-
integration (Loeser et al., 2016; Maldonado & Nam, 2013). Also, a traumatic joint injury or joint hypermobility can
induce an inflammatory response by synoviocytes and chondrocytes. They can release proinflammatory cytokines, such
as IL-1β, IL-6, and TNF-α, in the SF of the affected joint. Proinflammatory cytokines induce the production of some cat-
abolic enzymes by chondrocytes, such as matrix metalloproteinases (MMPs)-1, -3, and -13, a disintegrin and
metalloproteinase with thrombospondin motifs (ADAMTS)-4 and -5 (aggrecanases-1 and -2). It is evident that MMP-13
is one of the key enzymes in OA progression, degrading the primary cartilage component, collagen type II. The activa-
tion of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) induces the release of other elements,
such as nitric oxide (NO), cyclooxygenase 2 (COX-2), nitric oxide synthase (NOS), and prostaglandin E2 (PGE2), which
lead to the disruption of the chondrocytes. All these events together with the products of ECM degradation induce an
inflammatory response that triggers the OA degenerative cycle, until complete tissue destruction (Goldring &
Otero, 2011; Lee et al., 2013; Loeser et al., 2016; Maldonado & Nam, 2013; Martin & Buckwalter, 2006). Also, they
induce an alteration of both structure and function of the lymphatic system (Han et al., 2020; Shi et al., 2014). Under
pathological conditions HA helps to prevent invasion of inflammatory cells into the joint space (Moreland, 2003). In
the early stage of OA, the presence of proinflammatory cytokines in SF promotes a progressive HA decrease in concen-
tration and molecular weight (MW) (2700–4500 kDa, Table 1) (Falcone et al., 2006; Weigel et al., 1986). In particular, it
is reported that the production of proinflammatory cytokines IL-1 and TNF-α by rabbit synovial membrane cells stimu-
lates expression of HA synthatase which may contribute to the fragmentation of HA under inflammatory conditions
(Tanimoto et al., 2001). A progressive degeneration of the mechanical and viscoelastic properties occurs because of HA
physico-chemical alterations in the SF, thus leading to significant pain, loss of function and erosion of articular surface
(Gupta et al., 2019; Mathieu et al., 2009; Moreland, 2003).

Biolubrication in synovial articular joints results from the synergistic action among multiple biomolecules, includ-
ing glycoproteins (e.g., lubricin), HA, and phospholipids (Figure 2). The articular cartilage surface is covered by
hydrated stacks of phospholipid (PL) membranes that help reduce the friction with the opposing surface. Ex-vivo lubri-
cation studies conducted by Pickard et al. on bovine articular cartilage revealed that, while lipids play a role in reducing
the coefficient of friction under dynamic loading, proteins had a more significant effect in longer periods of static load-
ing (Pickard et al., 1998). The lowest coefficient of friction was found when PGR4 (lubricin) was adsorbed on a soft layer
composed of hyaluronan (HA) and collagen type II (Majd et al., 2014; Seror et al., 2015). Lubricin interacts with colla-
gen type II on the outer surface of the cartilage. Hyaluronan is partially entrapped on the superficial zone of the carti-
lage where it forms complexes with phosphatidylcholines, after being immobilized by proteoglycan-4 PRG4, and in part
protrude outside. Within the cartilage tissue and onto its surface, HA also interacts with the proteoglycan Aggrecan
(Agg), a macromolecule composed of a protein backbone with grafted highly negatively charged glycosaminoglycan
chains of chondroitin sulfate and keratan sulfate. As HA-Agg aggregates cannot be alone responsible for the

TABLE 1 Human synovial fluid (SF)

Parameter Normal OA

Volume (mL) 0.5–2.0 >3.5

Temperature (�C) �34 >36

Viscosity (mPa s) >300 <300

Total protein (g/100 mL) 10–30 15–35

HA MW (kDa) 6500–11,000 2700–4500

Note: Physico-chemical and biological features of SF under normal and OA conditions (Gerwin et al., 2006; Zaffagnini et al., 1996).
Abbreviations: HA, hyaluronic acid; MW, molecular weight.
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characteristic low friction of synovial joints at physiological loads, additional components, such as phospholipids, are
indeed expected to contribute significantly (Seror et al., 2012). Along this line, the combined effect of different molecu-
lar weights HA chains and liposomes on lubrication was systematically studied ex-vivo in human cartilage model and
in-vivo in a rabbit model of osteoarthritis (Forsey et al., 2006; Kawano et al., 2003). It was suggested that the HA would
aid in the fluid lubrication occurring at low-loading conditions while the phospholipids would contribute toward the
boundary lubrication prevailing at high-loading conditions. The effect of dehydration and changes in the morphology
of the constituents of the cartilage and the synovial cavity under normal and pathological conditions is schematically
shown in Figure 2. The viscosity of water under confined conditions, as in between two sliding membranes, dramati-
cally increases upon dehydration. However, the shear friction coefficient remains moderately low due to an increased
repulsion between the two opposing surfaces as they become closer (Leng & Cummings, 2005; Schlaich et al., 2017).
Incidentally, molecular dynamics (MD) simulations represent an ideal tool to elucidate the mechanisms regulating sur-
face friction between biological layers, as extensively documented in the open literature (Chatterjee et al., 2020). High
MW HA is assumed to possess a random coil and semi-stiff conformation under physiological conditions. However, the
ionic strength, ion binding affinity and pH can affect HA structure as the coil would shrink or expand depending on
the ion type and charge density. Specifically, kosmotropic ions (e.g., Na+, Ca2+) would favor intramolecular HA interac-
tion and the ordering of water (“salting out” effect), whereas chaotropic ions (e.g., K+) would destabilize the water
structure and promote HA solubilization (“salting in” effect). Interestingly, ion channels appear to be upregulated in
early OA and the concentration of ions in the osteoarthritic SF is generally higher than under healthy conditions. For
instance, an up to 60% enrichment in calcium has been documented in OA versus healthy joints (Jubeck et al., 2008).
This is relevant as HA physical crosslinking mediated by ionic and hydrophobic interactions and chains entanglement
influence its organization and mechanical strength and therefore the resulting coefficient of friction (Majd et al., 2014).
Specifically, under healthy conditions, highly reactive oxygen-derived free radicals (ROS), normally produced at low
levels, are involved in the HA catabolism within the joint. As the ROS concentration increases, following injury or
aging, HA degradation accelerates and tend to stimulate joint inflammation (Day & Carol, 2005; Vuorio et al., 2017).
Persistent oxidative stress and unbalanced HA degradation decreases the average HA MW, thus further triggering the
inflammatory cascade and altering lubrication (Band et al., 2015). The interaction of low MW HA with a lipid bilayer
was also investigated by MD simulations. The diminished lubrication under high loads was attributed to a weaker
attachment of the shorter compared with the longer HA chains to the cartilage surface, leading to their easier removal
along with the PC lipids attached to them by the sliding friction (Figure 2). Notably, the pathological SF contains a
greater amount of phospholipids compared with the healthy conditions (Kosinska et al., 2013).

4 | DIAGNOSTIC TOOLS IN OSTEOARTHRITIS

Imaging and early detection of joint degeneration are key in improving disease prognosis and therapy follow-up. The
gold standard to diagnose and stratify patients in terms of OA severity is radiographic investigation. Conventional

FIGURE 2 Molecular components involved in the biolubrication of the joint. Schematic representation of the arrangement of different

components within the articular joint under normal physiological (a) and pathological (b) conditions. The part figures (a) and (b) illustrates

the process of dehydration, shrinking of the collagenous cartilage surface, degradation of HMW HA into proinflammatory LMW HA in the

SF and loss of chondrocyte and synoviocytes in the diseased tissue
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radiographic imaging is widely available, economical, and well accepted by patients, although it uses ionizing radiation.
On the other hand, Magnetic Resonance Imaging (MRI) is used only to visualize inflammatory lesions in joints and
periarticular regions that cannot be observed with X-ray. Notably, a MRI scan can cost up to $4000 and require almost
2 h, while X-ray imaging costs on average less than $100 and lasts a few seconds (“MRI vs. X-ray”; Diffen LLC, 2021).
For this reason, X-ray will continue to be a cornerstone in OA diagnosis despite its severe limitations. In the early stages
of OA, X-ray detects subchondral sclerosis or subchondral cysts and the joint space narrowing (Braun & Gold, 2012).
Kinds et al. assessed the diagnosis of knee OA comparing clinical versus radiological diagnosis (Kinds et al., 2011). This
study showed that there was less than 10% agreement between the two diagnostic methods. The main reason is due to
the projectional nature of the radiographs: the low number of acquired images and their projectional views reduces the
ability to accurately detect OA (Duncan et al., 2006). Sakellariou et al. suggested that weight-bearing and post-
eroanterior and lateral views should be acquired to improve the diagnostic power of X-ray in OA (Sakellariou
et al., 2017). Certainly, the combination of radiographic techniques with clinical diagnosis and more sophisticated imag-
ing modalities (MRI sonography, scintigraphy) could improve even further OA diagnosis (Zhang et al., 2010). Specifi-
cally, MRI can discriminate between soft and hard tissues and properly visualize different biological structures within
the joint. Furthermore, when a contrast agent is injected during MR imaging, synovitis can be diagnosed via joint effu-
sion analysis (Guermazi et al., 2012; Roemer et al., 2010). The most common MRI contrast agents used for imaging
synovitis are Intravenous gadolinium (Magnevist [gadopentetate dimeglumine; Bayer HealthCare Pharmaceuticals,
Bayer Schering Pharma AG, Berlin, Germany] or Omniscan [gadodiamide; GE Healthcare, New Jersey]), that are
administered at a dose of 0.2 mL (0.1 mmol)/kg body weight (Guermazi et al., 2011). However, to date, MRI alone can-
not improve the early detection of knee OA, but it remains a powerful research tool to characterize the biological
structure–pain relationship and provide insights into the progression of structural changes (Hunter et al., 2015). More
methodologically robust studies are needed to explore the value of imaging, and possibly multimodal imaging, in the
early diagnosis and management of OA.

5 | OA TREATMENTS VIA SMALL MOLECULES

The therapeutic approaches currently available in the clinic for OA management are mostly focused on alleviating the
symptoms. The localized nature of the disease offers the opportunity to deliver drugs IA reducing potential systemic
side effects and allowing the use of molecules with low bioavailability (Evans et al., 2014; Wehling et al., 2017). How-
ever, this administration route is associated with different challenges, such as the risk of infection, swelling, inflamma-
tion, and the requirement of a trained personnel (Charalambous et al., 2003; Chen et al., 2002; Cheng & Abdi, 2007).
Importantly, the rapid clearance of the injected drugs from the joint space is a major limitation to localized therapies
(Aigner & Söder, 2006; Wehling et al., 2017). As such, increasing the drug dwelling time within the joint to reduce the
number of injections represents the biggest challenge in the development of novel IA OA therapies. Conventional palli-
ative therapies act on pain and inflammation using analgesics and corticosteroids, and on biolubrication proving visco-
elastic supplements, as the injection of exogenous HA (Hunter, 2011).

5.1 | Reduction of OA pain and inflammation

Several drugs, belonging to a wide range of different pharmacological classes, are used for the treatment of OA inflam-
mation and pain. Oral analgesics are used as first line therapy. Among them, acetaminophen is preferred because of its
low cost and safety profile (Kolasinski et al., 2020). However, when acetaminophen cannot manage the symptoms any-
more, more potent drugs need to be used including non-steroidal anti-inflammatory drugs (NSAID), such as Ketorolac,
and COX-2 inhibitors, such as Diclofenac, Ibuprofen, Celecoxib, and Rofecoxib (Bannuru et al., 2019). Eventually, when
these potent anti-inflammatory molecules fail to control pain and inflammation, opioids are considered. Multiple and
severe side effects, such as gastrointestinal, cardiovascular, renal, and central nervous system complications, are associ-
ated with the chronic oral uptake of these drugs (Hochberg et al., 2012; Steinmeyer et al., 2018; W. Zhang, Ouyang,
et al., 2016). Glucocorticoids is another important pharmacological class of drugs used for OA treatment. They are
mostly administered IA and include methylprednisolone acetate, triamcinolone acetate (TA), betamethasone acetate
(BA) and betamethasone sodium phosphate (BP), triamcinolone hexacetonide (TH), and dexamethasone (DEX). They
exhibit a complex biological activity, involving anti-inflammatory and immunosuppressive effects, that blocks the
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production of proinflammatory cytokines, leukocyte recruitment and activation. The IA injection of glucocorticoids pre-
sents rare side effects, such as infection at the site of injection and loss of bone density, but the main limitation is their
rapid clearance leading to short term effect on OA associated pain (Hepper et al., 2009).

5.2 | Reduction of cartilage breakdown

Several drugs have been identified for their ability to inhibit cartilage degeneration, promoting its repair, but none of
them have been translated to clinical practice yet (Matthews & Hunter, 2011). These include growth factors, such as
insulin-like growth factor 1 (IGF-1), fibroblast growth factor 18 (FGF-18), and bone morphogenetic protein (BMP)
7. These molecules act by stimulating cartilage growth to prevent further degradation and loss of chondrocytes. Even
upon IA injection, these molecules are rapidly cleared from the joint, limiting their clinical translation. Thus, strategies
for improving their retention in the cartilage are needed (Hunter et al., 2010; Miller et al., 2010; Onuora, 2014). For
example, a simple fusion of IGF-1 with heparin-binding domain was sufficient to prolong the joint retention time of
7 days in a rat model of OA (Loffredo et al., 2014). The proteases responsible for progressive cartilage degradation have
been evaluated as another potential pharmacological target. In particular, the inhibition of MMP-13, a key enzyme in
the degradation of collagen type II, could block cartilage degradation and slow down the disease progression (Li
et al., 2011). Nevertheless, the clinical use of MMP inhibitors has been limited by dose and duration due to musculo-
skeletal side effects (Krzeski et al., 2007). In order to overcome these limitations, MMP-13 short interference RNA
(siRNA) has been examined as an alternative strategy to efficiently inhibit the expression of MMP-13. However, naked
siRNA application in-vitro and in-vivo is limited by poor intracellular uptake and rapid enzymatic degradation. These
limitations can be overcome by using chemically modified siRNAs or nanoparticles, as discussed later (Akagi
et al., 2014; Bedingfield, Colazo, Yu, et al., 2021; Gao et al., 2011). Finally, biologic agents, such as monoclonal anti-
bodies against inflammatory cytokines, such as IL-1β (canakinumab) and TNF (infliximab, adalimumab), and other
anti-IL-1 or anti-TNF agents (anakinra, etancercept), have been considered to reduce cartilage breakdown. Unfortu-
nately, clinical trials have lacked evidence of either sustained benefit or effective cartilage targeting (Evans et al., 2014).

6 | OA TREATMENTS VIA MACROMOLECULES
(VISCOSUPPLEMENTATION)

The intra-articular IA injection of HA represents another well-established strategy for the local pain and inflammation
management in OA. Balazs and Denlinger demonstrated that the beneficial effects of the IA injected HA are mostly
associated with the partial restoration of the SF rheological properties (Balazs & Denlinger, 1993). Also, the IA injection
of HA has the potential to reduce joint structure deterioration in the early stage of the disease by acting on multiple
pathways (Çubukçu et al., 2005). Exogenous HA interferes with the production of NO, superoxide, hydroxyl radicals,
suppresses MMP and ADAMT, and can protect chondrocytes and synoviocytes from apoptosis. This improves endoge-
nous HA and PGs synthesis, both preventing cartilage degradation and promoting its regeneration (Gupta et al., 2019).
In addition, exogenous HA also alleviates joint pains by modulating nerve impulses and nerve sensitivity (Goldberg &
Buckwalter, 2005; Gupta et al., 2019; Moreland, 2003).

Several HA formulations have been developed for OA treatment, as listed in Table 2, presenting different molecular
structures and weights (Bannuru et al., 2011; Bowman et al., 2018; Miller & Block, 2013). Specifically, exogenous HA
are characterized by linear or cross-linked molecular structures, or combination thereof, to increase the dwelling time
and improve shock-absorbing properties (Iannitti et al., 2012; Watterson & Esdaile, 2000). As per the molecular weight,
it tends to be higher than 500 kDa, as multiple studies have demonstrated that hyaluronan fragments of low MW can
trigger inflammatory processes (Cyphert et al., 2015).

The biological activity of exogenous HA with different MW was investigated in several preclinical studies (Ghosh
et al., 2005; Shimizu et al., 1998; Smith & Ghosh, 1987). The first study conducted by Smith and Ghosh on different cell
lines of human synovial fibroblasts from OA patients demonstrated that the addition of exogenous HA stimulated the
HA synthesis in human synovial cell lines. A maximum effect was observed for exogenous HA MW ranging between
500 and 4000 kDa, while no effect was reported for MW lower than 500 kDa and a reduced effect was measured for
MW higher than 4700 kDa. Thus, intermediate MW HA appears to be more effective in promoting endogenous HA bio-
synthesis, possibly due to their optimal binding to HA receptors on synovial fibroblast cells derived from an
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osteoarthritic joint (Smith & Ghosh, 1987). Also, studies conducted on preclinical OA model demonstrated that injec-
tion of HA, with a MW range between 500 and 1000 kDa, lead to a partial restoration of synovial cell metabolism and
normalization of HA biosynthesis (Ghosh & Guidolin, 2002). Although the correlation between HA MW and its thera-
peutic activity in-vitro and in preclinical animal models (Antonacci et al., 2012; Mori et al., 2002; Schmidt et al., 2007)
was clearly documented, these results were not replicated in clinical settings. Different clinical trials were conducted to
understand the relationship between the IA injection of exogenous HA and OA pain (Gigis et al., 2016; V. Karatosun
et al., 2005; Karlsson et al., 2002; Lee et al., 2006; Testa et al., 2021; Wobig et al., 1999). However, the results of these tri-
als were often contradictory: some clinical studies demonstrated the advantages of using high MW HA (Bayramo�glu
et al., 2003; Kotevoglu et al., 2006; Tıkız et al., 2005), while others did not confirm this hypothesis (DeGroot III
et al., 2012; Ghosh & Guidolin, 2002; V. Karatosun et al., 2005; J. Karlsson et al., 2002; Vitanzo Jr & Sennett, 2006). In
conclusion, there is no consensus on the advantage of injecting IA low versus high MW HA for OA treatment.

In the attempt to resurrect the clinical use of HA, several preclinical (Dong et al., 2013; Euppayo et al., 2017;
Karakurum et al., 2003; Z. Zhang, Wei, et al., 2016) and clinical (Bannuru et al., 2009; Bellamy et al., 2006;de Campos
et al., 2013; Lee et al., 2011; Ozturk et al., 2006; Petrella et al., 2015) studies have been conducted to investigate possible
synergism of exogenous HA with anti-inflammatory drugs. It was reported that the symptoms are relieved starting a
few weeks after the first administration of HA and lasts from 6 to 12 months (Bannuru et al., 2009; Bannuru
et al., 2011; Bellamy et al., 2006; Davalillo et al., 2015; Tammachote et al., 2016). The benefits of this combination ther-
apy stay as an active clinical investigation field.

Some of these trials consistently demonstrated an improvement in pain relief and faster analgesic effect for the IA
injection of HA and anti-inflammatory drugs as opposed to the sole IA administration of HA (de Campos et al., 2013;
Lee et al., 2011; Ozturk et al., 2006; Petrella et al., 2015). For example, it was observed a significant improvement in
terms of pain in knee OA in the group that received both ketorolac, a NSAID, and HA as compared with the HA alone
within 16 weeks of follow-up (Lee et al., 2011). Similar outcomes were also obtained for the combination of TA, a gluco-
corticoid, with Orthovisc® (Ozturk et al., 2006). It was demonstrated that this combination showed a more rapid pain
relief than HA alone, displaying a beneficial effect during the first year post-treatment. In conclusion, it appears that
HA combined with corticosteroid should be preferred to HA alone for the treatment of patients with knee OA.

7 | OA TREATMENT VIA NANO/MICROMEDICINES

Studies at the molecular level reveals that the biolubrication process in the synovial joints involve a complex interplay
of proteins, sugars, and lipids where only one component is unable to emulate the process. In order to overcome the
challenges of conventional treatment, it is necessary to simultaneously achieve longer lubrication of the diseased joint;
improve the residence time of administered drugs; and, in advanced conditions, achieve regeneration of the degraded
cartilage. Lipid-based nanoparticles have been studied to investigate into the possibility of using them as lubricants,
while nanoparticles and microparticles derived from dendrimers, polymers and biopolymers have been utilized to
improve the residence time of therapeutics. Currently, tissue regeneration strategies are also being considered in order

TABLE 2 FDA-approved injectable HA viscosupplementation products (Bowman et al., 2018; Lee et al., 2006)

Product Molecular weight (kDa) Dose (mg) Frequency Crosslinking

Hyalgan® 500–730 20 (5 doses) Weekly No

Supartz FX™ 620–1170 25 (5 doses) Weekly No

Monovisc® 1000–2900 88 (1 dose) Once Yes

Orthovisc® 1000–2900 30 (3–4 doses) Weekly No

Hyruan Plus® 3000 20 (3 doses) Weekly No

Euflexaa 2400–3600 20 (3 doses) Weekly No

Synivisc® 6000 16 (3 doses) Weekly Yes

Durolane® 100,000 60 (1 dose) Once No

Gel-one® ∞ 30 (1 dose) Once Yes

Synivisc-One® ∞ 48 (1 dose) Once Yes
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to recover the diseased and lost cartilage. Different strategies have been explored using specialized nanoparticles like
cationic and targeted nanoparticles, microparticles or microgels and stimuli-responsive hydrogels to increase the dwell-
ing time and the therapeutic efficacy as summarized in Figure 3.

7.1 | Lipid-based nano/microparticles in biolubrication

As previously mentioned, HA would aid in the fluid lubrication and static load bearing capacity while phospholipids
would contribute toward the boundary lubrication. Three different treatment formulation consisting of (i) 2000 kDa
HA (high MW), (ii) 800 kDa (medium MW), and (iii) a combination of 2000 kDa HA with 1,2-dipalmitoyl-sn-glycero-
3-phosphocholine (DPPC) liposomes were studied simultaneously. In three different experimental groups, these were
administered by IA injections in the anterior cruciate and medial collateral ligament transection induced OA rabbit
model (Kawano et al., 2003). Histological analysis of the articular cartilage post-treatment showed that there was no
significant regeneration of the diseased cartilage in the groups treated with HA alone but the combined treatment
group (HA + liposomes) showed a significantly less damaged cartilage. Moreover, different kind of
phosphatidylcholine-based (PC) liposomal formulations, including small unilamellar vesicles (SUV) of size <100 nm
and multilamellar vesicles (MLV) >800 nm, with transition temperatures ranging from �21�C to 74�C were studied
in an ex-vivo human sourced cartilage-on-cartilage apparatus (Sivan et al., 2010). Interestingly, it was observed that
MLV were more efficient lubricants than SUV. The most effective lubrication was achieved when 1,2-dimyristoyl-sn-
glycero-3-phosphocholine (DMPC) was used with a transition temperature slightly below body temperature. The
study also highlighted the need for hydration and high compressibility as a criterion to achieve effective lubrication.
The same group also developed a MLV composed at a molar ratio of 0.6:1.0 DMPC:DPPC with a diameter of �3 μm
(Verberne et al., 2010). The comparative study concluded that the MLV was a more efficient lubricant and induced
less wear in comparison to cartilage lubricated with inflamed SF. More recent studies focused on understanding the

FIGURE 3 Pictorial representation of different strategies at the molecular, nano, and microscale for improving the IA residence time of

small molecules

DI FRANCESCO ET AL. 9 of 22



actual association between HA and vesicles made out of DPPC measured the coefficient of friction using colloidal
AFM probe technique (Wang et al., 2013). The association structures formed at the interface of a supported lipid
bilayer of DPPC and DPPC liposomes and HA in bulk solution were sufficiently stable. The low coefficient of fric-
tion and high load bearing capacity of such composite layers highlighted its lubricating property. A significantly
low coefficient of friction of 0.01 was found when DPPC was added as the last adsorbed component, for pressures
significantly above what is encountered in healthy joints. Similarly, Klein et al. have studied SUV composed of
hydrogenated L-α-phosphatidylcholine (HSPC) lipid of 65 nm and it was suggested as a boundary-lubricating agent
(Goldberg et al., 2011). Surface force balance studies were conducted to study the normal and sheer forces operat-
ing under high loading conditions and found that extremely low coefficient of frictions, at pressures comparable
to that in healthy joints. It was proposed that at the highest pressures the surfaces approached to a “hard-wall”
repulsion at a separation �21 ± 2 nm, which corresponds to four bilayers arising from the two flattened liposome
layers. Furthermore, using similar technique HA was immobilized on the mica surface and MLV composed of
DPPC and HSPC was added to the surface (Seror et al., 2015). The synergistic effect of the lubrication at the inter-
face resulted in a coefficient of friction of 0.001 at 100 atm. The study further emphasized that the HA attached
to the collagen surface of the cartilage plays a major role in the process of lubrication together with lipid bilayers
(Seror et al., 2015).

7.2 | Nanoparticles and liposomes in IA drug delivery

In the context of OA in addition to lubrication it is often challenging to achieve prolonged drug residence in the syno-
vial joint. As described earlier, the cartilage is primarily composed of a dense network of PGs which are highly anionic
in nature. In order to circumvent the problem of therapeutic loss through the synovial vasculature and lymphatic sys-
tem, nanoparticles and microparticles have emerged with significant promise. In this context, ex vivo studies using
bovine cartilage was used to study the role of size and charge on the cartilage penetration propensity of solutes
(Bajpayee et al., 2014). Solutes of sizes ranging from 0.8 to 16 nm of various charges was considered and it was found
that avidin, with a hydrodynamic radius of about 7 nm and cationic charge under physiological conditions, had the
highest penetration ability, while neutravidin having the same size but with neutral charge was found to localize at the
surface of the cartilage.

Subsequently, preclinical studies have investigated the IA administration of siRNA loaded solid cationic lipid
nanoparticles (�67 nm) derived out of Dlin-KC2-DMA (cationic lipid), DPPC, C16 ceramide-mPEG2000 and choles-
terol (Wang et al., 2018; Zhang et al., 2014). The therapeutic efficacy of Indian Hedgehog (Ihh) siRNA involved in the
differentiation and maturation of chondrocytes was studied in-vivo in rats following IA injections every 2 weeks for
10 weeks. The histological analysis clearly demonstrated that the liposomal delivery system was associated with an
increase of collagen type II and a down regulation of proinflammatory factors like MMP-13, collagen type X, and Runx2
compared with the free siRNA. Thus, these studies clearly demonstrated the advantage and the problems associated
with cationic nanoparticles. The drug delivery system was more efficient in reaching the chondrocytes and delivering
the drug into cells, however the system was also associated with the problem of frequent injection. With the similar idea
of achieving deep cartilage penetration and to increase the residence time of the therapeutic agent, IGF-1 was conju-
gated to the amine terminal of polyamidoamine (PAMAM) dendrimers (�10 nm in size) where the end was
functionalized with variable molar ratios of poly(ethylene glycol) (PEG) in order to control surface charge (Figure 4;
Geiger et al., 2018). As a result of this conjugation, the drainage of the particles through the lymphatic and vascular sys-
tem was reduced. The small size along with the cationic charge of the conjugates led to significantly higher penetration
into the cartilage and significantly increased the residence time of drug in the articular region. The activity of the conju-
gate was studied in-vivo in OA rat model and it was found that the conjugate reduced loss of aggrecans and cho-
ndrocytes 4 weeks post-IA injection, while no effect was observed for the unconjugated IGF-1. The possible conjugation
of cartilage matrix-binding ligands to NPs was also recently reported for siRNA delivery against MMP-13 using poly-
meric micelles (�100 nm) with anti-collagen II antibody conjugated to the corona (Bedingfield, Colazo, Yu,
et al., 2021). The effect of the conjugation of the antibody on the enhancement of the retention time of the nanoparticle
was studied in a load-induced mouse model of post-traumatic osteoarthritis (PTOA). However, also in this case IA
injections were performed once per week that is an intensive dosing regimen and it would benefit from methods that
could further prolong the residence time of the cargo.
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7.3 | Microparticles and microgels

In addition to using charge-based binding and cartilage targeting agents to enhance the residence time of therapeutics,
larger particles, or microparticles have also been considered. The long residence time of these systems makes them par-
ticularly suitable for the delivery of drug conjugates with cartilage-penetrating behavior to form a long-term drug depot
in the joint. These can be engineered into a large range of size and shape and these larger particles are also resistant to
lymphatic and vascular drainage. Recently, approved by FDA, Zilretta® is a poly(lactic-co-glycolic acid) (PLGA) based
microparticle formulation designed to release an anti-inflammatory drug TA after IA injections. The system features a
monolithic PLGA microparticle system loaded with crystals of TA where the size ranges from 20 to 100 μm and it is fab-
ricated by solid-in-oil-in-water (S/O/W) emulsion technique. The system not only extended the residence time of the
corticosteroid in the IA region, but also it reduced the blood drug concentration thereby reducing systemic exposure of
other organs (Bodick et al., 2015). The success of the system lies in its simplicity and this made similar PLGA-based sys-
tems attractive for future clinical applications. Recently, our research group has developed an injectable PLGA-based
microparticle system using a top-down approach where the size, shape and mechanical properties of the particles can
be tuned independently (Di Francesco et al., 2021). These microparticles were loaded with another FDA approved corti-
costeroid, DEX, for OA management and the ability to reduce joint structural changes by sustained release of the drug
was studied in-vivo in mouse model of overload injury-associated PTOA. The reduction in the proinflammatory factors
was studied over a time period of 1 month. Interestingly, in addition to the therapeutic efficacy of the composite system,
the microparticle system per se was found to have a therapeutic efficacy. It was hypothesized that the unique flat shape
and mechanical property of the particles complementarily aided in the process of lubrication (Figure 5; Di Francesco
et al., 2021). Additionally, the same particles were used for delivering matrix metalloproteinase 13 (MMP-13) interfering
RNA loaded nanoparticles (siMMP13-NPs) in the same animal model (Bedingfield, Colazo, Di Francesco, et al., 2021).
In particular, the authors demonstrated that the combination of siRNA NPs with microparticles (siMMP13-NPs loaded
μPLs) significantly increased the residence time in the joint compared with the free NPs. Also, the gene silencing effect
of siMMP13-NPs loaded μPLs in-vivo was maintained for 28 days after a single IA injection, thereby reducing all the

FIGURE 4 Therapeutic efficacy of insulin-like growth factor 1 (IGF-1) conjugated polyamidoamine (PAMAM) dendrimers.

(a) Chemical structure and characteristics of PAMAM dendrimers (Gen 4 shown); (b) schematic representation of a rat knee frontal

section illustrating the ACLT (anterior cruciate ligament transection) + MMx (medial meniscectomy) surgery. Dotted lines show the

primary zone of lesion formation; (c) schematic of surgery timeline and tissue processing procedures. IA, intra-articular; (d) representative

toluidine blue/fast green stained frontal sections of the medial femur and tibia. Area of degeneration outlined in red. Total and significant

widths of degeneration are outlined in black and yellow, respectively. Matrix loss shown as black arrowheads. AC, articular cartilage; L,

lesion; MF, medial femur; MT, medial tibia; MM, medial meniscus. Scale: 500 μm (Reprinted with permission from Geiger et al. (2018)
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problems associated with MMP-13 activities in the progression of the disease itself (Bedingfield, Colazo, Di Francesco,
et al., 2021). Different polymers including chitosan or synthetic materials like PEG, poly(caprolactone) (PCL), and
poly(propylene sulfide) (PPS) have been utilized to develop similar slow releasing platforms. Inflamed joints are partic-
ularly characterized by elevated protease levels and with the objective of using this environment as a trigger to release
therapeutics from amino acid based poly(ester amide) (PEA) has emerged as a promising polymer. Microparticles with
an average diameter of 22 μm derived from PEA was utilized to load corticosteroid TA in order to reduce the repeated
administrations (Rudnik-Jansen et al., 2017). The efficacy of TA and PEA loaded TA was studied in an OA rat model.
The residence time of the PEA microparticles in healthy rat joints or joints with mild collagenase-induced OA was spe-
cifically monitored by loading near infrared marker NIR780-iodide where injected microspheres showed retention of
up till 70 days. Simultaneously, the microparticle system was associated with lower peak serum levels of TA than free
drug. Subsequently, the same group also studied the efficacy of PEA versus PLGA microparticles of similar average
diameter loaded with TA (Rudnik-Jansen et al., 2019). The efficacy was studied in rats induced with synovitis flares at
days 0, 14, and 28. While all the formulations significantly reduced joint swelling, only the PEA system showed an
effective anti-inflammatory activity after the second and the third flare and extended the release to 3 months.

With the objective of simultaneously achieving longer residence time and cushioning effect, microgels have also
been used for the treatment of OA. Recently, injectable microgels were synthesized using 4-arm PEG-Malemide
functionalized with a cartilage or synoviocyte-binding peptide. A droplet based microfluidic system was employed for
the fabrication of microparticles with an average size of 50 μm loaded with PLGA nanoparticles with an average size of
200 nm. The cartilage-targeting peptide in combination with the large size of the particle increased the retention time
of the construct, while the PLGA nanoparticle was used to load a hydrophilic drug model, such as rhodamine. The
retention of the particles in the joint space for at least 3 weeks was studied using a PTOA rat model. Additionally, all
microgel formulations were found to be localized in the synovial membrane and significantly increase the IA retention

FIGURE 5 Therapeutic efficacy of dexamethasone loaded PLGA microplates. (a) Force–displacement curve for a flat punch indentation

experiment on μPLs (average curve and standard deviation). In the inset, a schematic of the experimental setup is provided. (b) Mechanical

damping of μPLs upon cyclic loading (frequency 5 Hz) as a function of the force oscillation amplitude. In the inset, a schematic of the testing

routine highlights the phase angle δ-dissipation parameter. Results are presented as the average ± SD (n = 3). (c) In-vivo expression of IL-

1β, TNF-α, IL-6, and MMP-13 measured by TaqMan qPCR (for each treatment groups n = 6, while for the healthy group n = 4). Statistical

analysis via one-way ANOVA (GraphPad Prism 8), corrected for multiple comparisons by controlling the false discovery rate with a two-

stage, step-up Benjamini–Krieger–Yekutieli method: *p < 0.05, **p < 0.01, while no significant differences are indicated on the graphs as

NS. (d) The �20 images zoomed in on Cy5-μPLs within a mouse model of PTOA at days 1, 5, 25, and 30. Microplates are seen in the joint for

up to 30 days with surface erosion evident by loss of fluorescence (heterogenous) in a significant number of individual Cy5-μPLs at days
25 and 30 as compared with days 1 and 5. Cy5-μPLs at days 1 and 5 have a consistent square shape and structure meanwhile Cy5-μPLs at
days 25 and 30 have lost this morphology. In all images on the right scale bar = 100 μm. TD, transmission detector (Reprinted with

permission from Di Francesco et al. (2021)
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time of a considered drug model (Mancipe Castro et al., 2020). Indeed, the nested drug delivery system comprising
nanoparticles distributed within targeted microgels allows one to reduce the frequency of IA administrations for both
molecular therapeutic agents and nanoparticles. A similar “mechanical pillow” was developed where a 4-arm PEG
Malemide was crosslinked with 50% non-degradable dithiothreitol (DTT) and 50% MMP-degradable peptide crosslinker
(GCRD-VPMSMRGGDRCG, VDM) to obtain a “on-demand” soft release system (Holyoak et al., 2019). The system was
also incorporated with PLGA nanoparticles loaded with DEX, which were essentially released by collagenase action
and not by mechanical loading of the system. The disease modifying capacity of the system was studied in an OA mouse
model and 2 weeks postinjection, both NP-loaded hydrogels and hydrogels alone significantly reduced osteophyte size
compared with non-hydrogel-treated groups.

7.4 | Hydrogel and combination therapies

Although all the above discussed systems are associated with some advantages, the current research is more focused on
combining these systems to achieve better disease outcomes. On one hand, studies were conducted to study the com-
bined lubrication effect of hydrogel and liposomes on the other hand hydrogels were combined with anti-inflammatory
drugs and mesenchymal stem cells to simultaneously address the problem of inflammation, drug residence, and tissue
damage. In this section, we will briefly discuss some of the concepts, preclinical and clinical studies on the possible
combination therapies.

In order to unravel the mechanisms underlying the possible use of hydrogels and hydrogel liposome combination to
achieve biolubrication, an extensive study was conducted using MLV immobilized on different hydrogel matrices. In
order to create a cartilage-like lubrication system, small amounts of MLV were incorporated within the gel matrix to
form microreservoirs inside the hydrogel matrix (Figure 6). The lubrication effect of MLV obtained using DMPC and
HSPC both on the surface of the gel as well as incorporated within the gel was studied in synthetic polymeric systems
like polymethacrylamide, poly(HEMA-co-methacrylic acid), poly(acrylic acid-co-dimethacrylamide), and biopolymer
like cross-linked gelatin methacrylate with different hydration conditions. The frictional pattern was studied using a tri-
bometer and a significant reduction in the friction was found in all the systems incorporating MLVs within the hydrogel

FIGURE 6 Mechanical properties of lipid-incorporated hydrogels. (a) Schematic representation of the self-lubricating lipid-incorporated

hydrogels. The surface of the hydrogel, incorporating lipids as vesicles in microreservoirs; (b) and (c) wears away because of friction,

additional microreservoirs of lipid are exposed. This ensures boundary layers of lipids form on the surfaces, leading to friction reduction via

the hydration lubrication mechanism; (d) characterization of lipid-incorporating hydrogels; (e) a single microreservoir from (d) at larger

magnification; (f) confocal microscopy section of the hydrogel incorporating fluorescently labeled DMPC vesicles, showing the lipid

microreservoir distribution; (g) freeze-fracture surface of the gel incorporating HSPC vesicles; (h) storage and loss moduli of lipid-free and

lipid-incorporating pHEMA gels (Reprinted with permission from Lin et al. (2020)
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matrix. The authors explained this observation by considering that hydrogels containing the MLV dispersed within the
matrix functioned as microreservoirs of lipids and formed a molecularly thin lubricating layer on the surface. Almost
99% reduction in the friction and wear was achieved in the case of (pHEMA) hydrogel containing MLVs composed of
PC lipids. Thus, the study provides a possible way of achieving continuous lubrication by the simple use of hydrogel in
combination with PC lipids (Lin et al., 2020). In the context of combination therapies as discussed above the hydrogel
matrix of HA has often been utilized as a matrix to increase the drug residence in the IA region. Based on the idea of
increasing the IA drug residence time, preclinical studies have also been conducted where salmon calcitonin (sCT) was
covalently conjugated to HA and the chondroprotective effect of the conjugate was studied by IA administration in the
anterior cruciate ligament transection (ACTL) rabbit model. sCT is a polypeptide-based hormone which potentially
lowers the concentration of calcium and phosphate groups and improve the therapeutic outcome by directly targeting
the bone and cartilage degradation. In the study, three injections of sCT/HA-sCT once a week were administered, with
the first injection at 10 days after surgery. It was observed that both the systems significantly reduced the loss of the
superficial layer and erosion of the cartilage and imparted protective effects against the OA-like degenerative changes
in the articular cartilage, but the HA-sCT was more potent than the bare sCT (Mero et al., 2014). Dong et al. reported
similar observations when Celecoxib liposomes (CLX-Lip) were developed to improve OA therapy and to reduce CLX
associated cardiovascular adverse effects. The CLX-Lip was embedded in HA gel in order to prove their synergistic
effect in ACLT rabbit model. In fact, they demonstrated that a single IA injection of HA or CLX-Lip was not able to
inhibit cartilage degeneration, while their combination showed significant improvement after 14 days postinjection
(Dong et al., 2013).

Moreover, many studies reported the possible combination of HA with other injectable agents, such as platelet-rich
plasma (PRP) for OA treatment (Andia & Abate, 2014; Chen et al., 2014; Lana et al., 2016). Commonly, PRP is a con-
centrated cocktail of growth factors derived from whole blood. It is well known that PRP can promote ECM production,
inhibit inflammation and increase chondrogenesis in cartilage (Wu et al., 2011). Preclinical studies involved the com-
bined use of sulfated polysaccharide fucoidan with gelatin and HA derived hydrogel systems with PRPs to achieve the
slow release of growth factors in a surgical rabbit model of OA (Lu et al., 2019). Kon et al. proved its clinical efficacy by
demonstrating a statistically significant improvement of clinical scores in 100 OA knee patients after three IA PRP
injections (Kon et al., 2010). Based on these evidences, the combination of PRP and HA could have the synergistic effect
on the two components: on one side, PRP should promote chondrogenesis, while, on the other, HA should act on the
biomechanical aspect (Andia & Abate, 2014; Chen et al., 2014; Lana et al., 2016). In a recent study conducted by Lana
et al., the efficacy of IA injection of PRP plus HA versus the use of two single components in the treatment of mild and
moderate OA knee was compared. Their results demonstrated that the use of PRP plus HA produces better outcome
than HA alone up to 1 year and PRP alone up to 3 months (Lana et al., 2016).

In the recent years, adipose tissue-derived mesenchymal stem cells (AMSCs) and bone marrow tissue-derived mes-
enchymal stem cells (BMSCs) have also been utilized for the treatment of OA. Sato and coworkers investigated how the
IA injection of mesenchymal stem cells (MSCs) suspended in HA solution promoted the regeneration of cartilage tissue
in a Hartley strain guinea pig spontaneous model of OA. Five weeks post-transplantation, a higher amount of type II
collagen around both residual chondrocytes and transplanted MSCs was reported in MSCs plus HA group compared
with other groups. So, they concluded that HA scaffold improved regeneration of MSCs by promoting their cell-binding
and proproliferative effects (Sato et al., 2012). In 2016, a study investigated the therapeutic efficacy of IA injection of
MSCs and HA in ACLT rabbit model. They found that MSCs plus HA IA injection suppressed the OA progression in
the knee joint of mature rabbits significantly better than IA HA injection alone. This was detected already 6 weeks after
treatment when MSCs were well-engrafted into both femoral and tibial cartilage (Chiang et al., 2016). Also, similar
therapeutic efficacy was reported in OA beagle model. In 2018, Li et al. demonstrated that IA injection of BMSCs and
HA improved cartilage defects in OA beagle model. Their report showed promising improvement with BMSCs plus HA
in cartilage defects compared with those in the other two treatment groups HA alone and saline. Based on these results,
they concluded the efficacy of BMSCs plus HA rather than HA in promoting the formation of cartilage-like tissue (Li
et al., 2018). Moreover, Wang et al. proved the efficacy of HA plus MSCs for the treatment in OA knee of rat model.
They demonstrated the improvement of regenerative activity of IA injection efficacy human amniotic mesenchymal
stem cells (hAMSCs) when combined with HA in rat OA models. They concluded that the presence of HA enhances all
the activities of hAMSCs, modulating cytokines secretion (Wang et al., 2020).

In addition to IA treatment by injections, similar approaches were investigated for the treatment of articular defects
using a combination of scaffold and cells by direct implantation into the lesion. Kuroda et al. conducted the first clinical
trial using the scaffold-cells combination in 2007. They evaluated the ability of a collagen scaffold loaded with
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autologous MSCs to promote tissue regeneration of medial femoral condyle articular cartilage in an athlete, demon-
strating the formation of a hyaline-like cartilage and the improvement of clinical symptom after 1 year (Kuroda
et al., 2007). Some examples of scaffold-cells combination in OA human patients were reported (Lamo-Espinosa
et al., 2016; Park et al., 2017). For instance, in 2016, Lamo-Espinosa et al. demonstrated a cartilage regeneration over
the subchondral bone after 12 weeks of a single IA injection BMSCs combined with HA. They concluded that this
combination is a safe and effective strategy for biomechanical and functional management of OA knee (Lamo-
Espinosa et al., 2016). Indeed, the result of another clinical trial has strengthened more the potential of this combina-
tion. In particular, Park et al. reported that a single IA injection of Cartistem (a combination of HA hydrogel and
with human umbilical cord blood-derived MSCs) is able to promote the maturing tissue repair at 12 weeks and
reduction of symptoms at 24 weeks, both of which remained stable over 7 years of follow-up (Park et al., 2017).
Recently, a clinical trial is recruiting people for testing the efficacy of a HA based scaffold (size: 2 � 2 cm or
5 � 5 cm) embedded with BMSCs in the treatment of symptomatic cartilage defects of the knee (Shah et al., 2021”).
In conclusion, combined treatment strategies could be an effective way to explore in order to improve the manage-
ment of OA.

8 | CONCLUSION

OA is a chronic disabling inflammatory disease that affects a growing percentage of the worldwide population where
the degenerative cascade leads to the manifestation of pain and progresses toward permanent disability. In spite of its
prevalence, there is no well-defined treatment regimen, DMOADs, or methods for early diagnosis for the treatment of
this chronic disease. One of the first clinically approved therapy to treat OA was the IA injection of HA to regain lubri-
cation of the affected joint. However, several clinical trials revealed that although this approach may provide temporary
relief, it is also associated with several limitations.

Low residence time of IA injected agents and the biological complexity of the disease, calling for combinatorial rather than
monotherapies, are major hurdles in the process of developing a definitive cure for OA. At this juncture, future therapies based
on nano/microparticles in combination with biologics, like PRPs and stem cells, could make the difference by simultaneously
addressing the problems of joint lubrication, drug dwelling time, and ECM remodeling by chondrocyte replacement. The com-
bination of hydrogels with other nanoparticles or corticosteroid-based therapeutics for prolonged release is another promising
direction but still at an initial stage and requires extensive studies to reach the clinical standards. Additionally, evolution of the
treatment design into a combination therapy might allow to overcome the drawbacks of previously rejected therapeutic targets.
In summary, designing clinically efficient treatment for OA is a multiscale challenge of growing relevance, which requires com-
plementary and combination efforts of different scientific approaches.
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Bayramo�glu, M., Karataş, M., Cetin, N., Akman, N., Sözay, S., & Dilek, A. (2003). Comparison of two different viscosupplements in knee
osteoarthritis: A pilot study. Clinical Rheumatology, 22(2), 118–122.

Bedingfield, S. K., Colazo, J. M., Di Francesco, M., Yu, F., Liu, D. D., Di Francesco, V., Himmel, L. E., Gupta, M. K., Cho, H., Hasty, K. A.,
Decuzzi, P., & Hasty, K. A. (2021). Top-down fabricated microPlates for prolonged, intra-articular matrix metalloproteinase 13 siRNA
Nanocarrier delivery to reduce post-traumatic osteoarthritis. ACS Nano, 15(9), 14475–14491.

Bedingfield, S. K., Colazo, J. M., Yu, F., Liu, D. D., Jackson, M. A., Himmel, L. E., Cho, H., Crofford, L. J., Hasty, K. A., & Duvall, C. L.
(2021). Amelioration of post-traumatic osteoarthritis via nanoparticle depots delivering small interfering RNA to damaged cartilage.
Nature Biomedical Engineering, 5, 1–15.

Bellamy, N., Campbell, J., Welch, V., Gee, T. L., Bourne, R., & Wells, G. A. (2006). Viscosupplementation for the treatment of osteoarthritis
of the knee. Cochrane Database of Systematic Reviews, 2, CD005321. https://doi.org/10.1002/14651858.CD005321.pub2

Bodick, N., Lufkin, J., Willwerth, C., Kumar, A., Bolognese, J., Schoonmaker, C., Ballal, R., Hunter, D., & Clayman, M. (2015). An intra-artic-
ular, extended-release formulation of triamcinolone acetonide prolongs and amplifies analgesic effect in patients with osteoarthritis of
the knee: A randomized clinical trial. The Journal of Bone and Joint Surgery. American Volume, 97(11), 877–888. https://doi.org/10.2106/
jbjs.N.00918

Bowman, S., Awad, M. E., Hamrick, M. W., Hunter, M., & Fulzele, S. (2018). Recent advances in hyaluronic acid based therapy for osteoar-
thritis. Clinical and Translational Medicine, 7(1), 1–11.

Braun, H. J., & Gold, G. E. (2012). Diagnosis of osteoarthritis: Imaging. Bone, 51(2), 278–288. https://doi.org/10.1016/j.bone.2011.11.019
Brown, S., Kumar, S., & Sharma, B. (2019). Intra-articular targeting of nanomaterials for the treatment of osteoarthritis. Acta Biomaterialia,

93, 239–257.
Charalambous, C., Tryfonidis, M., Sadiq, S., Hirst, P., & Paul, A. (2003). Septic arthritis following intra-articular steroid injection of the

knee–a survey of current practice regarding antiseptic technique used during intra-articular steroid injection of the knee. Clinical Rheu-
matology, 22(6), 386–390.

Chatterjee, A., Dubey, D. K., & Sinha, S. K. (2020). Effect of loading on the adhesion and frictional characteristics of top layer articular carti-
lage nanoscale contact: A molecular dynamics study. Langmuir, 37, 46–62.

Chen, A. L., Desai, P., Adler, E. M., & Di Cesare, P. E. (2002). Granulomatous inflammation after Hylan GF 20 viscosupplementation of the
knee: A report of six cases. JBJS, 84(7), 1142–1147.

Chen, W.-H., Lo, W.-C., Hsu, W.-C., Wei, H.-J., Liu, H.-Y., Lee, C.-H., Tina Chen, S. Y., Shieh, Y. H., Williams, D. F., & Deng, W.-P. (2014).
Synergistic anabolic actions of hyaluronic acid and platelet-rich plasma on cartilage regeneration in osteoarthritis therapy. Biomaterials,
35(36), 9599–9607.

16 of 22 DI FRANCESCO ET AL.

https://doi.org/10.1016/j.biomaterials.2013.09.091
https://doi.org/10.1016/j.biomaterials.2013.09.091
https://doi.org/10.1002/14651858.CD005321.pub2
https://doi.org/10.2106/jbjs.N.00918
https://doi.org/10.2106/jbjs.N.00918
https://doi.org/10.1016/j.bone.2011.11.019


Cheng, J., & Abdi, S. (2007). Complications of joint, tendon, and muscle injections. Techniques in Regional Anesthesia and Pain Management,
11(3), 141–147.

Chiang, E.-R., Ma, H.-L., Wang, J.-P., Liu, C.-L., Chen, T.-H., & Hung, S.-C. (2016). Allogeneic mesenchymal stem cells in combination with
hyaluronic acid for the treatment of osteoarthritis in rabbits. PLoS One, 11(2), e0149835.

Colombo, G. L., Heiman, F., & Peduto, I. (2021). Utilization of Healthcare resources in osteoarthritis: A cost of illness analysis based on real-
world data in Italy. Therapeutics and Clinical Risk Management, 17, 345–356.

Cross, M., Smith, E., Hoy, D., Nolte, S., Ackerman, I., Fransen, M., Bridgett, L., Williams, S., Guillemin, F., Hill, C. L., Laslett, L. L.,
Jones, G., Cicuttini, F., Osborne, R., Vos, T., Buchbinder, R., Woolf, A., & Hill, C. L. (2014). The global burden of hip and knee osteoar-
thritis: Estimates from the global burden of disease 2010 study. Annals of the Rheumatic Diseases, 73(7), 1323–1330.

Çubukçu, D., Ardıç, F., Karabulut, N., & Topuz, O. (2005). Hylan GF 20 efficacy on articular cartilage quality in patients with knee osteoar-
thritis: Clinical and MRI assessment. Clinical Rheumatology, 24(4), 336–341.

Cyphert, J. M., Trempus, C. S., & Garantziotis, S. (2015). Size matters: Molecular weight specificity of hyaluronan effects in cell biology. Inter-
national journal of Cell Biology, 2015, 563818.

Davalillo, C. �A. T., Vasavilbaso, C. T., �Alvarez, J. M. N., Granado, P. C., Jiménez, O. A. G., Del Sol, M. G., & Orbezo, F. G. (2015). Clinical
efficacy of intra-articular injections in knee osteoarthritis: A prospective randomized study comparing hyaluronic acid and bet-
amethasone. Open Access Rheumatology: Research and Reviews, 7, 9.

Day, A. J., & Carol, A. (2005). Hyaluronan cross-linking: A protective mechanism in inflammation? Trends in Immunology, 26(12), 637–643.
de Campos, G. C., Rezende, M. U., Pailo, A. F., Frucchi, R., & Camargo, O. P. (2013). Adding triamcinolone improves viscosupplementation:

a randomized clinical trial. Clinical Orthopaedics and Related Research, 471(2), 613–620.
DeGroot, H., III, Uzunishvili, S., Weir, R., Al-omari, A., & Gomes, B. (2012). Intra-articular injection of hyaluronic acid is not superior to

saline solution injection for ankle arthritis: A randomized, double-blind, placebo-controlled study. JBJS, 94(1), 2–8.
Di Francesco, M., Bedingfield, S. K., Di Francesco, V., Colazo, J. M., Yu, F., Ceseracciu, L., Bellotti, E., Di Mascolo, D., Ferreira, M.,

Himmel, L. E., Duvall, C., & Decuzzi, P. (2021). Shape-defined microplates for the sustained intra-articular release of dexamethasone in
the management of overload-induced osteoarthritis. ACS Applied Materials & Interfaces, 13, 31379–31392. https://doi.org/10.1021/
acsami.1c02082

Diffen LLC. (2021). MRI vs X-ray. Diffen.com. https://www.diffen.com/difference/MRI_vs_X-ray
Dong, J., Jiang, D., Wang, Z., Wu, G., Miao, L., & Huang, L. (2013). Intra-articular delivery of liposomal celecoxib–hyaluronate combination

for the treatment of osteoarthritis in rabbit model. International Journal of Pharmaceutics, 441(1-2), 285–290.
Duncan, R. C., Hay, E. M., Saklatvala, J., & Croft, P. R. (2006). Prevalence of radiographic osteoarthritis: It all depends on your point of view.

Rheumatology (Oxford), 45(6), 757–760. https://doi.org/10.1093/rheumatology/kei270
Edwards, S. H. (2011). Intra-articular drug delivery: The challenge to extend drug residence time within the joint. The Veterinary Journal,

190(1), 15–21.
Euppayo, T., Punyapornwithaya, V., Chomdej, S., Ongchai, S., & Nganvongpanit, K. (2017). Effects of hyaluronic acid combined with anti-

inflammatory drugs compared with hyaluronic acid alone, in clinical trials and experiments in osteoarthritis: A systematic review and
meta-analysis. BMC Musculoskeletal Disorders, 18(1), 387.

Evans, C. H., Kraus, V. B., & Setton, L. A. (2014). Progress in intra-articular therapy. Nature Reviews Rheumatology, 10(1), 11–22.
Eyre, D. R., Weis, M. A., & Wu, J.-J. (2006). Articular cartilage collagen: An irreplaceable framework. European Cells & Materials, 12(1),

57–63.
Falcone, S. J., Palmeri, D., & Berg, R. A. (2006). Biomedical applications of hyaluronic acid. In R. H. Marchessault, X. X. Ravenelle, & H. Zhu

(Eds.), Polysaccharides for drug delivery and pharmaceutical applications (Vol. 934, pp. 155–174). American Chemical Society.
Forsey, R. W., Fisher, J., Thompson, J., Stone, M. H., Bell, C., & Ingham, E. (2006). The effect of hyaluronic acid and phospholipid based

lubricants on friction within a human cartilage damage model. Biomaterials, 27(26), 4581–4590.
Freeman, M. A. R. (1979). Adult articular cartilage. Pitman Medical.
Frisbie, D., Cross, M., & McIlwraith, C. (2006). A comparative study of articular cartilage thickness in the stifle of animal species used in

human pre-clinical studies compared to articular cartilage thickness in the human knee. Veterinary and Comparative Orthopaedics and
Traumatology, 19(3), 142–146.

Gao, Y., Liu, X.-L., & Li, X.-R. (2011). Research progress on siRNA delivery with nonviral carriers. International Journal of Nanomedicine, 6,
1017.

Geiger, B. C., Wang, S., Padera, R. F., Grodzinsky, A. J., & Hammond, P. T. (2018). Cartilage-penetrating nanocarriers improve delivery and
efficacy of growth factor treatment of osteoarthritis. Science Translational Medicine, 10(469), eaat8800.

Gerwin, N., Hops, C., & Lucke, A. (2006). Intraarticular drug delivery in osteoarthritis. Advanced Drug Delivery Reviews, 58(2), 226–242.
Ghosh, P., & Guidolin, D. (2002). Potential mechanism of action of intra-articular hyaluronan therapy in osteoarthritis: Are the effects molec-

ular weight dependent? Seminars in Arthritis and Rheumatism, 32, 10–37.
Ghosh, P., Smith, M. M., Burkhardt, D., Kipic, B., Swain, M., Cake, M., & Read, R. (2005). Preclinical studies on the pharmacology of

hyaluronan in relation to its application as an intra-articular therapy for the treatment of osteoarthritis. In E. A. Balazs & V. C. Hascall
(Eds.), Hyaluronan, structure, metabolism, biological activities, therapeutic applications (pp. 491–502). Matrix Biology Institute.

Gigis, I., Fotiadis, E., Nenopoulos, A., Tsitas, K., & Hatzokos, I. (2016). Comparison of two different molecular weight intra-articular injec-
tions of hyaluronic acid for the treatment of knee osteoarthritis. Hippokratia, 20(1), 26–31.

DI FRANCESCO ET AL. 17 of 22

https://doi.org/10.1021/acsami.1c02082
https://doi.org/10.1021/acsami.1c02082
https://www.diffen.com/difference/MRI_vs_X-ray
https://doi.org/10.1093/rheumatology/kei270


Goldberg, R., Schroeder, A., Silbert, G., Turjeman, K., Barenholz, Y., & Klein, J. (2011). Boundary lubricants with exceptionally low friction
coefficients based on 2D close-packed phosphatidylcholine liposomes. Advanced Materials, 23(31), 3517–3521.

Goldberg, V., & Buckwalter, J. (2005). Hyaluronans in the treatment of osteoarthritis of the knee: Evidence for disease-modifying activity.
Osteoarthritis and Cartilage, 13(3), 216–224.

Goldring, M. B., & Otero, M. (2011). Inflammation in osteoarthritis. Current Opinion in Rheumatology, 23(5), 471–478.
Guermazi, A., Niu, J., Hayashi, D., Roemer, F. W., Englund, M., Neogi, T., Aliabadi, P., CE, M. L., & Felson, D. T. (2012). Prevalence of

abnormalities in knees detected by MRI in adults without knee osteoarthritis: Population based observational study (Framingham osteo-
arthritis study). BMJ, 345, e5339. https://doi.org/10.1136/bmj.e5339

Guermazi, A., Roemer, F. W., Hayashi, D., Crema, M. D., Niu, J., Zhang, Y., Marra, M. D., Katur, A., Lynch, J. A., El-Khoury, G. Y.,
Baker, K., Hughes, L. B., Nevitt, M. C., & El-Khoury, G. Y. (2011). Assessment of synovitis with contrast-enhanced MRI using a whole-
joint semiquantitative scoring system in people with, or at high risk of, knee osteoarthritis: The MOST study. Annals of the Rheumatic
Diseases, 70(5), 805–811.

Gupta, R. C., Lall, R., Srivastava, A., & Sinha, A. (2019). Hyaluronic acid: Molecular mechanisms and therapeutic trajectory. Frontiers in Vet-
erinary Science, 6, 192.

Han, H., Ma, Y., Wang, X., Yun, R., Lu, S., Xia, M., Wang, Y., Shi, Q., Zhai, W., Liang, Q., & Xu, H. (2020). Fang-Ji-Huang-qi-Tang attenuates
degeneration of early-stage KOA mice related to promoting joint lymphatic drainage function. Evidence-based Complementary and Alter-
native Medicine, 2020, 3471681. https://doi.org/10.1155/2020/3471681

Hascall, V., & Laurent, T. C. (1997). Hyaluronan: Structure and physical properties. In Glycoforum/glycoscience/science of hyaluronan,
Seikagaku. http://www.dtinet.or.jp/�nao/glycoforum/science/hyaluronan/report1/report1E.html

Hepper, C. T., Halvorson, J. J., Duncan, S. T., Gregory, A. J., Dunn, W. R., & Spindler, K. P. (2009). The efficacy and duration of intra-
articular corticosteroid injection for knee osteoarthritis: A systematic review of level I studies. JAAOS-Journal of the American Academy
of Orthopaedic Surgeons, 17(10), 638–646.

Hochberg, M. C., Altman, R. D., April, K. T., Benkhalti, M., Guyatt, G., McGowan, J., Towheed, T., Welch, V., Wells, G., & Tugwell, P.
(2012). American College of Rheumatology 2012 recommendations for the use of nonpharmacologic and pharmacologic therapies in
osteoarthritis of the hand, hip, and knee. Arthritis Care & Research, 64(4), 465–474.

Holyoak, D. T., Wheeler, T. A., van der Meulen, M. C., & Singh, A. (2019). Injectable mechanical pillows for attenuation of load-induced
post-traumatic osteoarthritis. Regenerative Biomaterials, 6(4), 211–219.

Hunter, D. J. (2011). Pharmacologic therapy for osteoarthritis—The era of disease modification. Nature Reviews Rheumatology, 7(1), 13–22.
Hunter, D. J., Arden, N., Cicuttini, F., Crema, M. D., Dardzinski, B., Duryea, J., Guermazi, A., Haugen, I. K., Kloppenburg, M., Maheu, E.,

Miller, C. G., Martel-Pelletier, J., Ochoa-Albíztegui, R. E., Pelletier, J. P., Peterfy, C., Roemer, F., & Gold, G. E. (2015). OARSI clinical tri-
als recommendations: Hand imaging in clinical trials in osteoarthritis. Osteoarthritis and Cartilage, 23(5), 732–746. https://doi.org/10.
1016/j.joca.2015.03.003

Hunter, D. J., Pike, M. C., Jonas, B. L., Kissin, E., Krop, J., & McAlindon, T. (2010). Phase 1 safety and tolerability study of BMP-7 in symp-
tomatic knee osteoarthritis. BMC Musculoskeletal Disorders, 11(1), 1–8.

Iannitti, T., Rottigni, V., & Palmieri, B. (2012). A pilot study to compare two different hyaluronic acid compounds for treatment and knee
osteoarthritis. International Journal of Immunopathology and Pharmacology, 25(4), 1093–1098.

Jubeck, B., Gohr, C., Fahey, M., Muth, E., Matthews, M., Mattson, E., Hirschmugl, C., & Rosenthal, A. K. (2008). Promotion of articular carti-
lage matrix vesicle mineralization by type I collagen. Arthritis and Rheumatism, 58(9), 2809–2817.

Karakurum, G., Karakok, M., Tarakcioglu, M., Kocer, N. E., Kocabas, R., & Bagci, C. (2003). Comparative effect of intra-articular administra-
tion of hyaluronan and/or cortisone with evaluation of malondialdehyde on degenerative osteoarthritis of the rabbit's knee. The Tohoku
Journal of Experimental Medicine, 199(3), 127–134. https://doi.org/10.1620/tjem.199.127

Karatosun, V., Unver, B., Gocen, Z., & Sen, A. (2005). Comparison of two hyaluronan drugs in patients with advanced osteoarthritis of the
knee. A prospective, randomized, double-blind study with long term follow-up. Clinical and Experimental Rheumatology, 23(2), 213–218.

Karlsson, J., Sjogren, L., & Lohmander, L. (2002). Comparison of two hyaluronan drugs and placebo in patients with knee osteoarthritis. A
controlled, randomized, double-blind, parallel-design multicentre study. Rheumatology, 41(11), 1240–1248.

Kass, L. E., & Nguyen, J. (2021). Nanocarrier-hydrogel composite delivery systems for precision drug release. WIREs Nanomedicine and
Nanobiotechnology, e1756. https://doi.org/10.1002/wnan.1756

Kawano, T., Miura, H., Mawatari, T., Moro-Oka, T., Nakanishi, Y., Higaki, H., & Iwamoto, Y. (2003). Mechanical effects of the intraarticular
administration of high molecular weight hyaluronic acid plus phospholipid on synovial joint lubrication and prevention of articular car-
tilage degeneration in experimental osteoarthritis. Arthritis & Rheumatism, 48(7), 1923–1929.

Kinds, M. B., Welsing, P. M., Vignon, E. P., Bijlsma, J. W., Viergever, M. A., Marijnissen, A. C., & Lafeber, F. P. (2011). A systematic review
of the association between radiographic and clinical osteoarthritis of hip and knee. Osteoarthritis and Cartilage, 19(7), 768–778. https://
doi.org/10.1016/j.joca.2011.01.015

Kolasinski, S. L., Neogi, T., Hochberg, M. C., Oatis, C., Guyatt, G., Block, J., Callahan, L., Copenhaver, C., Dodge, C., Felson, D., Gellar, K.,
Harvey, W. F., Hawker, G., Herzig, E., Kwoh, C. K., Nelson, A. E., Samuels, J., Scanzello, C., White, D., … Reston, J. (2020). 2019 Ameri-
can College of Rheumatology/Arthritis Foundation guideline for the management of osteoarthritis of the hand, hip, and knee. Arthritis &
Rheumatology, 72(2), 220–233.

Kon, E., Buda, R., Filardo, G., Di Martino, A., Timoncini, A., Cenacchi, A., Fornasari, P. M., Giannini, S., & Marcacci, M. (2010). Platelet-rich
plasma: Intra-articular knee injections produced favorable results on degenerative cartilage lesions. Knee Surgery, Sports Traumatology,
Arthroscopy, 18(4), 472–479.

18 of 22 DI FRANCESCO ET AL.

https://doi.org/10.1136/bmj.e5339
https://doi.org/10.1155/2020/3471681
http://www.dtinet.or.jp/%7Enao/glycoforum/science/hyaluronan/report1/report1E.html
http://www.dtinet.or.jp/%7Enao/glycoforum/science/hyaluronan/report1/report1E.html
https://doi.org/10.1016/j.joca.2015.03.003
https://doi.org/10.1016/j.joca.2015.03.003
https://doi.org/10.1620/tjem.199.127
https://doi.org/10.1002/wnan.1756
https://doi.org/10.1016/j.joca.2011.01.015
https://doi.org/10.1016/j.joca.2011.01.015


Kosinska, M. K., Liebisch, G., Lochnit, G., Wilhelm, J., Klein, H., Kaesser, U., Lasczkowski, G., Rickert, M., Schmitz, G., & Steinmeyer, J.
(2013). A lipidomic study of phospholipid classes and species in human synovial fluid. Arthritis and Rheumatism, 65(9), 2323–2333.

Kotevoglu, N., Iyıbozkurt, P. C., Hız, O., Toktas, H., & Kuran, B. (2006). A prospective randomised controlled clinical trial comparing the effi-
cacy of different molecular weight hyaluronan solutions in the treatment of knee osteoarthritis. Rheumatology International, 26(4),
325–330.

Kou, L., Xiao, S., Sun, R., Bao, S., Yao, Q., & Chen, R. (2019). Biomaterial-engineered intra-articular drug delivery systems for osteoarthritis
therapy. Drug Delivery, 26(1), 870–885.

Krzeski, P., Buckland-Wright, C., B�alint, G., Cline, G. A., Stoner, K., Lyon, R., Beary, J., Aronstein, W. S., & Spector, T. D. (2007). Develop-
ment of musculoskeletal toxicity without clear benefit after administration of PG-116800, a matrix metalloproteinase inhibitor, to
patients with knee osteoarthritis: A randomized, 12-month, double-blind, placebo-controlled study. Arthritis Research & Therapy, 9(5),
1–11.

Kumar, S., & Sharma, B. (2020). Leveraging electrostatic interactions for drug delivery to the joint. Bioelectricity, 2(2), 82–100.
Kuroda, R., Ishida, K., Matsumoto, T., Akisue, T., Fujioka, H., Mizuno, K., Ohgushi, H., Wakitani, S., & Kurosaka, M. (2007). Treatment of a

full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells. Osteoarthritis
and Cartilage, 15(2), 226–231.

Lamo-Espinosa, J. M., Mora, G., Blanco, J. F., Granero-Molt�o, F., Nuñez-C�ordoba, J. M., S�anchez-Echenique, C., Aquerreta, J. D.,
Bondía, J. M., Valentí-Azc�arate, A., Del Consuelo Del Cañizo, M., Villar�on, E. M., Valentí-Nin, J. R., & Ornilla, E. (2016). Intra-articular
injection of two different doses of autologous bone marrow mesenchymal stem cells versus hyaluronic acid in the treatment of knee oste-
oarthritis: Multicenter randomized controlled clinical trial (phase I/II). Journal of Translational Medicine, 14(1), 246.

Lana, J. F., Weglein, A., Sampson, S. E., Vicente, E. F., Huber, S. C., Souza, C. V., Ambach, M. A., Vincent, H., Urban-Paffaro, A.,
Onodera, C. M., Annichino-Bizzacchi, J. M., Santana, M. H., & Belangero, W. D. (2016). Randomized controlled trial comparing
hyaluronic acid, platelet-rich plasma and the combination of both in the treatment of mild and moderate osteoarthritis of the knee. Jour-
nal of Stem Cells & Regenerative Medicine, 12(2), 69–78.

Lee, A. S., Ellman, M. B., Yan, D., Kroin, J. S., Cole, B. J., van Wijnen, A. J., & Im, H.-J. (2013). A current review of molecular mechanisms
regarding osteoarthritis and pain. Gene, 527(2), 440–447.

Lee, P., Kim, Y., Lim, Y., Lee, C., Sim, W., Ha, C., Bin, S. I., Lim, K. B., Choi, S. S., & Lee, S. (2006). Comparison between high and low
molecular weight hyaluronates in knee osteoarthritis patients: Open-label, randomized, multicentre clinical trial. Journal of International
Medical Research, 34(1), 77–87.

Lee, S. C., Rha, D.-W., & Chang, W. H. (2011). Rapid analgesic onset of intra-articular hyaluronic acid with ketorolac in osteoarthritis of the
knee. Journal of Back and Musculoskeletal Rehabilitation, 24(1), 31–38.

Leng, Y., & Cummings, P. T. (2005). Fluidity of hydration layers nanoconfined between mica surfaces. Physical Review Letters, 94(2), 026101.
Li, L., Duan, X., Fan, Z., Chen, L., Xing, F., Xu, Z., Chen, Q., & Xiang, Z. (2018). Mesenchymal stem cells in combination with hyaluronic

acid for articular cartilage defects. Scientific Reports, 8(1), 1–11.
Li, N.-G., Shi, Z.-H., Tang, Y.-P., Wang, Z.-J., Song, S.-L., Qian, L.-H., Qian, D. W., & Duan, J.-A. (2011). New hope for the treatment of osteo-

arthritis through selective inhibition of MMP-13. Current Medicinal Chemistry, 18(7), 977–1001.
Lin, W., Kluzek, M., Iuster, N., Shimoni, E., Kampf, N., Goldberg, R., & Klein, J. (2020). Cartilage-inspired, lipid-based boundary-lubricated

hydrogels. Science, 370(6514), 335–338.
Loeser, R. F., Collins, J. A., & Diekman, B. O. (2016). Ageing and the pathogenesis of osteoarthritis. Nature Reviews Rheumatology, 12(7),

412–420.
Loffredo, F. S., Pancoast, J. R., Cai, L., Vannelli, T., Dong, J. Z., Lee, R. T., & Patwari, P. (2014). Targeted delivery to cartilage is critical for

in vivo efficacy of insulin-like growth factor 1 in a rat model of osteoarthritis. Arthritis & Rheumatology, 66(5), 1247–1255.
Lu, H.-T., Chang, W.-T., Tsai, M.-L., Chen, C.-H., Chen, W.-Y., & Mi, F.-L. (2019). Development of injectable fucoidan and biological macro-

molecules hybrid hydrogels for intraarticular delivery of platelet-rich plasma. Marine Drugs, 17(4), 236.
Majd, S. E., Kuijer, R., Köwitsch, A., Groth, T., Schmidt, T. A., & Sharma, P. K. (2014). Both hyaluronan and collagen type II keep proteoglycan

4 (lubricin) at the cartilage surface in a condition that provides low friction during boundary lubrication. Langmuir, 30(48), 14566–14572.
Malda, J., de Grauw, J. C., Benders, K. E., Kik, M. J., van de Lest, C. H., Creemers, L. B., Dhert, W. J., & van Weeren, P. R. (2013). Of mice,

men and elephants: The relation between articular cartilage thickness and body mass. PLoS One, 8(2), e57683.
Maldonado, M., & Nam, J. (2013). The role of changes in extracellular matrix of cartilage in the presence of inflammation on the pathology

of osteoarthritis. BioMed Research International, 2013, 284873.
Mancipe Castro, L. M., Sequeira, A., García, A., & Guldberg, R. E. (2020). Articular cartilage-and synoviocyte-binding poly(ethylene glycol)

nanocomposite microgels as intra-articular drug delivery vehicles for the treatment of osteoarthritis. ACS Biomaterials Science & Engi-
neering, 6(9), 5084–5095.

Martel-Pelletier, J., Barr, A. J., Cicuttini, F. M., Conaghan, P. G., Cooper, C., Goldring, M. B., Goldring, S. R., Jones, G., Teichtahl, A. J., &
Pelletier, J.-P. (2016). Osteoarthritis. Nature Reviews Disease Primers, 2(1), 16072. https://doi.org/10.1038/nrdp.2016.72

Martin, J., & Buckwalter, J. (2006). Post-traumatic osteoarthritis: The role of stress induced chondrocyte damage. Biorheology, 43(3, 4),
517–521.

Mathiessen, A., & Conaghan, P. G. (2017). Synovitis in osteoarthritis: Current understanding with therapeutic implications. Arthritis
Research & Therapy, 19(1), 1–9.

DI FRANCESCO ET AL. 19 of 22

https://doi.org/10.1038/nrdp.2016.72


Mathieu, P., Conrozier, T., Vignon, E., Rozand, Y., & Rinaudo, M. (2009). Rheologic behavior of osteoarthritic synovial fluid after addition of
hyaluronic acid: A pilot study. Clinical Orthopaedics and Related Research, 467(11), 3002–3009.

Matthews, G. L., & Hunter, D. J. (2011). Emerging drugs for osteoarthritis. Expert Opinion on Emerging Drugs, 16(3), 479–491.
Mero, A., Campisi, M., Favero, M., Barbera, C., Secchieri, C., Dayer, J. M., Goldring, M. B., Goldring, S. R., & Pasut, G. (2014). A hyaluronic

acid–salmon calcitonin conjugate for the local treatment of osteoarthritis: Chondro-protective effect in a rabbit model of early OA. Jour-
nal of Controlled Release, 187, 30–38.

Miller, L. E., & Block, J. E. (2013). US-approved intra-articular hyaluronic acid injections are safe and effective in patients with knee osteoar-
thritis: Systematic review and meta-analysis of randomized, saline-controlled trials. Clinical Medicine Insights: Arthritis and Musculoskel-
etal Disorders, 6, S12743.

Miller, R. E., Grodzinsky, A. J., Cummings, K., Plaas, A. H., Cole, A. A., Lee, R. T., & Patwari, P. (2010). Intraarticular injection of heparin-
binding insulin-like growth factor 1 sustains delivery of insulin-like growth factor 1 to cartilage through binding to chondroitin sulfate.
Arthritis and Rheumatism, 62(12), 3686–3694.

Moreland, L. W. (2003). Intra-articular hyaluronan (hyaluronic acid) and hylans for the treatment of osteoarthritis: Mechanisms of action.
Arthritis Research & Therapy, 5(2), 54–67.

Mori, S., Naito, M., & Moriyama, S. (2002). Highly viscous sodium hyaluronate and joint lubrication. International Orthopaedics, 26(2),
116–121.

Onuora, S. (2014). Sprifermin shows cartilage-protective effects in knee OA. Nature Reviews Rheumatology, 10(6), 322–322.
Ozturk, C., Atamaz, F., Hepguler, S., Argin, M., & Arkun, R. (2006). The safety and efficacy of intraarticular hyaluronan with/without corti-

costeroid in knee osteoarthritis: 1-year, single-blind, randomized study. Rheumatology International, 26(4), 314–319.
Park, Y. B., Ha, C. W., Lee, C. H., Yoon, Y. C., & Park, Y. G. (2017). Cartilage regeneration in osteoarthritic patients by a composite of alloge-

neic umbilical cord blood-derived mesenchymal stem cells and hyaluronate hydrogel: Results from a clinical trial for safety and proof-of-
concept with 7 years of extended follow-up. Stem Cells Translational Medicine, 6(2), 613–621.

Petrella, R. J., Emans, P. J., Alleyne, J., Dellaert, F., Gill, D. P., & Maroney, M. (2015). Safety and performance of Hydros and
Hydros-TA for knee osteoarthritis: A prospective, multicenter, randomized, double-blind feasibility trial. BMC Musculoskeletal
Disorders, 16(1), 1–9.

Pickard, J., Fisher, J., Ingham, E., & Egan, J. (1998). Investigation into the effects of proteins and lipids on the frictional properties of articu-
lar cartilage. Biomaterials, 19(19), 1807–1812.

Roemer, F. W., Kassim Javaid, M., Guermazi, A., Thomas, M., Kiran, A., Keen, R., King, L., & Arden, N. K. (2010). Anatomical distribution
of synovitis in knee osteoarthritis and its association with joint effusion assessed on non-enhanced and contrast-enhanced MRI. Osteoar-
thritis and Cartilage, 18(10), 1269–1274. https://doi.org/10.1016/j.joca.2010.07.008

Rudnik-Jansen, I., Colen, S., Berard, J., Plomp, S., Que, I., van Rijen, M., Woike, N., Egas, A., van Osch, G., van Maarseveen, E., Messier, K.,
Chan, A., Thies, J., & van Maarseveen, E. (2017). Prolonged inhibition of inflammation in osteoarthritis by triamcinolone acetonide
released from a polyester amide microsphere platform. Journal of Controlled Release, 253, 64–72.

Rudnik-Jansen, I., Schrijver, K., Woike, N., Tellegen, A., Versteeg, S., Emans, P., Mihov, G., Thies, J., Eijkelkamp, N., Tryfonidou, M., &
Tryfonidou, M. (2019). Intra-articular injection of triamcinolone acetonide releasing biomaterial microspheres inhibits pain and inflam-
mation in an acute arthritis model. Drug Delivery, 26(1), 226–236.

Safiri, S., Kolahi, A.-A., Smith, E., Hill, C., Bettampadi, D., Mansournia, M. A., Hoy, D., Ashrafi-Asgarabad, A., Sepidarkish, M., Almasi-
Hashiani, A., Collins, G., Kaufman, J., Qorbani, M., Moradi-Lakeh, M., Woolf, A. D., Guillemin, F., March, L., & Almasi-Hashiani, A.
(2020). Global, regional and national burden of osteoarthritis 1990-2017: A systematic analysis of the global burden of disease study
2017. Annals of the Rheumatic Diseases, 79(6), 819–828.

Sakellariou, G., Conaghan, P. G., Zhang, W., Bijlsma, J. W. J., Boyesen, P., D'Agostino, M. A., Doherty, M., Fodor, D., Kloppenburg, M.,
Miese, F., Naredo, E., Porcheret, M., & Iagnocco, A. (2017). EULAR recommendations for the use of imaging in the clinical management
of peripheral joint osteoarthritis. Annals of the Rheumatic Diseases, 76(9), 1484–1494. https://doi.org/10.1136/annrheumdis-2016-210815

Sato, M., Uchida, K., Nakajima, H., Miyazaki, T., Guerrero, A. R., Watanabe, S., Roberts, S., & Baba, H. (2012). Direct transplantation of mes-
enchymal stem cells into the knee joints of Hartley strain Guinea pigs with spontaneous osteoarthritis. Arthritis Research & Therapy,
14(1), R31.

Schlaich, A., Kappler, J., & Netz, R. R. (2017). Hydration friction in nanoconfinement: From bulk via interfacial to dry friction. Nano Letters,
17(10), 5969–5976.

Schmidt, T. A., Gastelum, N. S., Nguyen, Q. T., Schumacher, B. L., & Sah, R. L. (2007). Boundary lubrication of articular cartilage: Role of
synovial fluid constituents. Arthritis and Rheumatism, 56(3), 882–891.

Seror, J., Merkher, Y., Kampf, N., Collinson, L., Day, A. J., Maroudas, A., & Klein, J. (2012). Normal and shear interactions between
hyaluronan–aggrecan complexes mimicking possible boundary lubricants in articular cartilage in synovial joints. Biomacromolecules,
13(11), 3823–3832.

Seror, J., Zhu, L., Goldberg, R., Day, A. J., & Klein, J. (2015). Supramolecular synergy in the boundary lubrication of synovial joints. Nature
Communications, 6(1), 1–7.

Shah, S. S., Lee, S., & Mithoefer, K. (2021). Next-generation marrow stimulation technology for cartilage repair: basic science to clinical appli-
cation. JBJS Rev, 9(1), e20.00090.

Shaik, S. F. V., Kothandan, D., Singareddy, P., & Sanku, S. (2018). Cost of illness analysis of knee osteoarthritis in a tertiary care hospital.
Journal of Young Pharmacists, 10(3), 322–325.

20 of 22 DI FRANCESCO ET AL.

https://doi.org/10.1016/j.joca.2010.07.008
https://doi.org/10.1136/annrheumdis-2016-210815


Shi, J., Liang, Q., Zuscik, M., Shen, J., Chen, D., Xu, H., Wang, Y. J., Chen, Y., Wood, R. W., Li, J., Boyce, B. F., & Li, J. (2014). Distribu-
tion and alteration of lymphatic vessels in knee joints of normal and osteoarthritic mice. Arthritis & Rheumatology, 66(3), 657–666.

Shimizu, C., Kubo, T., Hirasawa, Y., Coutts, R., & Amiel, D. (1998). Histomorphometric and biochemical effect of various hyaluronans on
early osteoarthritis. The Journal of Rheumatology, 25(9), 1813–1819.

Sivan, S., Schroeder, A., Verberne, G., Merkher, Y., Diminsky, D., Priev, A., Maroudas, A., Halperin, G., Nitzan, D., Etsion, I., & Etsion, I.
(2010). Liposomes act as effective biolubricants for friction reduction in human synovial joints. Langmuir, 26(2), 1107–1116.

Smith, M. M., & Ghosh, P. (1987). The synthesis of hyaluronic acid by human synovial fibroblasts is influenced by the nature of the
hyaluronate in the extracellular environment. Rheumatology International, 7(3), 113–122.

Steinmeyer, J., Bock, F., Stöve, J., Jerosch, J., & Flechtenmacher, J. (2018). Pharmacological treatment of knee osteoarthritis: Special consid-
erations of the new German guideline. Orthopedic Reviews, 10(4), 7782.

Tamer, T. M. (2013). Hyaluronan and synovial joint: Function, distribution and healing. Interdisciplinary Toxicology, 6(3), 111–125.
Tammachote, N., Kanitnate, S., Yakumpor, T., & Panichkul, P. (2016). Intra-articular, single-shot hylan GF 20 hyaluronic acid injection com-

pared with corticosteroid in knee osteoarthritis: A double-blind, randomized controlled trial. JBJS, 98(11), 885–892.
Tanimoto, K., Ohno, S., Fujimoto, K., Honda, K., Ijuin, C., Tanaka, N., Doi, T., Nakahara, M., & Tanne, K. (2001). Proinflammatory cyto-

kines regulate the gene expression of hyaluronic acid synthetase in cultured rabbit synovial membrane cells. Connective Tissue Research,
42(3), 187–195.

Testa, G., Giardina, S. M. C., Culmone, A., Vescio, A., Turchetta, M., Cannavò, S., & Pavone, V. (2021). Intra-articular injections in knee oste-
oarthritis: A review of literature. Journal of Functional Morphology and Kinesiology, 6(1), 15.
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